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Abstract

By combining potential models and QCD spectral sum rules (QSSR), we discuss the
spectroscopy of the (b¢) mesons and of the (beg), (ccq) and (bbg) baryons (¢ = d or s),
the decay constant and the (semi)leptonic decay modes of the B, meson. For the masses,
the best predictions come from potential models and read: Mp, = (6255 + 20) MeV,
Mp: = (6330 £ 20) MeV, Mpgewy = (6.93 £ 0.05) GeV, Mg(es) = (7.00 £ 0.05) GeV,
Mzs(cew) = (3.63 £+ 0.05) GeV and Mz« by = (10.21 4+ 0.05)GeV. The decay constant
fe. = (2,94 £ 0.21)f, is well determined from QSSR and leads to: I'(B. — v,7) =
(3.0 £0.4)(V/0.037)* x10' s~. The uses of the vertex sum rules for the semileptonic
decays of the B. show that the ¢t-dependence of the form factors is much stronger than
predicted by vector meson dominance. It also predicts the almost equal strength of
about 0.30 x10'° sec™ for the semileptonic rates B. into Bs, BY,n. and J/v. Besides
these phenomenological results, we also show explicitly how the Wilson coefficients of
the (a,G?) and (G®) gluon condensates already contain the full heavy quark ({(QQ)) and
mixed ((QGQ)) condensate contributions in the OPE.
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1 Introduction

With the planned high-energy machines such as the LHC, B-factories, the Tevatron with
high luminosity, there is some hope and possibility to identify and study hadrons con-
taining two heavy quarks [1], like double-charm baryons (ccg) or hadrons with charm
and beauty, namely (b¢) mesons and (beg) baryons. Here, and throughout this paper, ¢
denotes a light quark u or d.

In view of this project, it is important to have safe theoretical predictions as a guide
to the experimental searches of these hadrons. There are already some theoretical studies
on (be) states. To our knowledge, the pioneering works on this analysis are the ones in
Ref.[2] from potential models and the ones in Ref. [3] from QCD Spectral Sum Rules
(QSSR) a la SVZ [4]. In this paper, we are interested in the following topics.

i) Masses: so far the ground-state masses of hadrons exhibit nice regularities in flavor
space, as illustrated by the Gell-Mann—Okubo mass formula, the equal-spacing rule
of decuplet baryons, etc.; we would like to know the analogue of these regularity
patterns in the sector of heavy quarks, and in particular interpolate (b¢) from (cc)
and (bb), and extrapolate from single-charm (cgq) and single-beauty (bqq) baryons
toward (begq) baryons with both charm and beauty.

ii) Decay constants: we know, in the case of the heavy-light quark systems, that
the decay constants of the D and B mesons do not yet satisfy the 1/\/% heavy
quark scaling due to large 1/ Mg corrections and that the prediction of the potential
models based on the meson wave function fails. Then, we would like to test if the
B.(bc) meson decay constant can be predicted reliably from the potential models
by comparing it with the one from QSSR.

iii) Semileptonic decay properties: we also know that QSSR vertex sum rules can predict
successfully the semileptonic widths of the D and B mesons. Then, we pursue this
application in the case of the B. meson.

It should be noted that the Heavy Quark Effective Theory (HQET) [6], which is successful
in the heavy-light quark systems, cannot be applied straightforwardly to the bc and
beu states, unless the charm-quark mass is considered to be light, which is not a good
approximation. Therefore, we combine the potential models with the QSSR approaches
for estimating the masses and/or couplings of the be and A(bcu) states. The former is
known to have successful predictions for the hadron masses, while its connection with
QCD starts to be understood within the framework of HQET. QSSR is also known to
describe successfully the hadron properties, although the accuracy of its predictions for
the meson masses is limited by the systematic of the method and is less than the potential
model ones. In the other cases, such as the couplings and decays, QSSR predictions are
more precise and reliable.

The aim of this paper is twofold. First, we summarize the rigorous results of potential
models such as mass inequalities and bounds on short-range correlations. We also present



typical predictions for a “realistic” phenomenological potentials for the bc and A(bcu)
states. Secondly, we present improved results for the masses, couplings and form factors
of the semileptonic decays from the QSSR approach.

2 Results of potential models

In this section, we first give brief reminders of general results from potential models, which
can be found in reviews [7]-[11], with references to the original papers. We then summarize
the rigorous and empirical results of potential models: mass inequalities, bounds on short-
range correlations, typical predictions for masses and decay constants focused on the
applications to the particular (b¢) mesons and (beg) baryons.

2.1 Constraints on the b¢c mass

Consider a purely central and flavor-independent potential. Then the binding energy
depends on the flavor of the constituents only through the inverse masses mj* and mj",
which enter the Hamiltonian linearly. At fixed my, the lowest energy is an increasing and
concave function of my' [12, 13]. One can for instance extrapolate the (bc) energy out of
the (bs) and (bg) energies. This gives an upper limit:

m;t —m! m;t —m!
E(bc) < E(b3) ———— 4 E(bg) ————. 1
(b0) < B(bs) 5 + Blba) e (1)

1

It is independent of the b-quark mass, but depends upon the inverse quark masses m_ ",

m ! and mq_l, which are not directly observable. Anyhow, (1) is not very accurate, since
(bs) and (bq) are too close to each other to allow for a precise determination of the limiting
straight line, in a plot of meson energies versus the inverse constituent masses.

In fact, better results are obtained by separating out the centre-of-mass motion, and
using the inverse reduced mass o = m]* + mjy ', which enters the relative Hamiltonian
linearly. The ground state is an increasing and concave function of « [12, 13]. Thus

(ce) + (bb)

(be) > — (2)

For numerical applications of (2), one has to consider the spin-averaged masses, such
as:

(cc) = inc 4 %J/\Il (3)

and its (bb) analogue, with the results
(c€) = 3.067 GeV, (bb) = 9.448 GeV (4)

where experimental masses [14] are used, and an hyperfine splitting T — 7, = 50 MeV is
assumed. This gives a lower limit

(be) > 6.257 GeV (5)



for the spin averaged (bc) state.

An upper limit is also obtained from the same concavity behavior in the inverse reduced

mass a:
(be) < (bs) + (e5) — (s3). (6)
If one uses
(¢s) =207H MeV, (bs) = 5390 MeV, (s5) =950 MeV, (7)
one gets
(be) < 6.52 GeV. (8)

We suspect that this bound is not very accurate, and therefore not too reliable, because
it involves the strange quark. In fact one can derive an upper bound involving heavy
quarks only, provided one also accounts for the excitation spectrum. The reasoning below
is inspired by the work of Martin and Bertlmann [13].

From the Feynman-Hellmann theorem [12],

2o =119, )

where T' denotes the expectation value of the kinetic energy, we have

E(be) +/ A (10)

and ()

E(be) = E(c?) —/ a1 (a)da (11)

a(be)

We now make the mild restriction that the potential V' is intermediate between Coulomb
and linear, and a fortiori intermediate between Coulomb and harmonic. More precisely,
we assume AV >0 and V" < 0. Then
i) T(a) is intermediate between a~! (Coulomb) and a'/? (linear), i.e. aT'(«) increases
with o while a™'/3T'(a) decreases;
i) if 6F = [Erp(a) — E1s(@)] /4 denotes the orbital excitation energy, the ratio T/6F is
larger than 3/4 (harmonic) and smaller than 4/3 (Coulomb).

After some manipulations, we obtain

me

M(be) < M(bb) — (my — m.) + ASE(bb) [(M)US _ 1] .

2me,

(12)

When they are combined, most of the dependence on the constituent masses disappears,
and we obtain:

(be) < (“)Zﬂ - §5E(cc) [1 _ (M)l/j + 26 E(bb) l(m)l/g _ 1] (13)

2my 2m.



After proper spin averaging of the orbital excitations [14], one finds: § E(bb) ~ § F(cc) ~
0.45 GeV. If one takes m;/m. = 3, one obtains

(be) < 6.43 GeV. (14)

Instead of working with spin-averaged masses, one could in principle write inequalities
relating pseudoscalar states. If, indeed, the additional term is (including &; - 6; = —3) of
the form 5

mqmmsy

oV = —

Vss, Vss > 0, (15)

then the whole Hamiltonian is a linear function of m7 ! at fixed m;*, or a concave function
of m~! for m; = my, = m, and one can still write some convexity inequalities. The problem
is the lack of accurate experimental input for the pseudoscalar masses.

2.2 Explicit calculations of b¢ ground state

To estimate the departure from a simple additive ansatz 2(be¢) = (cc) + (bb), one can
use a logarithmic potential, which is known as a good approximation to more elaborate
potentials [7]. If V.= A+ Bln(r), then the ground-state energy is of the form £ =
A" — Bln(p)/2. With typically my/m. =3 and B ~ 0.7 GeV, one gets an effect

10~ O g Gy a0

which is of course compatible with the inequalities written in the previous section.

Let us now collect some predictions of typical potential models proposed in the liter-
ature. In Ref. [15], A. Martin applied to (bé) his simple power-law potential. It consists
of

— —
0102

V=A+ B 4C 6@ (ry — 1), (17)

mims

with A =8.064, B = 6.870 and C' = 1.172, in units of powers of GeV. The quark masses
are constituent masses and are my; = 0.518 GeV, m. = 1.8 GeV, and m;, = 5.174 GeV.

The spin—spin term is treated at first order. It is adjusted to reproduce the J /AU — 5. mass
splitting (112 MeV [14]). He obtained

be(07) =6.25GeV  be(17) = 6.32GeV, (18)

corresponding to an average of 6.30 GeV. These are the values also obtained by Gershtein
et al. [16], who used essentially the same potential. Previously, Eichten and Feinberg, in
the course of their study of spin-dependent forces [2], considered the (b¢) system, and got

be(07) = 6.24GeV  be(17) = 6.34 GeV. (19)
More recently, Eichten and Quigg [17] estimated

be(07) = 6.26 GeV  be(17) = 6.33 GeV, (20)



with a typical uncertainty of £20 MeV, from a survey of realistic quarkonium potentials.

One can go a little beyond the frame of this section and look at constituent models
with relativistic forms of kinetic energy. They lead to the same kind of regularities as
non-relativistic models, although the corresponding theorems are not always available in
a fully rigorous and general form. For instance, Goodfrey and Isgur obtained

be(07) = 6.27 GeV be(17) = 6.34 GeV, (21)
in their model [18], which tentatively describes all mesons, light or heavy.

As often in this field, there is a nice convergence of all potential models, and the
uncertainty of +£20MeV estimated by Eichten and Quigg seems rather safe. By taking
the average of different estimates and by adopting the previous uncertainty, we obtain
the final estimate:

be(07) = (6255 £ 20)MeV  be(17) = (6330 = 20) MeV. (22)

2.3 Decay constant of mesons

For the estimate of the decay constants, let us consider the meson wave function:
p=12(0)]* = (@87 (ry — r1)[@), (23)

which governs the leptonic widths, hadronic widths, etc. It also enters the calculation of
hyperfine splittings, when a simple contact term as that in Eq. (17) is adopted.

To estimate how p varies from one meson to another, let us consider first a power-law
potential V o r®. Then, from the well-known scaling laws [7, 10], one gets

pa) oc a/1F¥2), (24)

as a function of the inverse reduced mass «. In particular, one expects p o« o?/? for
a logarithmic potential, which is known to mimic the good potentials in the region of
interest.

Note that one cannot object that, p being the square wave function at zero separation,
it is extremely sensitive to the very short-range part of the potential. In fact p is given
by the potential in the region where the wave function is important. This is seen on the
so-called Schwinger rule [7]

1 dv
- = (3) 2%y <
= [P, (25)

In short, we expect regular increases of p when one goes from cé to bb via bé, and presum-
ably
1

be) <
p(C)_2

[p(b) + p(ca)] . (26)

(&7



If one uses the potential model of Eq. (17), one obtains, in units of GeV? :
p(cc) = 0.077,  p(bb) = 0.350,  p(be) = 0.136. (27)

The absolute values are less reliable than the relative ones. Similarly, potential models
usually fail in predicting the leptonic widths of the J/W and its radial excitations, or of
the T states, but give a fair account of the ratios of leptonic widths. In terms of the wave
function, the decay constant reads :

Gp

=4/— 28
fP MP7 ( )

while its normalization in terms of the quark currents is:

(me + my) < 0]|¢(i75)b|B >= \/iMéchc
< 0[by#b| T >= V2 M frev. (29)
Then, we deduce from (27):

fB. ~ (3.86 £ 1.31) f,. (30)

The error in this result comes from the departures of different potential-model predictions
[16], [19], [17] from our value. It will be compared in section 3 with the QSSR estimates.

2.4 Inequalities on baryon masses

Let us start with a flavor- and spin-independent potential V (71, r3, 73).

For every potential V', the ground-state energy is a concave function of each inverse
mass m; '. One could for instance set an upper limit on (beg) in terms of (ccq) and (esq),
or in terms of (¢sq) and (cqq), and the corresponding quark masses. Again, it is not very
useful to write inequalities that involve unobservable quark masses.

With mild restrictions on the shape of the potential, one can write convexity relations
in terms of actual hadron masses [20]. For instance, there is a generalization of (2)

(bbg) + (ccq)

(beq) > L) Leed) @)
or the even more exotic looking [21]

3
For numerical applications with the presently available data, one would prefer the gener-
alization of (6)

(beq) > (bgq) + (cqq) — (q99). (33)

This gives as a rough estimate

(beq) > 6.9GeV, (34)
if one uses the rounded values m(bgq) = 5.6, m(cqq) = 2.4, and m(qqq) = 1.1 GeV.

6



2.5 Relations between mesons and baryons

We suppose here that there is a simple relation between the potentials governing mesons
and baryons:
— — — 1 — — ¢
V(2. 75) = 5 3 VaaI7i = 7). (35)
i<j

There is no profound justification for this rule in QCD. We simply remark that it seems
compatible with the present phenomenology. In particular, it leads to amazing inequalities
among meson and baryon masses [10]. These inequalities are always satisfied when they
can be checked, so one is tempted to believe that they can also hold for baryons that have
not yet been discovered. For instance,

(be) + (bq) + (cq)

5 .
With the spin-averaged masses m(B) = 5.3 and m(D) = 1.97 GeV, and with our previous
lower bound (5) on (b¢), one obtains

(begq) > (36)

(beg) > 6.73 GeV. (37)

We suspect this to be a rather crude lower bound, and, indeed, it does not improve our
previous lower bound (34). In deriving Eq. (36), one neglects the motion of the centre of
mass of any quark pair in the overall rest frame of the baryon. Improvements are feasible,
to better express 3-body energies in terms of 2-body energies, but the latter are no longer
too easily expressed as energies of actual mesons [22, 23].

2.6 Explicit model calculations of (beg) masses

Unfortunately, there are not too many explicit computations of the masses of baryons with
two heavy quarks, at least to our knowledge. The case of (ccq) baryons was considered by
Fleck and Richard [24]. They first use a non-relativistic potential model. Not surprisingly,
the exact solution of the 3-body problem is well reproduced by a Born—Oppenheimer
approximation. This opens the possibility of treating the light quark relativistically, for
a fixed separation of the heavy quarks. This was done in Ref. [24], where a variant of the
MIT bag model was used. It was found, however, that the results are rather sensitive to
the details of the bag model. We shall not consider them further and restrict ourselves
to the potential-model picture. In principle, the Born—-Oppenheimer treatment could be
repeated, with the gluon and light-quark degrees of freedom treated via sum rules or via
a lattice simulation, at fixed QQ separation.

The results for (ccq) are obtained with a simple local and pairwise interaction

1
Vi=2=>V, (38)
2 1<J
where the factor 1/2 is an arbitrary convention (though reminiscent from the discussion
in Sec. 2.5, and V is a variant of the power-law potential (17), adjusted to fit all ground-
state baryons [25]. The parameters are A = —8.337, B = 6.9923, C' = 2.572, where units



State M M,

(ceq) 3.70  3.63
(ces) 3.80  3.72
(bbg) 10.24 10.21
(bbs) 10.30 10.27
(beg)  6.99  6.93
(bes)  7.07  7.00

Table 1: Masses of heavy baryons with a simple power-law potential fitted to known
baryons. M is the spin averaged mass, and M, that of the lowest state, with spin-1/2.
Units are GeV.

are powers of GeV. As for the constituent masses, which should not be confused with the
masses used in the QSSR analysis, we use m, = 0.300, m, = 0.600, and m. = 1.905 GeV.
The latter value is 10 MeV above the c-quark mass in Refs. [25, 24], to better reproduce
the experimental mass of the A. at 2285 MeV [14]. The X. — A. difference comes out
right. If one takes for the b quark a mass m, = 5.290, one obtains a reasonable A, at
5.620 GeV, which is the central value recently reported [26].

We keep these parameters fixed to calculate the masses given in Table 1, namely the
spin-averaged mass M (computed without the spin—spin term), and the lowest spin-1/2
state.

A remark concerning the spin structure: the lowest (ccq) baryon has spin S = 1/2,
with the (cc) pair in a spin s = 1 state, as dictated by the statistics. For (beq), we have
a mixing of s = 0 and s = 1, with the latter dominating, to leave maximal strength for
(gc) and (gb) pairs (for total spin S = 1/2, the cumulated }~, . G; - 7; is fixed at the value
—3, independent of the internal spin structure).

We estimate the theoretical uncertainty around £20 MeV in the extrapolation. The
main additional uncertainty comes from the mass of A,. Altogether we obtain

A(beq) = 6.93 £0.05GeV  Q(bes) = 7.00 £ 0.05 GeV. (39)

We can also deduce from Table 1, the masses of the =(ccu) and Zj(bbu) with the same
degree of accuracy of 50 meV. The result for A(beq) agrees quite well with the improved

SSR estimate which will be discussed in the next section. The ones for =*, agree with
c,b g

the QSSR estimates in [27] which will also be reminded section 3.

2.7 Short-range correlations in baryons

The quantity p defined in Eq. (23) for mesons is generalized as
pij = (@[ (r; — ;)| @). (40)

We are not aware of too many results on the coefficients p;;. The Schwinger rule (25)
has been generalized [28], but the sum rule now involves centrifugal barriers (in an s-

8



State  pia P23 P31 103}7123
( ) 0.039 0.009 0.009 0.36
( ) 0.042 0.019 0.019 0.36
( ) 0.152 0.012 0.012 4.08
(bbs) 0.162 0.028 0.028 4.09
(beg)
(bes)

0.065 0.010 0.011  0.90
0.071 0.021 0.025 0.90

Table 2: Short-range correlation coefficients p;; calculated with our simple power-law
potential. Units are GeV? for the 2-body terms p;;, and GeV® for pjaa.

wave baryon, the pairs are not strictly in a state of orbital momentum ¢ = 0, except in
the harmonic-oscillator case), and angular correlations like 7;; - 7. The available results
concern symmetric and nearly symmetric cases. References can be found in [10].

For the very asymmetric cases we are dealing with, we simply read the values of the
pi; from the wave function, which is computed with our simple power-law potential, using
the method of hyperspherical harmonics [10]. The results are shown in Table 2. Some
remarks are in order:

i) The correlation between two quarks depends on the third one [29].
ii) There are more correlations between b and ¢ in a (b¢) meson than between b and ¢ in

(beq) or (bes).

The coupling constants |Z|* that are usually quoted (see, e.g. Ref. [42]-[44], [27])
have more to do with the probability pis3 of finding the three quarks at the same place
in the non-relativistic wave function. Some values of pi,3 are shown in Table 2. The
normalization requires some technicalities. We define

P123 = <(I)|5(3)(I)5(3)(y)|q)>7 (41)
where the Jacobi variables are introduced as

r =Ty —T7

miry + mara mg3

y=|rs — —— | (m;1+m 42
Y ° my + my ]( ' 2)\/m1m2(m1—|—m2—|—m3) (42)

(the coefficient of y is such that the kinetic energy operator is proportional to d?/dz?* +
d*/dy?*), and the labeling is such that 1 and 2 are the heavy quarks, and 3 the light one.

3 The B, Albcu) , =*(ccu) and =} (bbu) masses and cou-
plings from QSSR

We have studied in the previous section the properties of the B. meson, A(beq), =*

= baryons using potential models. In the following, we shall study their properties using

the QSSR approach.

and



3.1 The B.-meson correlator

We shall be concerned with the two-point correlator:
Us(a?) =i [ d'a T (O[T 5 (2).15(0)]0) (43)
associated to the pseudoscalar current:

Js(x) = (me+my) : b(iys)e : (44)

The spectral function Im5(t) can be evaluated in QCD for ¢ > A% Its perturbative
part is known to two loops in terms of the pole quark masses [30]. It reads:

or 3(my +m.)? dag [ 3
Imyt”'(t) = T vi bt o 8(7—U)
+ [ U + v Lg (ozlozg) Ly (—Oéi) — 10% Qg log ,32') (45)
i=b,c

+ A;loga; + B;log /32]} + O(aﬁ)}

where

L) =-[ %bg(l ) (16)

and

A — §3mi—|—mj_19—|—2'02—|—3v4_m2-(m2-—mj)( . Qv );

4 m; 4+ m; 320 o(l 4 v) 14+ o
m2—m2
B = 2420, (47)
q*v
1 1+ 0)?

o = M1V g T WY

m; 1 +v 4v
_ mpMic
¢ = t—(mb—mc)Q; v=.,/1—1 =

The non-perturbative pieces of Im ©5(¢) can be introduced using an OPE a la SVZ [4].
We shall consider the contributions of operators up to dimension six. Following the usual
procedure in Ref. [31], we obtain the Wilson coefficients of the (G*) and (G®) gluon
condensates. The diagrams involved are shown in Fig. 1. Our results are:

a;myme.t
2t — (mp — me)?]/?

Im ng =

[t — (my + m.)’]

2 2
X (t —m; — mym, — mc) T Oy + ) 4. (48)
asmpMme. t
ImCee 6 L= (s — m )7 2 {3t4 2(3mji + 2mym. + 3m?)t° (49)

+ (5mim. + 18mbmC + Bmym?) 2

10



+ 2
Ot — (my +m.)’]

- [t — (my + m,)?]°/? T (50)

9. 6 5 4,2 33 24 5 9.6
3my + mym. — 6mym: — 6mym; — 6m;m, + mym. + 3m,) ¢

4 3. 5 7 8
c T MM, + mpm, + mc)}

my + mim. —mim> — 2mim

The dots in (48) and (50) stand for terms proportional to §(¢— (mp+m.)?) and derivatives.
They should be there to compensate for the singular behavior (at threshold) of I'm Cge
and Im Cgs in a dispersion relation such as (113) in the appendix. One can circumvent
the problem of computing these terms by using the method explained in the appendix.
Our result for Cgz (see (116) in the appendix) agrees with previous ones [5], while the
one for Cgs is new. In the equal-mass case, it agrees with the result in Refs. [35, 36].

It should be emphasized that (48) and (50) already contain the contributions of the
(¢c) and (¢Ge) condensates through the heavy-quark expansion (see (53) and (54) below).
In order to prove this result, let us compute Cg2 and Cge (obtained as in the appendix)
for small values of m,, retaining only the singular pieces as m, — 0:

sy asmy q°
127(¢? — m})m,. Ax(q¢> — m})?
oMy as(q* — 2mj) asmy(15¢*—m3)

O — — 59
¢ 3607 (g?>—mi)m? + 7207 (q*—m3)*m? + 3607r(q2—m§)3mc+ (52)

C

Coz = m.logm? + - - (51)

We now show that the terms of Cgz and Cgs in (51) and (52) appear because of the
heavy-quark expansion, namely:

1 1 as .
(ec) = _12mc?<G2>_360m3?<G3>+"' (53)
e 2@y L % my
(cGe)y = 5 log m?. 7T<G> o 7T(G>—|— (54)

To see this, let us give the quark and mixed condensate coefficients for the pseudoscalar
current (which can be found in [32], appendix A). In our notation:

ms 2mg—q2 mg 9
CEC = c 95
7 At e o
2
Coe = L) S (56)

2(¢* —mj)?

Note that multiplying (55) and (56) by (53) and (54), respectively, and adding the two
contributions, one obtains (51) and (52). This clearly shows that our results for Cg2 and
(s already contain the parametrization of the quark and mixed condensates in terms of
purely gluonic operators, as already shown in the literature (see for instance [33]).

3.2 The B.-meson coupling

The B.-meson is introduced via its coupling fg, as:
(01J5|B:) = V2 fp. M, (57)

11



while the contribution of higher radial excited states are averaged from the QCD contin-
uum above the threshold ¢.. After transferring the continuum effect into the QCD side of
the spectral function, the coupling fp. can be estimated from the finite energy sum rule
moments:

te dt 1
o= [ = Im st 58
or the Laplace sum rule:
te 1
L= / dt e ~Tm s (t), (59)
(mb+mc)2 T

while the B.-mass squared can be obtained from the ratios:

M)
R = om (60)
1dC

Here n, 7 and t. are in general free external parameters in the analysis, so that the optimal
results should be insensitive to their values (stability criteria). The first QSSR estimates
of the B.-meson mass and couplings [3] are:

Mp, = (6.5+£04)GeV , fg = (3.7+0.5)fs, (62)

where the uncertainties due to the mass and to the subtraction scale (This scale does not
appear in the present paper, as can be inferred from Refs. [33, 36]. Thus, the parametriza-
tion given by Ref. [37] and used in the previous paper is not correct.) entering in the
mixed condensate imply a large error in the estimate of the coupling fg.. For improving
this result, we shall use the potential-model predictions in eq. (22) and estimate fg, from
the sum rules in (58) and (59). We show the results of the analysis in Fig. 2. As one can
see in this figure, the stability corresponds to the inflexion point so that its localization
is less precise than for the case of the minimum (these inflexion points are indicated by
the shaded region in Fig. 2a and by the line in Fig. 2b). We assume that this will imply
a 10% error. Taking the largest range of ¢.-values from the onset of the n- or 7-stability
region (t. ~ 50 GeV?) until the onset of the ¢.-stability region (t. ~ 67 GeV?) and by
taking the average of these two extreme values, we obtain:

ol bapiace = (2.95 £ 0.27) f, (63)
and:
o Moments = (2814 0.38) f;. (64)
We have used the values [5]:
(a,G*) = (0.06 £ 0.02)GeV*
my(p? = m?) = (4.60 + 0.05)GeV (65)
m.(p* =m?) = (147 £0.05)GeV
(°G®) = (1.2GeV?) x (a,G?),

from a global QSSR analysis of different hadronic channels. The (G?) value is based on a
rough estimate within the dilute gas instanton model [37].
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The main errors in fg, come from the localization of the inflexion point. One should
notice that, at the inflexion point, the a,-correction does not exceed 10% of the leading-
order term for the two-point correlator. Contrary to the other QSSR analysis, the non-
perturbative terms are negligible and do not play a role in the optimization procedure
so that the optimal region is not well indicated. However, the smallness of the non-
perturbative terms indicates that the OPE converges quite well at the optimization scale.
This value of fp, agrees and improves (from the inclusion of the G®-term) the pioneer
results in Refs. [3, 5, 34]. Taking the average of the two QSSR values, we deduce:

IB.

wverage 2 (2.94 £ 0.22) ;. (66)
It is important to notice that the continuum energy F. defined as:
t. = (my +me+ E,)? (67)

1s:
E.~ (1.0 ~2.1)GeV, (68)

in good agreement with what we know in the optimization of the sum rule for the heavy—
light quark systems [38, 39]. The result fg, ~ 1.22f, obtained in Ref.[40] is too low,
which should be due to numerical errors as far as the result obtained from the moments
in that paper is concerned. The other possible source of uncertainties, in this paper, is
the value of the continuum threshold used in the analysis, which is too low. The result of
Ref. [41] is more similar to ours, but the procedure used by the authors to derive it is very
doubtful. Indeed, we do not see any physical reasons to move the ¢. values inside a small
range from 47 to 50 GeV?2, which is outside the stability region in (65). The M? sum rule
variable stability shown in their paper and translated in terms of the 7 = 1/M? used in
our paper ranges between 0.04 and 0.13 GeV~2, in agreement with ours, but appears too
small compared with other channels studied until now within QSSR. This is because the
non-perturbative terms do not play any essential role in the analysis.

Our results agree with the one indicated by the potential models in (30). If we tenta-
tively average the result in (63) with the previous potential one in (30), we can deduce:

IB.

wverage 2 (2.94 £ 0.21) f,, (69)

which we consider to be our final estimate.

3.3 The A(bcu) correlator

Let us consider the baryonic current:
J=nr (utC’ySc) b+ ry (uth) Yob + s (utC’yS’y“c) Yub (70)

which has the quantum numbers of the A(bcu); r1, ro and r3 are arbitrary mixing param-
eters where, in terms of the b parameter used in Ref. [43]:

ri=(540)/2V6; ro=(1+5b)/2vV6; r3=(1-10)/2V6. (71)
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The choice of operators in Ref. [27] is recovered in the particular case where:
ri=1;, ro=k r3=0. (72)
The associated two-point correlator is:
i / d*z 7 (0|77 (2)T(0)[0) = §F, + F. (73)

The QCD expressions of the form factors F; and F3 can be parametrized as:

Fi — FZ_Pe'I’t ‘I’FZG + FZ_MiI’ (74)
where:
Im F' (1) = 128+ 3t { 28 4y — i) my {6 [mth + (mp — 2mim? —m)t

+ 2 mbmi] Ly — 6t [mb t+ (mi — 3)2] Lo
- [t2 + 5(2m; — m2)t + mj — 5mym? — Qmﬂ )\20/2}
— 2ryrsme {6 [m3t2 + (mf — 2mPm? — mi)t + 2mPmi| £,
+ 6t [m2t + (m2 — mg)Z] L,
— [+ 5@m2 —mit+m! - smmi —2m;| Aa}} (75)

Im Fy(t) = <;/)¢;> )\20/2 {—(Tf + 72+ 4r2)ymym, + rirs (mi +m? — t)} (76)

T
G _ {as G?) :
m P () = 2 Hzmb (=2t + Tm} + 2m?)
2 2
+ T2 (o4 5mE - 2m?) 4 2752 (2t - 2md — m?)
my M
4+ 12r9r; mcl )\;!2
+ 6 [(r% — rf) myt + 2r§mbm3 — ryramet — rarsme (1 — ng)] L4
— 6t [(r% —riimy + (r1 + TQ)T;}?TLC] Lo } (77)
: MG {(¢)
Im FMe=() = 2 —}—r myme |—t5 + t2 m2—|—3m3
() Mtﬁf{ ; 1>+ *(m} + 3m?)

t(mf +m?)(mf — 3m?) — (m} —m?)*|
drdmym, [~ + 13 (3m] + m?)

t(=3mj — 6mim? + m?) + (mf — m?)’]

2ryrs [t4 + 3(=3mj — 2m?) + 3t*mj(m; — m?)
t(—mf + dmim? + 3mim? + 2m8) + m2(m — m2)’]

C

+ + + 4+ + +

2ryrs [t + 3 (—dmj — 3m?) + 3t*(2my + mim? + m?)

C

t(mf — m?)(4my + mim? — m?) + mi(mi — m?)?| } (78)
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1
Im FFeri(t) = F19552 {(r{f + 73 4 4r2) {12 [t:)(mg +m?) — ngmi] Ly

— 12t*(mj —m) Ly

+ [tS — Tt (mi +m?) + t(—=Tm} + 12mim? — Tm?)

+  my — Tmim? — Tmim? + mf] )\;!2}

— Aryrsmym. {12 [tQ(mg +m?) — dtmim? + 2mim?(m; + mg)] Ly

— 128%(mi — m?) L,

- 2 [2t2 + 5t(m} +m?) — m} — 10mim? — mi] )\cb}} (79)
o FY0) = N (02 42— sy i m?)

1672

+  2rirsmy(my —m? — t)} (80)

Im FE(t) = {a, &%) {[—47‘2 (t + 3m£) — (r3 +7?) (t —3mj + 3m2)
! 7687212 ’ do ’
pog 0 (Qt (mj + m?) — 2mj — 1lm;m? — 2m3)

mpyme
. 1/2
—  36rar3 mym,| )\bc/

+ 12mym. [—27“3 mpm, + 2rira (t — me — 3m3)

+  2rors (t - mf - ng)] ,Cl} (81)
: Mg (i)
Im FMie(py = 9N 777 fo2 2 me |—t* + 3 2m2—|—5m3
M) 64ngc/z{(l 3me | (2m} + 5m?)
— tQ(ng + 3mgmg + 9m3) + t(mg — mf)(ng — mgmf — 7m3)
— (m} —m2(mi —2m?)]
+ 2rim, {tg(mg —m?) 4+ t*(=3m} + 4mim? 4 3m?)
+ 3t(mi —m2)(m] +m2)* — (m —m2)*(m] +m?)|
4+ 2rirsmy [—t4 + t3(5m£ + mi) + 152(—9m;1 — 4m£m3 + m‘cl)
+ t(mg —m2)(Tmy + 4mim? + m?) — 2m}(m} — m?2)’|
4+ 2ryrsmy [—t4 + 2t3(2mg + mz) — 2152(377@;1 + mﬁ)
+ 2t(2mf — 3mim? +m¢) — (mf —m?)*|} (82)
with:
1 14w 4m£m2
Li(t) = =1 : v o= .|1— =
A J (t = m} = m2)?

(m2 +m2)t+ (m2 — m2) (M —mi +m2)  (83)

)\20/2 = (t—mi—m?)v; Ly =log
2mpym.t

C

= M2 (m}, mZ, 1)

The QCD expressions in Ref. [27] are recovered for the values of r; in (72). Those in
Ref. [43] are obtained by taking the value of r; in (71), letting m. — 0. This is a non-
trivial check that we now discuss in some detail. For the perturbative part one has to
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take into account that:

t 1. (t—m})?

1
,C me—0 _1 v _1
L 20gm3+20g mit +
me—0 1 t L. mi(t—mi)?
N mE

For the quark condensate, one must recall that when m,. — 0 the c-quark must be allowed
to condense. The easiest way to find this new c-quark condensate contribution consists
in isolating the 1/m. poles in the gluon condensate coefficients and using the first term
of the heavy-quark expansion in (53). The m. pole parts are

_ ™o 9 2 9 1
me-pole 9672t (t - mb) (oG >mc
cq.(53 5—4b—0b> — (t —m?)?
2 - (L= 100)

Im F¥

1927 t
G B ™73 9 2 9 1
Im F} mepole = QG2 ™ (t — mb) (asG >mc
eq.(53) 5—4b — 62 - (t — mg)Q
I L Y )

Adding these contributions to lim,, _oIm FQw and lim,,__oIm Fg}, as can be read off (78)
and (82), one gets agreement with the corresponding results in Ref. [43].

Similarly, to check the mixed condensate contributions one has to isolate the m.log m.
singularity of Im F, Im FF and take into account the first term of the heavy-quark
expansion in (54). The m.logm. singularities are

(asG*)(1 —b)

L v {m§—6t+b®m§—6ﬂ}%%bgmg
«2:(52) _M@(Eggg —Y) {m# — 6t + b(5m} — 61)}
Im FlG logme @%;#mb {ng — 6t + b(?mg — 6t)} 77.16 log mi
e (54) Aﬁggg;_mn%“lm?—&+bﬁm?—&”. (36)

Adding these equations to lim,, _olm FlM”, lim,,__olm FQM””, one recovers the corre-
sponding expressions in Ref. [43].

Finally, one must check the non-singular part of the gluon condensate coefficients, i.e.

I FY |ponsing = Im By — Im Fy’

I F |ponsing = Im FF —Im FF

G
me-pole — Im F2

melogme (87)
melogmes (88)

which should agree with Im F{, Im F{ in Ref. [43]. This is the most difficult part, for
one must compute the c-quark condensate to order m. and use again (53) to disentangle

G
me-pole — Im F1
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the misplaced quark-condensate contributions from the genuine gluon condensate ones.
The desired pieces are

mFY = . 44 +129Z_’2;t1362 (Ze)me ma(t — m2) + O(m2)
ImFlw = ...+ %(E@mc (t* — mi) + O(m?)
) BRI G 0 - ). (89

Subtracting again these pieces from lim,,,._o Im f‘ﬁ2G|non_sing and from lim,,,_oIm Fﬂnon_smg,
we obtain the corresponding coefficients in Ref. [43], as we should.

3.4 The A(bcu) mass and coupling

The A(bcu) contribution to the spectral function can be parametrized as:

LImFy(1) |Zp?6(t — M3) + 0(t —te) x ‘QCD continuum’ 90
LImFy(t) = My |Zp?6(t — M3) + 0(t — tc) x ‘QCD continuum’ (90)
From the analogue of the sum rules in eqgs. (58)—-(61), one can determine the residue |Z, |
and the A-mass. The analysis for the residue is shown in Fig. 3 for 6 = —1/5 (we have
checked that the result is insensitive to the value of b between —1 and +1 though the
convergence of the OPE is bad for |b] > 0.5). As can be seen in this figure, the 7 or n
stability is reached for ¢, > 60 GeV?2, while the ¢, stability starts at ¢, = 90GeV?. We
consider this range of values for our optimal estimate. Then, we obtain from the Fj and
F5 sum rules :

|Za|? ~ (4.0 ~ 20.0)107° GeV?®, (91)

which is quite inaccurate as other QSSR estimates of the baryon couplings in the heavy
quark sector[42]-[27]. For the estimate of the A mass, we use the ratios of sum rules.
However, these quantities do not present an n/7 stability. We therefore fix the value of
n/7 at the one where |Z| is 7-stable. The ¢.-dependence of the A-mass is quite small,
as shown in the Fig. 4 and we fix it in the range corresponding to the optimal value of
the residue. By taking the largest range of the predictions from the F; and F; ratios
of moments and Laplace sum rules, we deduce the value: (6.86 + 0.26) GeV. We add
to the previous errors an error of about 100 MeV from M, and 10 MeV from the gluon
condensate. Then, we deduce the final estimate :

My = (6.86 & 0.28)GeV. (92)

in good agreement with the potential model estimate in (39). This value is about 400 MeV
higher than the previous result in Ref. [43], based on a particular choice of the operator.
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3.5 The =;(bbu) and =!(ccu) masses and couplings

For a comparison with the potential model results in Table 1, let us remind the QSSR
results obtained in [27]:

M=, =~ (3.58 £0.05)GeV  Mz; =~ (10.33 £ 1.09)GeV. (93)

These predictions agree quite well with the results in Table 1 with a similar accuracy for
=. The corresponding coupling constants are:

~ (5~ 23)107° GeV®. (94)

| Z2,| =~ (3 ~ 8)1077 GeV®, | Z2,
The agreement of the different predictions between potential models and QSSR calcu-
lations of the hadron masses is a good indication of the convergence of the different

theoretical estimates.

4 Semileptonic decays of the B. mesons

4.1 The procedures

The first investigations of the three-point functions in the framework of QCD spectral
sum rules have been performed in [45] for the form factor of the pion. They have been
subsequently applied to semileptonic decays of heavy-light mesons [46] and heavy-heavy
mesons [41]. The first analysis of the ¢-dependence of the semileptonic form factors was
given by [47]. We first shortly review the general sum rule technique for the determination
of current matrix elements between heavy mesons. Let J, be the weak current in the quark
sector:

D= Pl =°)Q (99
where () is the field for a heavy quark and @ for a light or heavy one. We shall treat here
the semileptonic decays of the heavy-heavy meson B., with the current

Js = (my +m.) : b(i7°)c : . (96)
The decay product may be heavy-heavy (n., J/¢) or heavy-light (Bs, B, B, B*, D,

D*). For convenience we shall use here the method for a pseudoscalar final state with

Jr = (my + mg) : ¥(i7°)Q :. The starting point for the SR analysis is the three-point
function (¢ = (p’ — p)?):
Hu(p,p) = i [ dwd'ye? == 70T I (2).,(0).13(y)]0)
= i(pu 4+ P )T (%, p" 1) 4+ i(pu — Pl )T (p%, 97, 1). (97)

In order to come to observables, we insert intermediate states between the weak and the
hadronic current and obtain

(01| Hr) (Hr |, B:){B] J3]0)
(p? = MB.)(p"* — Mj;,)

. (p,p) = + higher-state contributions. (98)
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Hp is the lightest meson with the quantum numbers of Jg(z), its mass is Mp; (Hp|J,|B.)
is the semileptonic decay matrix element we are interested in. It can be decomposed as

(Hp|Ju|Be) = Fo(t)(p+ 9 )u + F_(t)(p — P)p- (99)

For semileptonic decays, only the form factor F contributes as the contribution of F_
is proportional to the mass squared of the lepton. The factors (0|.Jp|Hy) and (B,].J10)
are proportional to the decay constants (see section 3.2). The contribution of the higher
states will be discussed later.

As a next step, we evaluate the three-point function II, in the framework of QCD.
In general one has to take into account perturbative (Fig. 5a) and non-perturbative (e.g.
Fig. 5b—c) contributions. Since heavy quarks do not condense and since even for the
case of a light quark in the final state the condensation of this quark (Fig. 5b) does not
contribute to the three-point sum rule, only the gluon condensate (Fig. 5¢) gives a non-
perturbative correction. This correction is, however, expected to be very small as has
been shown in [52]. Therefore, the ingredient that is dominant, by far, is the perturbative
graph (Fig. 5a). The treatment of the higher power corrections thus does not play an
essential role. They are taken into account by local duality [4]. If the perturbative
contribution is represented by the double dispersion relation:

pert

= = P+ (S,Sljt)
I, (p*, p,t :/ ds/ ds’ ’ 100
+( ) (mQ+le)2 (mw—}_mQ’)Q (3 — p?)(sl _ p/2) ( )

one assumes that for p* p' sufficiently below the thresholds of s and s’ (say, 1 GeV
below) the contribution of the higher states can be well approximated by the perturbative
contribution above certain thresholds ¢, ¢:

pert !
[e'e] [e%e] t
“higher states” =/ ds ds'— 1+ 2(37;87 ),2 . (101)
te o (s=p))(s —p?)
We thus come to the sum rule:
te tlc pert / t
/ , ds/ , ds’ p__|_’ 2(3’ ;S; ’)/2 + “non-pert. terms”
(mg+mgr) (my+mg? (s —p*)(s’ —p?)
0| |Hp)(B.|JI0) Fy (1

(p* — Mg )(p* — Mj,.)

In order to suppress the dependence on the choice of the “continuum thresholds” t.,
t’, the sum rule (102) is Borel- (Laplace-) transformed, yielding:

te t!
c _ [y
/ ds/ ds'py(s,s',t)e™"e™*7 + “non-pert. terms”
(mQ—I—mQ/)2 (mw—l—mQ/)2

= M MR (01T | He) (B (1), (103)

In the next step, the matrix elements (0|Jz|Hp) and (B,|J1|0) are expressed through
sum rules as done in sections 3.1 and 3.2. By choosing the parameters 7 and 7’ to be 1/2
of the corresponding parameter in the two-point sum rule, the exponential dependence
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drops out, if we evaluate F(t) from (103). Note that the sum rule for the two-point
functions yield an expression for [(0]JF|Hg)|?> and |(B.|J1]0)|>. We furthermore choose
the continuum threshold the same for the two- and three-point functions, i.e. t. for the
B. channel and t/, for the Hp channel. There is a very subtle point in the t-dependence of
the perturbative double spectral function. For ¢ < 0 there is no problem in applying the
Cutkosky rules in order to determine py(s,s’,t) and the limits of integration. For ¢ > 0,
which is the physical region for decays, non-Landau-type singularities appear [47, 52],
which make the determination of the double spectral function very cumbersome. For
finite values of ., ¢/, the non-Landau singularities do not contribute to the sum rule (103)
if t is smaller than a certain value t.,, which depends on ¢. and ¢/, and hence the Cutkosky
rules may be applied in a straightforward way. For the determination of the ratios, we
extrapolate the t-dependence of that range to the full range with a cubic extrapolation.

The continuum thresholds ¢. and t/ are parametrized by

tc = (mQ + meg + EC)2 5 tlc = (mQ + meg + Eé)2 . (104)
In many cases [5], [39], [42]-]27], [47], [50], [51]:
E.~1.~2 GeV (105)

yields optimal results for the QSSR analysis. We shall use for definiteness the previous
range in our analysis. In the evaluation, we do not take the (small) contribution from the
gluon condensate into account and we hence come to the following sum rules :

Fi(t) =

2.1 _ 2 !
e—MFTe MBCT

(01| Hr)(B.|J2|0

]
—sT —S'T
c .

(mg+meor+E:)? (mg+mgi+E.)?
@ ds @ ds'py(s, s’ t)e
> ( ( P+\S, 5,

mQ+mQI)2 m¢,+mQ;)2

For the case of a vector meson in the final state, the relevant amplitudes are given l();OG)
(HpeW|J|B.) = =il (e, + iFE ()N - p (p+p'),

—I—ZFV(t)eZMe;(A)ppp; + ... (107)

The amplitudes F, and Fy receive their contributions from the vector currents, while Fiit

and F* do so from the axial-vector one. The relation between the scalar functions given

in (99) and (D.12) and the ones used in Refs. [49, 47] is

Fy = f4 M ; Fg = (Mp, 4+ Mg)Ay

- v (108)
A= — 2 R o=
+ ]\43C + MV v Z\4BC + MV

For each of the amplitudes in (107), there is a sum rule like (106), with py replaced by
P, pﬁ and py respectively. For completeness, we quote the relation of the amplitudes to
the decay rate. In the case of the pseudoscalar final state, we have :

dF+ . G%|VQ1&|2 )\3/2

while for the vector final state :
dr'y GEIVoul® |4

= MNZ(ME M2t

dt 19273 M3, (M., Mg 1)

1
X |2(F&M? + AFY + T ((Méc — ME —t)F + AFf)Q] :
F
A = (M, M) (110)
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Channels | Reference f+ |% A, Ay
ce This paper | 0.55 +0.10 | 0.48 £ 0.07 | 0.30 £ 0.05 | 0.30 0.05
[41] 0.20£0.01 | 0.374+0.1 | 0.274+0.03 | 0.28 £0.01
bs This paper | 0.60 £=0.12 | 1.6 +0.3 | 0.06 £0.06 | 0.40 = 0.10
[41] 0.30 £0.05 | 2.1 £0.25 | 0.39 £0.05 | 0.35 £ 0.20
B — D™ [52] 0.75+0.05| 0.8+0.1 |0.68+0.08|0.65=+0.10
[49] 0.69 0.71 0.69 0.65
[48] 0.62 £0.06 | 0.58 = 0.03 | 0.53 = 0.09 | 0.46 + 0.02
B, — n. B, — B, B.— B B.— D
B. — J/Y B. — B B, — B* B, — D*
F,(0) 0.55 £ 0.10 0.60 £0.12 0.48 £0.14 0.18 £0.08
Fy(0) [GeV™] | 0.048 4 0.007 0.15 £ 0.02 0.11 £ 0.02 0.02 £0.01
F_f(()) [GeV™!] | —0.030 & 0.003 | —0.005 4= 0.005 | 0.005 & 0.005 | 0.010 & 0.010
F£(0) [GeV] 3.0+0.5 3.3+0.7 1.7+ 0.7 0.84+0.4

Table 3: Comparison of semileptonic form factors for different decays. We compare the
dimensionless quantities f;, A;, Ay, V related to FiZ, F_f and Fy through (108).

4.2 Results

The principal results of the sum-rules evaluation of the form factors in (106) are collected
in Table 3. The value with the lower (resp. larger) modulus corresponds to the value of
the continuum energy F. = 1GeV (resp. 2GeV).

In Fig. 6, we display the result of the form factors at ¢ = 0 as function of 7 (parameter
of the initial state) ~ 7’ (parameter of the final state). It shows a weak F.-dependence
for E. in the range given in (103) while the 7-stability is roughly about one-half of the
one from the two-point correlator (see Fig. 3).

In Fig. 7, we show the t-dependence of the form factor for the semi-leptonic decay
of B, into n. for .= 1 and 1.5 GeV. The QSSR predictions with a polynomial fit are
represented by the continuous lines. The result from the pole parametrization

1

Fi(t) = T /M2, (111)

is given by the dashed line assuming a vector dominance with a B} mass of 6.33 GeV. Our
analysis indicates that for large t-values the QCD prediction differs notably from the pole
parametrization within VDM. The same phenomena is observed in the other channels as
well. For the B, into J/W¥ semi-leptonic decay, we only quote the fitted pole masses:

Fy: My ~4.08 GeV,
F2o My ~ 4.44 GeV,
F o My ~4.62 GeV, (112)

needed for reproducing the QCD predictions.
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Channels | Reference | Rates in 1019%s™!
Blv This paper 0.35 +£0.10
[41] 0.18
B:ly This paper 0.35 +0.10
[41] 0.87
bslv This paper
m
[17] 291
nlv This paper 0.27 +0.07
[41] 0.03
J/¢ly | This paper 0.32 +0.08
[41] 0.21
celv This paper
1]
[17] 6.90

Table 4: Partial decay rates for B. and B} mesons

4.3 Discussions

As mentioned above, the smallness of the non-perturbative corrections is a particular
feature of the be system. The analysis is rather an application of local duality and the
continuum model than of the classical sum rules analysis as the stability of the results
versus the continuum threshold is only reached if one assumes that it is the same (however
a natural choice) for the two- and three-point functions. Nevertheless, we expect that
the “physical” results should lie in the range spanned by the rather conservative choice
of continuum thresholds, which corresponds in different other channels to the optimal
results from QSSR. The choice of the continuum used in [40],[41] does not belong to this
range and makes their results doubtful.

There is a considerable theoretical interest in the t-dependence of the form factors for
the heavy-heavy to heavy-heavy decays. In [53, 54], it has been shown in realistic models
that the t-dependence of the form factors of heavy-heavy mesons are not determined by
the lowest mass in the ¢-channel (vector meson dominance), but by the size of the meson.
This feature, which is obviously present in potential models, is also visible in the sum
rule analysis, as can be seen from Fig. 7. The t-dependence is indeed much stronger than
predicted by vector meson dominance. Experimentally, it would be important to verify
this deviation from a hadronic effective theory.

5 Conclusions

We have combined in this paper potential models and QCD spectral sum rules for studying
the properties of hadrons with charm and beauty. We present in section 2 the results
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from potential models with the emphasis on the accuracy of the models for predicting the
hadron masses. In section 3, we present the QCD spectral sum rules estimates where we
show that the values of the decay constants can come out quite accurately once we use the
meson masses from potential models and once we understand better the Wilson coefficients
in the Operator Product Expansion of the correlators. Indeed, we show explicitly here
how the Wilson coefficients of the gluon condensates already contain the ones of the
heavy quark and heavy quark-gluon mixed condensates. This point has been a source of
confusion and uncertainties in the past. Finally, we use in section 4 vertex sum rules in
order to study the form factors of the B, semileptonic decays. In particular, we show that
their t-dependence deviates notably from the one predicted by vector meson dominance.
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Figure captions

Fig. 1: a) Diagrams contributing to the gluon condensate coefficient I'm Cgz. b) Dia-
grams contributing to the three-gluon condensate coefficient I'm Cge.

Fig. 2: a) n-dependence of the decay constant fg_ for different values of the contin-
uum threshold ¢.. b) 7-dependence of the decay constant fg_ for different values of the
continuum threshold %..

Fig. 3: a) n- and 7-dependences of the coupling Z, from Fj in (90), for different values
of the continuum threshold ¢.. The continuous (dashed) lines come from the moments
(Laplace) sum rules analysis. b) The same as in a) but from F5.

Fig. 4: t.-dependence of the A mass from Fj and Fy.

Fig. 5: Different QCD contributions to the vertex functions: a) perturbative diagram,
b) light-quark condensate, ¢) gluon condensate.

Fig. 6: 7 ~ 7’-dependence of the different form factors for B, semileptonic decays at zero
momentum transfer for different values of the continuum threshold £, : a) B. — 5., b)

B. — Bs, ¢)—e) B. — B>,
Fig. 7: t-dependence of the B, — 5. form factor: the continuous lines are the QCD pre-

dictions using a polynomial fit; the dashed line is the vector meson dominance prediction
using a pole parametrization with a B} mass of 6.33 GeV.
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6 Appendix

As anticipated in Sec. 3.1, dispersion relations such as

Corle®) = |

s

113
. (13)

require adding to (48) é-functions and derivatives of é-functions in order for them to be
finite (and correct). The reason for that should be clear by noting that (48) behaves as
[t — (my 4+ m.)?]7>/? near theshold, thus giving a divergent contribution to (113). The
evaluation of these extra terms can be rather cumbersome. Here we present a simpler
alternative modification of (113) which one can prove without much effort. For the sake of
simplicity, we illustrate the method with the (G?) contribution. Let us start by explicitly
substituting (48) in (113):

1 foe —asmymt (t—mi—mym.—m?)

2(g?) == dt
Corl0) = f i 2 =) = (o) 72

X [t—(my+m. )22 (114)

Next, we separate the singular power of ¢ —(my+m.)?, i.e. the factor [t —(my+m,)?] =/
in (114), from the analytic portion and compute its Taylor series in powers of t—(my+m.)?
up to order one. Higher order terms are innecessary since they would give a convergent
contribution to (114) near theshold. The desired Taylor series is (—¢* = Q* > 0):

t — (my + m.)?
8mym[Q? + (my + m.)?]

Qs+ /TNpMN

C16[Q% + (my + me.)?] {(mb Tme) +

X [5(my + me)t + Q* (5mi + 18mym. + 5m?) | } (115)

Obviously, by subtracting eq.(115) times [t — (my + m.)?]7>/? from the integrand of (114)
we obtain a result which is O{[t — (my+m.)?]"*/?}. Thus, this difference can be integrated
as in (113). This is precisely the modification of (113) that we are looking for. So, we
finally have

-~ £ 00 B asmbmct (t—mg_mbmc_mg)
CG%q)__Wulmﬁmuﬁ{ 2(Q*+1) [t=(my—me)??/2 o
— Qg /mpm {(mb+mc)2[t_(mb+mc)2] — L
s b1 16[Q2 + (my + mo )22 16[Q2+ (my+m.)?]

(5mi 4+ 18mym.+5m2)[t — (my + mc)Q]] }}

Smypm.

X [(mb+mc)2 +

dt
[t —(mytme)? ]/

We have explicitely checked that (116) agrees with [5]. An entirely analogous procedure
can be followed to obtain the dispersion relation for Cgz. One has

o (2) B i 00 dt asmpm, t
G = T e TSP\ 6 (L + Q) [t — (my — )]/

x {3t* — 2(3m + 2mym, + 3m?)t°
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_|_

_|_

(5mym. + 18mim? + 5mym?) *
2(3my + mpym. — 6mim? — 6mim?> — 6mim? 4+ mym?> + 3m®) ¢
4

3(my + mim. — mim® — 2mim? — mim? 4+ mym? + mf)}
—TE4 (¢ — X%)3
s c 117
T TS (1

[722 (=52 A@=3 2

192 1536mym. | (Q? + X2)3
—TEt(t - YPA(-X%)? N B(t—x%)? 1
192 1536mym. 24576m2m? | (Q% + X2)?

7E4+E2A(t—22) B(t—-%%?*  C@—-%?)pP 1
192 1536mym,.  24576mim?  196608m;m?3| Q* + X2 |’

C C

where we have introduced the notation:

QT = ™

= mp+m
= 51m£ + 166mym. + 51m3
31m; — 836mim, — 1862m;m?> — 836mym? + 31m?

= 27Tm; + 596mim. — 514mim? + 596mym?> + 277m?. (118)

The result is seen to agree with previous calculations of the (real) part of Cgs in the case
my = m, [36]. Note that from (116) and (117) it is straightforward to calculate both the
Borel- (Laplace-) transform of Cg2 and Cg: and their moments since the dependence on

(* is through (Q* +¢)™" or/and (Q* + X?)™".
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