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Abstract In the Sleeping Beauty problem, Beauty is woken once if a coin lands heads or 

twice if the coin lands tails but promptly forgets each waking on returning to sleep. 

Philosophers have divided over whether her waking credence in heads should be a half 

or a third. Beauty has centered beliefs about her world and about her location in that 

world. When given new information about her location she should update her worldly 

beliefs before updating her locative beliefs. When she conditionalizes in this way, her 

credence in heads is a half before and after being told it is Monday. In applications of 

Dutch Book arguments to the Sleeping Beauty problem, the probability of a particular 

outcome has often been confounded with consequences of that outcome. Heads and tails 

are equally likely but twice as much is at stake if the coin falls tails because Beauty is 

fated to make the same choice twice. As a consequence, the possibility of tails should be 

given twice the weight of the possibility of heads when deciding whether to bet on 

heads even though heads and tails are equally likely.  

 

Keywords Sleeping Beauty; Hamilton’s rule; credence; relatedness; endosperm; 

conditionalization; de se beliefs 

 

Elga (2000) introduced the Sleeping Beauty problem as a paradigm for thinking about 

centered beliefs. In this puzzle, Beauty is uncertain whether a fair coin landed heads or 

tails. If the coin landed heads then she will be woken once. If the coin landed tails, then 

she will be woken twice. Beauty is assumed to understand the procedure but to have all 

memories of waking erased on returning to sleep. What should be her waking credence 

that the coin landed heads? ‘Thirders’ believe the answer is one-third because Beauty is 

woken twice as often after the coin lands tails as after heads (Elga 2000; Hitchcock 2004; 
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Briggs 2010). ‘Halfers’ believe the answer is one-half because the coin is equally likely to 

land heads or tails (Lewis 2001; Arntzenius 2002; Meacham 2008). Halfers and thirders 

continue to lock swords at the time of writing. 

The purpose of this paper is to offer a resolution of the Sleeping Beauty problem 

informed by consideration of a parallel problem in botany that arose in the 1980s in 

which some theoreticians adopted a ‘thirder’ stance and others a ‘halfer’ stance. This 

problem concerned the genetic constitution of endosperm, a tissue within seeds. My 

understanding of the philosophers’ problem was clarified by thinking about the 

botanical problem and vice versa. Philosophical disagreement between halfers and 

thirders may seem abstruse to empirical scientists and the genetics of endosperm may 

seem equally omphaloscopic to philosophers until it is noted that every grain of rice, 

wheat, rye, oats, barley, millet, sorghum, and maize is predominantly endosperm. Most 

calories in the global human diet come from the direct consumption of endosperm or its 

indirect consumption via eating grain-fed beasts. Epistemology can be practical. 

I propose that Sleeping Beauty should update her beliefs about her world before 

updating her beliefs about her location in that world and when she does this she 

maintains a consistent credence of one half in heads. The next two sections, Eternal 

Beauty and Ephemeral Beauty, present the argument which is summarized in Beauty at 

Rest. Gambling on Beauty offers an explanation of why arguments based on the bets 

Beauty would accept on particular outcomes have often appeared to support the thirder 

position. Hamilton’s Wager and subsequent sections present the Sleeping Beauty problem 

as instantiated within a grain of rice. 
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Eternal Beauty 

Consider an infinite variant of the Sleeping Beauty problem. Eternal Beauty is told that 

she will be put to sleep and woken on every Monday for eternity if a fair coin lands 

heads but on every Monday and Tuesday for eternity if the coin lands tails. On waking 

she will be told neither the day nor the outcome of the coin toss, and she will forget each 

and every waking on returning to sleep. Before being put to sleep for the first time, she 

understands the protocol and she retains her understanding of the protocol at each 

awakening. She believes in three possibilities on waking: the coin landed heads and this 

is Monday (H1), the coin landed tails and this is Monday (T1), or the coin landed tails 

and this is Tuesday (T2). 

Eternal Beauty’s beliefs about her world should be distinguished from her beliefs 

about her location in her world. I will call the former her worldly beliefs (P') and the 

latter her locative beliefs (P).1 She believes P'(heads) = P'(tails) = ½. If the coin lands 

heads, then her world contains H1, P'(H1) = ½. If the coin lands tails, then her world 

contains T1 and T2, P'(T1) = P'(T2) = ½. P'(T1) and P'(T2) are duplicates of the probability 

of her possible world in which the coin landed tails. Eternal Beauty knows she will wake 

on Mondays, P'(H1) + P'(T1) = 1, and believes she has a half chance of waking on 

Tuesdays, P'(T2) = ½.  

                                                      
1 Locative beliefs are de se beliefs. Worldly beliefs are not otherworldly beliefs. They are 

Beauty’s centered beliefs about her actual world and what it might be. If her actual 

world is conceived as an object with properties, then wordly beliefs might be considered 

de re (but I am ill-educated on the philosophical nuances of these Latin phrases). 
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How should Eternal Beauty convert beliefs about her world into beliefs about her 

location in her world? If she is in a world with T1 wakings then she must also be in a 

world with T2 wakings, namely P'(T1|T2) = P'(T2|T1) = 1. However, T1 and T2 are 

mutually exclusive when she wakes, P(T1|T2) = P(T2|T1) = 0. She believes her world 

contains either H1 or (T1 and T2) but, on waking, is located in H1 or T1 or T2. How should 

she conceptualize this peculiar transformation of (T1 and T2) into (T1 or T2)?  

Halfers believe that waking on Monday is twice as likely in possible worlds 

created by the coin landing tails as in possible worlds created by the coin landing heads. 

Eternal Beauty reasons on waking that either the coin landed heads or the coin landed 

tails. If the coin landed heads, with probability P(heads) = ½, then it is Monday (H1), but 

if the coin landed tails, with probability P(tails) = ½, then it is either Monday (T1) or 

Tuesday (T2). Since P(T1) = P(T2), by a principle of indifference, Eternal Beauty’s locative 

beliefs on waking are P(H1) = ½, P(T1) = ¼, P(T2) = ¼.  

Thirders believe that Eternal Beauty is woken twice as often in possible worlds 

created by the coin landing tails as in possible worlds created by the coin landing heads. 

As a corollary thirders believe that Eternal Beauty is woken on Monday just as often 

when the coin lands heads as when the coin lands tails. Because H1, T1, and T2 occur 

equally often, she believes P(H1) = P(T1) = P(T2) = 1/3 and, therefore, P(heads) = 1/3.  

For halfers, T1 and T2 collectively have the same locative probability as H1 on 

waking but, for thirders, T1 and T2 individually have the same locative probability as H1. 

Halfers believe, and thirders probably agree, that the likelihood that a waking is on 

Monday in possible worlds in which the coin lands heads is twice the corresponding 

likelihood in possible worlds in which the coin lands tails. Thirders also believe that 

waking on Monday occurs as often in her possible world in which the coin lands heads 
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as in her possible world in which the coin lands tails. In reasoning across these possible 

worlds, halfers use the likelihood of Monday but thirders use the frequency of Monday.  

What if you asked Eternal Beauty about her beliefs? Perhaps she would say that 

whether her world was created heads or tails, whether it is Monday or Tuesday, or 

whether there are any other days but this day, are metaphysical questions because there 

is nothing she can learn to distinguish among the alternatives. She has a memory that 

P'(heads) = ½ from before the procedure—was it yesterday?—but lives in an eternal 

present. Why should she have prior beliefs if nothing is at stake? Possible worlds in 

which the coin toss was heads or the coin toss was tails are both infinite sets of 

indistinguishable days, without past or future, in eternal recurrence. If she were a 

number theorist, Beauty might consider the proposition ‘one countable infinite set has 

twice as many members as another’ to be meaningless. 

Ephemeral Beauty 

Eternal Beauty’s sister, Ephemeral Beauty, is told on Sunday that a fair coin will be 

tossed. If it comes up heads she will be woken on Monday, and then made to forget, but 

if it comes up tails she will be woken on Monday and Tuesday, and made to forget after 

each waking. She will then be woken and debriefed on Wednesday. This is the original 

Sleeping Beauty problem. The halfer can simply argue that, when Ephemeral Beauty is 

woken on Monday or Tuesday, her beliefs are the same as she possessed before the 

procedure. She believes P(heads) = ½ on Sunday before the coin was tossed and believes 

the same on Wednesday before the outcome of the coin toss is revealed. It would be 

perverse for her to believe anything different on Monday or Tuesday. A thirder must 
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argue that Ephemeral Beauty believes tails to be twice as likely as heads on Monday and 

Tuesday despite contrary beliefs on Sunday and Wednesday. 

Elga (2000) and Lewis (2001) updated Ephemeral Beauty’s beliefs using standard 

conditionalization but different priors. They agreed that P(heads) = P(H1), that P(T1) = 

P(T2), and that when she is told it is Monday her credence in heads should increase 

because the prior possibility of T2 is eliminated. This led each to adopt positions they 

found counterintuitive. Elga (2000) reasoned that PMon(heads) = ½ and working 

backward was forced to conclude that P(heads) = 1/3. By contrast, Lewis (2001) 

assumed P(heads) = ½ and by working forward was forced to conclude that PMon(heads) 

= 2/3. Both reasoned that, before being told it is Monday, Sleeping Beauty believes P(H1) 

+ P(T1) + P(T2) = 1 but, after being told it is Monday, she believes PMon(H1) + PMon(T1) = 1. 

The probability formerly attached to T2 was distributed between H1 and T1. For Elga, 

Beauty’s centered beliefs changed from P(H1) = P(T1) = P(T2) = 1/3 to PMon(H1) = PMon(T1) 

= ½, PMon(T2) = 0. For Lewis, Beauty’s centered beliefs changed from P(H1) = ½, P(T1) = 

¼, P(T2) = ¼ to PMon(H1) = 2/3, PMon(T1) = 1/3, PMon(T2) = 0.  

Elga and Lewis conditionalized Ephemeral Beauty’s locative beliefs after 

learning it is Monday from her prior locative beliefs before learning it is Monday. But 

what if Ephemeral Beauty first updated her worldly beliefs before updating her locative 

beliefs? On waking, her worldly beliefs are P'(H1) = P'(T1) = P'(T2) = ½  but, on being told 

it is Monday, she learns her possible worlds for this day do not include Tuesday, 

P'Mon(T2) = 0. Therefore, P'Mon(H1) = P'Mon(T1) = ½ and PMon(H1) = PMon(T1) = ½. The 

duplicate probability of her worldly beliefs ‘evaporates’ when she is told it is Monday. 

The locative probability formerly attached to T2 is transferred to T1. Ephemeral Beauty is 

a ‘double-halfer’ who believes both P(heads) = ½ and PMon(heads) = ½ (Bostrom 2007; 
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Meacham 2008). The information it is Monday tells her nothing about the coin toss and 

does not change her credence in heads. 2 

The above procedure differs from standard conditionalization in how it handles 

duplicate probability as instantiated in P'(T1) and P'(T2). If new information eliminates 

one (but not all) of the duplicates, then her other worldly beliefs are unaffected: P'(T2) = 

½ conditionalizes to P'Mon(T2) = 0 but P'(H1) and P'(T1) remain unchanged. P'(tails) was 

formerly represented redundantly by P'(T1) and P'(T2) but is now represented solely by 

P'Mon(T2). When worldly beliefs are converted to locative beliefs, P'(tails) = ½ is 

distributed among the uneliminated duplicates, in this case to the single remaining 

option P(T1) = ½.3 

All Beauty learns on being told that it is Monday is that it is not Tuesday. She 

learns nothing about the toss of the coin. A simple reframing of her prior beliefs may 

make this claim more intuitive: (i) Beauty believes she will be woken on Monday, 

P'(Monday) = 1; (ii) Beauty believes she will be woken on Tuesday only if the coin lands 

tails, P'(Tuesday|heads) = 0; and (iii) Beauty believes the coin is fair, P'(heads) = ½. 

When told it is Monday she learns that this is the first time she has woken but she learns 

                                                      
2 Lewis (1979) might have said that when Beauty is told it is Monday, she learns 

something about her location in ordinary space that changes her location in logical 

space. Her propositional attitude changes from ‘week in which heads or tails’ to ‘Monday 

in which heads or tails.’ ‘Waking on Tuesday’ is a property of the first propositional 

attitude that does not have a counterpart in the second propositional attitude. 

3 This procedure appears similar to, perhaps is the same as, Meacham’s (2008, p. 249) 

compartmentalized conditionalization. 
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nothing about whether she will wake the next day. That possibility is still in the future 

depending on an unknown flip of the coin. 

Beauty at Rest 

Beauty knows what she believes to be true. At each particular sentient moment, Beauty 

has beliefs about her world associated with worldly probabilities (P') and beliefs about 

her location in that world associated with locative probabilities (P). Worldly and locative 

probabilities may be primary probabilities, based on things she knows, or derivative 

probabilities, based on primary probabilities. On waking, Beauty knows the coin to be 

fair and believes that either the coin landed heads or the coin landed tails. P'(heads) = 

P'(tails) are her primary worldly probabilities of her possible worlds.  

Beauty also believes that if the coin landed heads then she will wake on Monday 

(H1) but if the coin landed tails she will wake on Monday (T1) and Tuesday (T2). P'(H1) = 

P'(T1) = P'(T2) = ½, are her derived worldly probabilities where P'(H1) is derivative of 

P'(heads) and P'(T1) and P'(T2) are derivative of P'(tails). P'(T1) and P'(T2) are duplicate 

worldly probabilities. If the coin lands tails, both occur in Beauty’s world. She knows 

that she wakes on Monday because P'(H1) + P'(T1) = 1, but believes she has a half chance 

of waking on Tuesday, because P'(T2) = ½.  

Beauty’s locative beliefs have the same probability as her corresponding worldly 

beliefs except for duplicate derived probabilities in which case the primary probability is 

divided among the duplicates in locative beliefs. Thus for the non-duplicate probabilities 

P'(heads) → P(heads), P'(tails) → P(tails), P'(H1) → P(H1), but for the duplicate 

probabilities P'(tails) → P(T1) = P(T2) = ¼. Beauty’s worldly beliefs on waking are P'(H1) 

= P'(T1) = P'(T2) = ½ and her locative beliefs are P(H1) = ½, P(T1) = P(T2) = ¼. When 
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information is provided relevant to her locative beliefs, Beauty first updates P' before 

updating P. Thus, on being told it is Monday, Beauty updates her worldly beliefs, 

eliminating the possibility of Tuesday, and then uses her new worldly beliefs to update 

her locative beliefs:  

{P'Mon(H1) = ½, P'Mon(T1) = ½, P'Mon(T2) = 0} → {PMon(H1) = ½, PMon(T1) = ½, P Mon(T2) = 0}  

P'Mon(heads) = ½ → PMon(heads) = ½. 

Gambling with Beauty 

An experimental economist remained unconvinced by such philosophical arguments. 

From his perspective, Ephemeral Beauty’s beliefs are no less metaphysical than Eternal 

Beauty’s beliefs if they have no material consequences. He commanded the research 

budget of an economist rather than a philosopher and proposed that the only way to 

understand credences is for subjects to have something at stake. For this purpose, he 

recruited many beauties to undergo the Sleeping Beauty procedure or a minor variant 

thereof. First, he assessed his recruits’ beliefs prior to the procedure. He reasoned that, if 

the beauties were risk-neutral gamblers, they would accept bets on heads with payout B 

for stake C whenever rB – C > 0, or C/B < r, where r was their credence in heads. The 

economist found that the beauties accepted bets on heads for C/B < ½ but rejected bets 

for C/B > ½. He therefore concluded they believed P(heads) = ½. 

All beauties were told that, each time they woke, they would be offered a series 

of bets on heads with different values of B and C to probe their beliefs about P(heads). 

Their stakes would be collected and their winnings paid on Wednesday. If a coin landed 

heads, then they would be woken on Monday. If the coin landed tails, then they would 

be woken on Monday and Tuesday. At each waking, they would be told neither the 
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outcome of the coin toss nor the day and their memories of waking would be erased on 

returning to sleep.  

The beauties were then assigned to one of two groups. OR-beauties were told 

that, if the coin landed heads, their bets on Monday would be honored, but, if the coin 

landed tails, only their bets on Monday or Tuesday would be honored (with the choice 

of Monday or Tuesday determined by an independent toss of the same coin). AND-

beauties were told that all bets would be honored. If the coin landed heads, their bets on 

Monday would be honored, but, if the coin landed tails, their bets on Monday and 

Tuesday would be honored. 

OR-beauties used the same decision rule during the procedure as they used 

before the procedure, C/B < ½. They continued to believe P(heads) = ½ on waking. The 

entire experimental rigmarole could have been avoided. It changed nothing of relevance. 

AND-beauties, by contrast, adopted the decision rule C/B < 1/3 during the 

procedure. They seemed to believe that P(heads) = 1/3. However, when the economist 

came to settle his accounts on Wednesday he realized he had misunderstood their 

pecuniary incentives. Heads and tails were equally likely. For each accepted wager, he 

paid B for stake C to all beauties for whom the coin landed heads and received C from 

OR-beauties for whom the coin landed tails (as he had anticipated). However, he 

received 2C from AND-beauties for whom the coin landed tails. He had erred when 

using AND-Beauties’ choices of wagers to assess their credence in heads because the 

outcome of the coin toss not only determined whether they won their bet but also the 

expected cost of the bet. In deciding whether to accept a wager on heads, AND-Beauties 

must take account not only of the probability of heads but also of the increased cost if 

the coin lands tails. 
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OR-beauties and AND-beauties had been offered different wagers on a toss of 

the same coin. OR-beauties won or lost bets on heads once. By contrast, AND-beauties 

won bets on heads once if the coin landed heads but lost bets on heads twice if the coin 

landed tails. They therefore had more to lose by betting on heads. For each accepted bet, 

AND-beauties earned (B – C) when the coin fell heads because the bet was placed once 

but lost 2C when the coin fell tails because the bet was placed twice. Bets on heads were 

better than even money when (B – C) > 2C which is equivalent to C/B < 1/3.  

If instead, AND-beauties had bet on tails they would have lost C when the coin 

landed heads but earned 2(B – C) when the coin landed tails. Therefore, bets on tails 

would be better than even money whenever 2(B – C) > C which is equivalent to C/B < 

2/3. Thus, AND-beauties employ different decision rules for bets on heads and tails. 

Thirders interpret this difference as evidence for unequal credences of heads and tails 

and would interpret the right-hand sides of C/B < 1/3 and C/B < 2/3 as credences and 

the left-hand sides as ratios of stakes to payouts. Halfers deny this interpretation. When 

an AND-beauty bets on heads, the expected cost is C* = 1.5C for payout B. Her decision 

rule C/B < 1/3 can be written as C*/B < ½. When an AND-beauty bet on tails, the 

expected cost is C* but the payout is 2B. Her decision rule C/B < 2/3 can be written as 

C*/2B < ½. In the rearranged forms, the left-hand sides represent ratios of stakes to 

payout and the right-hand sides AND-beauties’ consistent credence in heads. 

Elga’s Sleeping Beauty was an AND-beauty. My calculations of which bets she 

should accept are not new. They can be found in many analyses that use Dutch Books 

and the like to probe her ‘true’ credence in heads. What differs is the interpretation. 

Hitchcock (2004) concluded that Beauty’s credence on waking changed from one-half to 

one-third because she learned that she was not asleep. (Does a sleeping Sleeping Beauty 
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have a centered world?) My interpretation is that Beauty’s credences do not change. She 

bets according to her beliefs but these beliefs include an understanding that the stakes 

depend on the unknown outcome of the coin toss. This diagnosis is not new. Arntzenius 

(2002) concluded that Beauty’s degree of belief in heads should be one-half but that she 

“should bet at odds that differ from her degrees of belief.” Bradley and Leitgeb (2006) 

similarly distinguished between her credences and fair betting odds. Their analysis 

parallels my own: what is at stake depends on the toss of the coin. 

OR-beauties and AND-beauties differ not because of different beliefs about the 

frequency of heads but because of different beliefs about how often they must pay if the 

coin lands tails. Neither OR-beauties nor AND-beauties obtain relevant new information 

when woken. Both believe that P(heads) = ½. Halfers are vindicated. AND-beauties are 

fated to choose the same on Monday and Tuesday if the coin lands tails. Therefore, twice 

as much is at stake if the coin lands tails. As a consequence, H, T1 and T2 are given equal 

weight when deciding whether to bet on heads. From the perspective of an observer of 

their behavior who cannot ask them to explain their beliefs, AND-beauties behave ‘as if’ 

they believed P(heads) = 1/3. Their behavior can be predicted by this belief. In this 

limited sense, thirders are vindicated. 

Hamilton’s wager 

The preceding analysis was stimulated by thinking about a problem from my doctoral 

thesis that concerned degrees of relatedness of triploid endosperm (a tissue within 

seeds). Philosophers may be interested in the parallels. Unfortunately some biological 

background is necessary. I beg my readers’ forbearance. 
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Inclusive fitness theory was developed to understand fitness trade-offs among 

kin (Hamilton 1963, 1964). One of the simplest expressions of this theory is known as 

Hamilton’s Rule. This rule-of-thumb predicts the action of natural selection when a 

gene’s expression confers a benefit (B) on one individual’s fitness at a cost (C) to another 

individual’s fitness. Natural selection favors the genetic action if rbB – rcC > 0, where rb 

and rc are measures of the probabilities that the two individuals carry a copy of the gene. 

Hamilton’s Rule can be rewritten as 

C/B < rb/rc (1) 

The left-hand side of this inequality is a ratio of the fitness consequences of the action for 

the two individuals affected and the right-hand side a ratio of their probabilities of 

carrying recent replicates of the responsible gene. Strictly speaking, Hamilton’s Rule is 

not about particular individuals but about average outcomes of interactions between 

specified categories of kin. Thus, the relatednesses can be considered to represent the 

relative frequencies with which a genetic lineage has experienced the costs and benefits 

of its own action. 

Readers will immediately recognize (1) as a restatement of the gambler’s decision 

rule. A gene can be considered to be paying a cost C for a chance of receiving a benefit B. 

What is uncertain is not whether one class of individuals pays C and another class 

receives B, but whether the gene placing the bet is present in the relevant individuals, 

with rc the frequency of the gene in the class of individuals who have paid the cost and 

rb the frequency of the gene in the class of individuals who have received the benefit. 

Credences of rational actors are revealed by their acceptance and rejection of 

wagers. Genes lack beliefs. But the ancestors of present-day genes have passed 

repeatedly through a sieve that retained variants that made ‘better’ choices and 
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discarded those that made ‘worse’ choices. By this process, present-day genes are 

expected to behave ‘as if’ they were rational agents who judge the probability of current 

events by the past frequency of similar events. Thus, the ‘credences’ of genetic agents 

can be inferred from implicit weightings of alternative outcomes in evolutionary games.  

Embryos and endosperms 

The adjectives haploid, diploid, and triploid refer to nuclei containing one, two, or three 

copies of each kind of gene. Plants exhibit an alternation of haploid and diploid 

generations. Offspring may be haploid or diploid and have both haploid and diploid 

parents. Dad and mom will be used as technical terms to refer to haploid parents and 

father and mother to refer to diploid parents (Haig 2013). The haploid products of plant 

meiosis are called spores. Mothers produce megaspores that divide to produce moms. 

Fathers produce microspores that divide to produce dads. All nuclei of a dad or mom 

are genetically identical because they are derived from a single product of meiosis. 

Moms produce eggs and polar nuclei. Dads produce sperm. In most flowering plants, 

each dad produces two sperm and each mom produces an egg and two polar nuclei. 

After a process of double fertilization, one of the sperm nuclei of a dad fertilizes the egg 

nucleus of a mom to form a zygote that develops into a diploid embryo and the other 

sperm nucleus fuses with both polar nuclei of the mom to form a primary endosperm 

nucleus that develops into a triploid endosperm (Figure 1). A division of labor during 

seed development results in the endosperm sacrificing itself for the sake of its twin 

embryo. 

A dad and mom together produce an embryo and endosperm that have identical 

maternal and identical paternal genomes. The embryo possesses one copy of the 
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paternal genome for each copy of the maternal genome but the endosperm possesses 

two copies of the maternal genome for each copy of the paternal genome. The situation 

of a gene token in endosperm that ‘does not know’ whether it is maternal (and present 

in two doses) or paternal (and present in one dose) is analogous to the situation of an 

AND-beauty who is uncertain whether she bets twice because a coin landed tails or once 

because the coin landed heads. 

What credence should a gene in endosperm have about its parental origin? One-

third of randomly chosen tokens from present-day endosperms were inherited from dad 

and two-thirds from mom. This synchronic observation suggests that endosperm genes 

should behave ‘as if’ they had a one-third chance of coming from dad and a two-thirds 

chance of coming from dad. This is a frequentist view of relatedness. A diachronic 

perspective suggests a different answer. Any given gene token in endosperm came from 

mom or dad with equal likelihood. This is a Bayesian view of relatedness (Figure 1).  

Each token descends from a ‘parent’ token from which it received one strand of 

its double helix. As a token’s lineage is traced back into the past, it passes through the 

bodies of moms and dads in roughly equal proportions (Haig 2012). Therefore, the 

lineage will have been subject to natural selection half the time as a paternal token and 

half the time as a maternal token. Tokens of successful lineages might therefore be 

expected to behave ‘as if’ maternal and paternal origin were equally likely. The present 

likelihoods, looking forward, are derived from past frequencies, looking back (Haig 

2014). 

The question how natural selection ‘interprets’ the double dose of maternally-

derived genes in endosperm relative to the single dose of paternally-derived genes 

raises similar issues to those debated by halfers and thirders in the Sleeping Beauty 
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Problem. When an embryo inherits one dose of paternal genes from dad, its associated 

endosperm also inherits one dose of the same genes. Should not the endosperm’s 

relatedness to dad be the same as the embryo’s relatedness to dad? On the other hand, 

an endosperm inherits a double dose of maternal genes from mom compared to an 

embryo which inherits a single dose. Should not the greater dilution of paternal genes in 

endosperms (one-in-three) relative to embryos (one-in-two) mean that the endosperm is 

less related than the embryo to dad? 

Three-card Monte 

Questions about the relatedness of an endosperm to its own embryo and to other 

embryos of the same mother arose in early attempts to apply inclusive fitness theory to 

seed development. Westoby and Rice (1982) proposed that “alleles in an endosperm are 

on average three times as likely to reach the next generation through the embryo with 

which they are associated as through some other embryo … Endosperms would not 

therefore be selected to acquire extra provisions at the expense of other embryos as 

strongly as the embryos themselves would be.” Queller (1983) similarly concluded that 

an endosperm would be less assertive in promoting the growth of the embryo in its seed 

relative to embryos in other seeds than would be the embryo itself. These authors 

believed an embryo to be less related than its associated endosperm to embryos in other 

seeds in the ratio one-half to two-thirds.  

The conclusions of these authors were soon challenged by Law and Cannings 

(1984) who found that diploidy versus triploidy made no difference to the assertiveness 

of endosperm in their population genetic models. This dispute can be considered an 

argument between endosperm-thirders and endosperm-halfers. A resolution of the 
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disagreement was proposed by Queller (1984, 1989). Sometimes thirders, sometimes 

halfers, got the right answer. Who was right depended on details of gene expression. 

Queller’s analysis of the endosperm problem informed my interpretation of the Sleeping 

Beauty problem. 

Consider the relatedness r of an endosperm to its diploid mother and assume 

that all her embryos are half-sibs. (Readers who consult the primary literature should be 

aware that the papers cited above consider the relatedness of an endosperm to half-sib 

embryos rather than diploid mothers. This involves an extra flip of a Mendelian coin 

giving r' = 1/3 as the thirder position and r' = ¼ as the halfer position.) The relatedness 

of an endosperm to its mother corresponds to the probability that a gene in endosperm 

is of maternal origin. This is analogous to betting on tails in the Sleeping Beauty 

problem. Betting on heads is analogous to the probability of paternal origin or 

‘unrelatedness’ (1 – r). The Sleeping Beauty problem will be flipped from betting on 

heads to betting on tails to simplify comparisons. In this conversion, the thirder 

contention becomes r = 2/3, analogous to P(tails) = 2/3, and the halfer contention 

remains r = ½, analogous to P(tails) = ½.  

Consider a gene expressed in endosperm that causes a cost C to its associated 

embryo for a benefit B to its mother when the gene is paternally-derived (single dose), 

but causes a cost kC to its associated embryo for a benefit kB to its mother when the gene 

is maternally-derived (double dose). Tokens of paternally-derived genes experience the 

cost C to its own embryo but do not share in the benefit to the mother whereas tokens of 

maternally-derived genes experience both the cost kC and the benefit kB. Therefore, a 

gene will profit on average when kB – (1 + k)C > 0 or 
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(2a) 

If the effects of the gene are dominant, (2a) simplifies to C/B < ½ because the same costs 

and benefits are experienced whether the gene is of maternal or paternal origin (k = 1). If, 

on the other hand, the gene has additive effects (proportional to dosage), (2a) simplifies 

to C/B < 2/3 because the costs and benefits when the gene is maternally-derived will be 

2C and 2B (k = 2). Thus, a gene expressed in endosperm with dominant effects resembles 

an OR-beauty in the Sleeping Beauty problem whereas a gene with additive effects 

resembles an AND-beauty. Queller (1984, 1989) interpreted the right-hand side of (2a) as 

the relatedness of endosperm to mother. Therefore, he concluded that the “expression-

dependent relatedness” was two-thirds for genes with additive effects and one-half for 

genes with dominant effects. 

If a gene expressed in endosperm has dominant effects, then the extra maternal 

dose has no consequences because a single paternal dose has the same effects as a 

double maternal dose. By contrast, if the gene has additive effects, then the double 

maternal dose has twice the influence of the single paternal dose. For this reason, a gene 

engaged in Hamilton’s wager is expected to behave differently depending on whether it 

has dominant or additive effects. 

One of the attractive features of inequality (1) is that it separates a ratio of 

phenotypic effects (C/B) on the left-hand side from a ratio of genotypic probabilities 

(rb/rc) on the right-hand side. Inequality (2a) loses this pleasing property because a 

variable that scales costs and benefits (k) appears on the ‘relatedness’ rather than ‘costs 

and benefits’ side of the ledger. The separation of phenotypic effects from genotypic 

probabilities can be restored by algebraic reshuffling 
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(2b) 

The left-hand side of (2b) is now a ratio of stakes (numerator) to payouts (denominator) 

and the right-hand side is a relatedness of endosperm to mother that is not ‘expression-

dependent’. Inequalities (2a) and (2b) are algebraically equivalent but (2b) provides 

greater conceptual clarity. If the right-hand sides of (2a) and (2b) are both interpreted as 

measures of relatedness then relatedness must mean different things in (2a) and (2b). 

If one wishes to interpret evolutionary models in terms of Hamilton’s Rule, then 

inequality (1) must take more complex forms as models become more complex. A 

theoretician faces an algebraic choice of keeping the left-hand side simple and putting 

the extra complexity into ‘relatedness’ or keeping the right-hand side simple and putting 

the extra complexity into ‘costs and benefits’. Queller’s (1989) inclusion of factors 

weighting phenotypic effects into an ‘expression-dependent relatedness’ is analogous to 

thirders’ inclusion of factors weighting stakes and payoffs into the credence of heads in 

the Sleeping Beauty problem. Queller preserved the simplicity of ‘costs and benefits’ at 

the expense of making ‘relatedness’ depend on details of gene action. 

The status of Hamilton’s Rule has recently become a subject of intense dispute 

within evolutionary biology with passionate critics and defenders (Allen et al. 2013; Liao 

et al. 2015). Models of the evolution of social interactions are inherently complex. The 

competing models, if well-formed, should yield similar predictions regardless of their 

conceptual framework, albeit in different algebraic form. I suspect that much of the heat 

of this debate arises from alternative algebraic parsings of equations into multivariable 

‘chunks’ that are identified with intuitive concepts such as ‘relatedness’, ‘cost’, and 

‘benefit’. How to parse an equation is often a question of aesthetic preference with 
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alternative arrangements implicitly defining intuitive concepts in subtlely different 

ways. 

Identity by descent and identity by ascent 

In the original Sleeping Beauty problem, there was one Beauty and one coin toss that 

either fell heads or tails. The toss of a coin was a randomizing device that rendered 

outcomes uncertain. In the endosperm problem, every endosperm simultaneously 

contains maternal and paternal gene tokens but each solipsistic token has its own 

centered world if tokens do not interact. Uncertainty about a token’s maternal or 

paternal origin arises not from randomization but from ignorance. Inclusive fitness 

theory traditionally assumed that the unpredictable flip of a meiotic coin and ignorance 

of parental origin were equivalent sources of doubt in determining relatedness. 

Consider the relatedness of embryos to their mothers. If one repeatedly sampled 

gene tokens from current-day mothers and asked whether identical-by-descent (IBD) 

tokens were present in particular embryos, then the proportion of trials in which the 

answer was Yes would converge on one-half. This can be considered the synchronic 

view of relatedness. A diachronic view is useful for understanding the action of past 

natural selection. As a gene token’s lineage is followed back into the past, it passes 

through bodies of mothers and fathers in roughly equal proportions and is repeatedly 

present in the germline of mothers interacting with embryos. For each particular 

embryo, whether IBD tokens were inherited from the mother by the embryo was 

determined by a flip of a meiotic coin. As the number of coin flips increases, the 

frequency with which embryos inherited IBD tokens from their mothers should 

converge on one-half. Thus, from both the synchronic and diachronic views, randomly 
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selected gene tokens from mothers have probability one-half of IBD tokens in embryos. 

For these reasons, the relatedness of embryos to mothers is considered one-half. 

Now consider the relatedness of mothers to embryos. From the synchronic 

perspective, half the gene tokens of current-day embryos have identical-by-ascent (IBA) 

tokens in their mothers. From the diachronic perspective, a token’s ancestral lineage will 

have repeatedly been present in the germline of embryos interacting with their mothers. 

On average, the embryonic token will have been inherited from the mother in half these 

interactions. Therefore, as the number of such interactions increases, the frequency with 

which embryonic tokens interact with IBA tokens in mothers converges on one-half. 

From both perspectives, randomly-selected gene tokens from embryos have probability 

one-half of IBA tokens in their mothers. For these reasons, the relatedness of mothers to 

their embryos has been considered one-half.  

Despite the apparent symmetry of the relatedness of embryos to mothers and 

mothers to embryos, IBD and IBA coefficients of relatedness reflect different sources of 

uncertainty. The probability of one-half that a maternal gene has IBD tokens in an 

embryo reflects uncertainty about a flip of a Mendelian coin. A mother possesses two 

alleles at each locus, one inherited from her mother and one inherited from her father, 

but only one is transmitted to any particular embryo via the randomizing process of 

meiosis. By contrast, the probability of one-half that an embryonic gene has IBA tokens 

in its mother reflects ignorance of parental origin. A randomly chosen gene in an 

embryo is equally likely to have been inherited from the embryo’s mother or father 

because the embryo receives one gene copy from each.  

A general assumption has been that parental origin makes no difference to a 

gene’s effects. Each gene’s lineage passes repeatedly through male and female bodies 
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while its DNA sequence remains unchanged. Therefore, natural selection should act on 

genes according to their effects averaged across maternal and paternal transmission and 

genes should behave ‘as if’ their parental origin is uncertain. However, if genes were to 

acquire an erasable ‘imprint’ on passing through male bodies that was reset after 

passing through female bodies, then the one-half probability that an embryonic gene 

had IBA tokens in its mother would collapse into a probability of one for genes of 

maternal origin and zero for genes of paternal origin (Haig 1997, 2000). This would be 

equivalent to letting Beauty know the outcome of the coin toss before placing her bets.  

Some genes, including genes expressed in endosperm, possess locative memories 

of their parental origin (Haig and Westoby 1989). By processes of natural selection, these 

imprinted genes should conditionalize their phenotypic effects on parental origin (Haig 

2012). These findings have fundamental consequences for how coefficients of relatedness 

should be calculated in inclusive fitness theory. Organisms no longer possess unified 

genomes maximizing a unitary fitness but contain maternal and paternal factions with 

competing agendas (Haig 1997, 2000, 2006). 

Conclusions 

Beauty’s paired wakings on tails and the double dose of genes from mom in endosperm 

are conceptually similar. The second waking or second dose is a mere doubling of a 

single draw from the distribution of a random variable. They are duplicate probability. 

It should be evident that doubling, tripling, or quadrupling the outcome of a single 

draw does not affect the expected value of the next independent draw of the random 

variable nor does it change the value of the single draw that has already been made. The 

probability that a gene came from a mother or father in the previous generation is one-
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half as is the probability that a toss of a fair coin is heads no matter how many times the 

outcomes are repeated. 

My analysis has hinged on the conjunctions and and or. This pivot appeared in 

the difference between living in a world in which one expects A and B while living at 

temporal locations where one experiences A or B. Distinct events that share the same 

worldly probability are mutually exclusive in locative space. The pivot reappeared in 

thinking about wagers on duplicate experiences. Beauty’s choices changed when she 

paid for bets in A and B rather than A or B. The unrecognized conjunction of these two 

problems of conjunction, and the failure to disentangle them, may partly explain why 

the Sleeping Beauty problem has been so intractible.  
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Figure 1: A haploid female gametophyte (mom) contributes an egg nucleus to the 

embryo within a seed and two polar nuclei to the endosperm. These contributions are 

represented by filled circles. A haploid male gametophyte (dad) contributes a sperm 

nucleus to both the embryo and the endosperm. These contributions are represented by 

unfilled circles. What is the ‘probability’ that a gene in the endosperm comes from dad? 

From the perspective of an external observer, one-third of the gene tokens in endosperm 

come from dad, suggesting an answer of one-third. From the perspective of a gene token 

in endosperm looking backward, it either came from dad or from mom, suggesting an 

answer of one-half. 
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