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Abstract
The Sleeping Beauty problem has attracted considerable attention in the literature
as a paradigmatic example of how self-locating uncertainty creates problems for
the Bayesian principles of Conditionalization and Reflection. Furthermore, it is also
thought to raise serious issues for diachronic Dutch Book arguments. I show that,
contrary to what is commonly accepted, it is possible to represent the Sleeping Beauty
problem within a standard Bayesian framework. Once the problem is correctly repre-
sented, the ‘thirder’ solution satisfies standard rationality principles, vindicating why
it is not vulnerable to diachronic Dutch Book arguments. Moreover, the diachronic
Dutch Books against the ‘halfer’ solutions fail to undermine the standard arguments
for Conditionalization. The main upshot that emerges from my discussion is that
the disagreement between different solutions does not challenge the applicability of
Bayesian reasoning to centered settings, nor the commitment to Conditionalization,
but is instead an instance of the familiar problem of choosing the priors.

1 Introduction

Adam Elga (2000) introduced to the philosophical literature what has come to be
known as the Sleeping Beauty problem:

Some researchers are going to put you to sleep. During the two days that your
sleep will last, they will briefly wake you up either once or twice, depending on
the toss of a fair coin (Heads: once; Tails: twice). After each waking, they will
put you back to sleep with a drug that makes you forget that waking. When you
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are first awakened, to what degree ought you believe that the outcome of the
coin toss is Heads? (Elga 2000, p. 143).

Since then, the Sleeping Beauty problem has attracted considerable attention in the
literature as a paradigmatic example of how self-locating uncertainty creates problems
for the principles of Conditionalization and Reflection. The current consensus is that
self-locating uncertainty puts pressure on the standardBayesian framework (Titelbaum
2016, 2013; Spohn 2017; Schwarz 2011). While there is no general agreement on
a solution, those that have been proposed all raise some tension between different
Bayesian commitments. The ‘thirder’ solutions (see Sect. 3.1 below) appear to violate
standard Conditionalization and Reflection, and yet are not vulnerable to diachronic
Dutch Books (see e.g. Bradley and Leitgeb 2006; Bovens and Rabinowicz 2011).
This is at odds with a well known result (Teller (1973), who attributes the idea to D.
Lewis). See also Lewis (2010), Skyrms (2009), which establishes that an agent can
avoid being vulnerable to diachronic Dutch Books only by planning to update via
Conditionalization. On the other hand, it is often accepted that ‘halfers’ should not
bet at the odds that reflect their beliefs in cases like the Sleeping Beauty (Bradley
and Leitgeb 2006; Briggs 2009). But this puts pressure on the idea that an agent’s
credences can generally be interpreted (or operationalised) as the betting odds that the
same agent would consider fair, undermining a standard argument for probabilism (de
Finetti 1937).

The current state of the literature indicates that the issues raised by the Sleeping
Beauty problem constitute a serious threat to the Bayesian approach to subjective
probability. The puzzle is compounded by the fact that self-locating beliefs are perva-
sive, and they are key to modelling ordinary evidence, which normally comes in the
form of indexical observations (e.g. ‘it is raining now’, ‘this coin toss landed Tails’).

Given this background, this papermakes two contributions. Firstly, I give aBayesian
representation of the Sleeping Beauty problem (Sect. 2), and show that the different
numerical solutions discussed in the literature can all be derived within this frame-
work, depending on the choice of priors (Sect. 3). Secondly, I show that, despite the
appearances, Sleeping Beauty does not call into question the Bayesian commitment
to Conditionalization. This is done in two steps. I first defend the thirder solution and
address the objection that it violates the principles of Conditionalization and Reflec-
tion (Sect. 4). I then show that Diachronic Dutch book arguments against the halfer
solution do not provide a counterexample to the results by Lewis and Skyrms (Sect. 5).

Before proceeding further, I should also be clear on the limitations of this paper.
I do not aim to give a comprehensive review of the vast literature on the Sleeping
Beauty problem. Moreover, I will only be interested in solutions that aim to pre-
serve the validity of standard Bayesian commitments, and specifically the principle
of Conditionalization. I will not consider the merits of the (numerous) other existing
revisionary approaches that propose alternatives to Conditionalization here,1 as well
as those of solutions that do not rely on a Bayesian framework (such as, for instance,
the objectivist one discussed in Oscar Seminar 2008).

Instead, my goal is simply to show that it is possible to represent the Sleeping
Beauty problemwithin aBayesian framework, and that this representation is consistent

1 For an overview of some of these, see e.g. Titelbaum (2016).
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with the Bayesian commitments to Conditionalization and Reflection. Given that the
Bayesian framework is widely regarded as a powerful framework for reasoning under
uncertainty, and that there are independent reasons for accepting Conditionalization
and Reflection, the results I present shift the burden of proof to those that want to
argue for a departure from these principles.

2 The Problem

Elga’s descriptionof theSleepingBeauty problemgrants the followingnatural assump-
tions:

1. The experiment lasts two full days, from the moment Beauty is put to sleep at the
end of day 0, to the moment when she is woken up and dismissed at the beginning
of day 3.

2. There are two possible outcomes to the experiment: either the coin toss comes up
Heads, and Beauty is woken up on day 1, but left to sleep on day 2; or the coin
toss comes up Tails, and Beauty is woken up both on day 1 and on day 2. Each
outcome has a prior probability that is equal to 1

2 .
3. When she wakes up during the experiment, Beauty does not know which day it is.

From Beauty’s standpoint, the task is to determine the probability of Heads, after
she wakes up during the experiment.

On each day, Beauty could be in either of two states: she is either awake or she is
asleep. Representing an awakening by w and a sleep-through by s, we know from the
outset that day 1 involves an awakening, while day 2 may involve either an awakening
or a sleep-through, depending on the result of the coin toss. A first characterisation of
the state space for the whole experiment is therefore:

� = {ws,ww}

Let H = {ws} be the event that the coin toss comes up Heads and T = {ww} be the
event that the coin toss comes up Tails. By assumption 2, the prior probability of H is
the same as the prior probability of T , that is, P(H) = P(T ) = 1

2 . In the context of
the experiment undergone by Sleeping Beauty, the probabilities of the events H and
T are given as priors, as they are fixed by the experimental setup.

During the course of the experiment, Beauty is allowed to make some observations
that potentially provide herwith side information about the outcome of the experiment.
Each observation consists in waking up on a given day, and noting that ‘Beauty wakes
up today’, where ‘today’ picks out a day i ∈ {1, 2}. (Recall that, by assumption 3,
Beauty does not know which day it is when she wakes up, and that by assumption 1
each outcome spans over two days. So, Beauty believes that ‘today’ could be either
day 1 or day 2.) How does this observation affect the probability of H? In order to
answer this question, we need to represent the observation that ‘Beauty wakes up
today’ (i.e., ‘Beauty wakes up on day i ∈ {1, 2}’) as an event within the same state
space as the event H . Let us call this eventW . A quick glance at� reveals that without
some further elaborations, that space is not sufficiently rich to express the event W .

123



S. Milano

This is because, if the outcome of the experiment is ws (if, that is, the result of the
coin toss is Heads), it is indeterminate whether Beauty wakes up on day i . To see this,
consider how the outcome ws consists of an awakening followed by a sleep-through,
so for i = 1, Beauty wakes up, but for i = 2, Beauty does not wake up.

The difficulty with modelling the event W that Beauty wakes up on day i (‘today’)
is due to the fact—expressed by assumption 3—that Beauty does not know which day
it is when she wakes up. To represent her uncertainty, we need to refine the outcome
space, taking into account that the experiment spans over two days (assumption 1),
and that it could be either day 1 or day 2, since the experiment lasts two days regardless
of the result of the coin toss.2 The resulting refined state space is:

�′ = {ws1,ws2,ww1,ww2}

Here, the elements of the state space are indexical states, centred on different times.3

Relative to�′ we can express the eventW as the set of states {ws1,ww1,ww2}—these
are all the states in which Beauty is awake during the experiment. W is false at ws2,
which corresponds to the state where the result of the coin toss is Heads, it is day 2,
and Beauty is sleeping. The event corresponding to a Heads result of the coin toss is
H = {ws1,ws2}, while a Tails result corresponds to T = {ww1,ww2}. The same prior
constraints set by the experimental setup should apply to the refined state space �′,
as they did to the more coarse-grained version of the state space �. In particular, by
assumption 2, the probabilities assigned to H and T relative to �′ should be equal.4

Table 1 summarises the refined state space and the probabilities associated to each
outcome, subject to the constraint that P(H) = P(T ) = 1

2 .
The parametersα andβ inTable 1 both take values in the [0, 1] interval and represent

the conditional probability that it is day 1, given that the result of the coin toss is either
Heads or Tails; more precisely, P(D1|H) = α and P(D1|T ) = β. Expressing the

2 In a sense, speaking about refining the state space may seem suspicious: after all, ws1 and ws2 both
happen (sequentially) if the result of the coin toss is Heads. So, from an atemporal point of view, they
are not mutually exclusive. However, here we are not interested in the atemporal viewpoint, but in the
temporally located viewpoint that Beauty occupies at the time that she considers the problem. From this
temporally located perspective, ws1 and ws2 are indeed mutually exclusive.
3 The indexical states within the state space �′ can be interpreted as centred worlds. Using centred worlds
to capture the content of self-locating propositions is a standard move in the philosophical literature Lewis
(1979). However, the present model is also compatible with other ways of interpreting indexical content,
such as for instance as Fregean propositions (see, e.g. Magidor 2015). The limited space of this paper does
not allow me to detail this discussion, but I develop this point further elsewhere.
4 A possible objection that could be moved against this step is the following: assumption 2 constrains the
probabilities of the uncentred events Heads and Tails, which are perfectly captured in the state space �.
But once we move to the centred state space �′, it is unclear why the same constraint should apply. In other
words, assumption 2 constrains prior uncentred probabilities, but not necessarily the centred probability
of the events once we move to the (centred) space �′. I do not find this objection convincing, for at least
two reasons. First, distinguishing between ‘uncentred’ and ‘centred’ reasoning about events such as H and
T would make it unclear what are the agent’s true prior probabilities, when they could differ. Second, it
is not at all clear why we should interpret assumption 2 as applying preferentially to events defined in �.
Reading it as applying to the events in�′ is at least as natural, and supports my argument that�′ is the right
state space to capture the relevant events in the Sleeping Beauty case. In light of these, we should preserve
correspondence between the prior probabilities assigned to uncentred events relative to both state spaces,
as breaking it would have higher costs and is not warranted by anything in the problem description.
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Table 1 The Sleeping Beauty
problem

Outcomes (Heads) (Tails)

ws1 ws2 ww1 ww2

Probabilities 1
2α 1

2 (1 − α) 1
2β 1

2 (1 − β)

probabilities assigned to the elements of the state space in termsof these twoparameters
is not necessary, as we could instead just focus on the probability that is assigned to
each element of the state space in isolation. However, introducing the parameters α

and β is convenient simply because it preserves the equal probability ratio between
the hypotheses H and T , making sure that their respective prior probabilities remain
fixed however we distribute probabilities to the events within this partition.

The conditional probabilities expressed byα andβ are not fixed by the experimental
setup, so the description of the problem leaves us free, in principle, to set them however
seems best. One might worry, however, that the state ws2 could never be experienced
by SleepingBeauty, and so should not be part of the space of possibilities. I will address
this worry in the next subsection, but note for now that as long as we accept that all
the states in �′ represent logical possibilities, the description of the experimental
setup does not give explicit information regarding how Beauty should apportion these
probabilities, and therefore we should, at this stage of representing the problem, leave
open how she sets the values of both α and β. A discussion of which are the correct
or the most plausible values for these parameters is left until later (see Sect. 3 below).

We are now in a position to formally state the problem (which we originally for-
mulated as:What probability should Beauty assign to Heads, given that she wakes up
today?) in terms of computing the posterior probability of H , given thatW is observed,
or P(H |W ). By Bayes’ theorem, we immediately have:

P(H |W ) = P(W |H)P(H)

P(W )

Since H and T partition the outcome space �′, by the law of total probability we
have that:

P(W ) = P(W |H)P(H) + P(W |T )P(T )

Moreover, we know that P(H) = P(T ) = 1
2 , P(W |T ) = 1 (since Beauty wakes

up every day if T ) and P(W |H) = α (since the probability that Beauty wakes up,
given that the coin toss comes up Heads, is equal to the probability that it is day 1
given H ). The previous equation simplifies to:

P(W ) = 1 + α

2
(1)

The solution to the Sleeping Beauty problem is therefore given by the equation:

P(H |W ) = α

1 + α
(2)
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Answering Sleeping Beauty’s original question therefore depends solely on the
value that we assign to parameter α.5

2.1 Further Questions

The original Sleeping Beauty problem involves computing the value of H given that
W is observed. But once this is done, there are many questions we can still ask. For
example, what credence should Beauty assign to the coin toss having come up Heads,
if after waking up she were informed that it is day 1? Or, similarly, what would her
credence in Heads be if the experimenters told her, after waking her up, that today is
the last time she wakes up during the experiment?

Another advantage of the refined state space�′ is it allows us to model these further
questions. The first question (What is the probability of Heads, if today is day 1?) can
be answered by computing the posterior probability of H , given D1 ∩ W (which
coincides with D1):

P(H |D1) = α

α + β
(3)

Let L = {ws1,ww2} be the event that Sleeping Beauty wakes up for the last time.
To answer the second question (what is the probability of H , if today is the last time
you wake up?), we just need to compute the probability of H , given the information
that L is the case, which is:

P(H |L) = α

1 + α − β
(4)

Another question that will be interesting to consider might be posed to Beauty
before the experiment actually begins: Suppose that it is either day 1 or day 2. What
is the probability that you wake up? In order to answer this question, Beauty should
effectively state what is the prior probability of W , on the supposition that it is either
the first or the second day (that is, given D1∪D2). Since D1∪D2 = �′, the conditional
probability of W given D1 ∪ D2 is equal to its unconditional probability:

P(W |D1 ∪ D2) = P(W ) (5)

Things are a bit different if the question specifies which particular day is to be
supposed, e.g. Suppose it is day 1 (day 2). What is the probability that you are awake?
In this case, since we know that P(D1) = α+β

2 and P(D2) = 2−α−β
2 , by a simple

calculation we have:

5 Baratgin and Walliser (2010) propose a solution to the Sleeping Beauty problem that is formally similar
to Eq. 2. A difference between their approach and the one presented here is that they assume that the
probabilities of {ww1} and {ww1} are both equal to 1

4 by the Restricted Principle of Indifference (an
assumption that, as I argue, we should dispense with). Because they do not consider parameter β, their
approach is also not able to rationalise the double halfer solution (Hawley 2013), which is possible within
my approach (see note 12 in Sect. 3.2 below).
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P(W |D1) = 1 P(W |D2) = 1 − β

2 − α − β
(6)

Equation 6 states an interesting result. The probability that Beauty wakes up, given
that it is day 1, is equal to 1—just as we would expect, since the experimental setup
specifies that Beauty always wakes up on day 1. However, the probability that Beauty
wakes up on day 2 does not necessarily equal 1

2 , as this depends on what values α and
β take.

2.2 Prior Perspectives

Before we move on, I want to consider two worries that might arise in relation to
my construction of the state space �′ to represent the Sleeping Beauty problem.
One worry is that one of the elements of �′, namely ws2, is not compatible with
Beauty’s evidence at any point in time. Since Beauty is asleep inws2, she could never
consciously experience being in that state. In other words, we could say that ws2 is a
‘blind’ state: Beauty could never learn that this is her current state, and any evidence
that she might have while she is awake automatically rules out ws2. But, then, maybe
we should not consider ws2 to be a genuine epistemic possibility for Beauty, and it
should not be included in the state space �′ at all. Another, perhaps related, worry is
that the state space �′ is only available to Beauty when she wakes up, but not before,
as none of the states in �′ are compatible with Beauty’s evidence before being put to
sleep, when she is certain about the current time. This is a serious worry because, if�′
is not always available to Beauty, then it would be unclear in what sense we can speak
of her having prior probabilities relative to �′, upon which she may conditionalize
after learning new evidence during the course of the experiment.

Let us start by addressing the first worry, that ws2 may not be a genuine epistemic
possibility for Beauty, since she could never learn that she is in that state. First of all,
there are some prima facie objections to the claim that we could not assign positive
probability to ‘blind’ states that are logically possible. Consider the following case.
Suppose you are preparing to leave for a journey, and buying travel insurance brings
you to mind the possibility that your flight will crash. Given what you believe about
the chances of an accident, you assign a positive probability to the possibility of your
own death. This, however, is not a proposition that you are in a position to ever learn.
So, in some cases at least, it seems plausible to assign a positive probability to ‘blind’
states.

Further to this, whether we should include ‘blind’ states such as ws2 in the state
space and whether they should be assigned a positive probability are two issues that
can be kept separate. In the construction of �′, and in what follows, I assume that the
state space contains all the logically possible states, including those that (like ws2)
may never represent live epistemic possibilities for Beauty. This still leaves open the
option of assigning zero probability to these states. Doing this in the Sleeping Beauty
case would support Lewis’s solution to the problem, as we will see in Sect. 3.2 below.

The second objection—that the state space �′ is not available to Beauty before
being put to sleep—raises a more general worry for my approach. In one sense, this
worry reflects a common intuition: namely, that the experience of being in one of the
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states in �′ is only available to Beauty when the state occurs, and it is not available to
her at earlier (or later) times. In other words, Beauty could not make the observation
that ‘today is day 1’ before being put to sleep. This observation is not compatible with
her circumstances before the experiment starts, when she is certain that the current
time is not day 1. But the idea that observations may not be available at all points in
time should not be particularly surprising. Suppose that you are considering whether
to pack a warm sweater for an upcoming trip: you may look up the weather forecast
at your destination, and decide to pack it on the basis of the probability that you come
to assign to the proposition that it will be chilly in Vienna at the time of your visit.
In other words, you make a decision now, based on the expectation (formed on the
basis of the weather forecast) that you will experience a chilly day when you travel to
Vienna. The observation ‘it is chilly today in Vienna’ is not available to you now. But
what is relevant for you now is the expectation of experiencing this state in the future.
This can be modelled by your assigning a conditional probability to the proposition
‘it is chilly’, conditional on it being the day when you visit Vienna. If this conditional
probability is sufficiently high, based on your current estimates, then you will pack a
warm sweater. Similarly for Sleeping Beauty, the observation ‘I am awake and today
is day 1’ would only be available to her on the first day of the experiment—she could
not experience these circumstances at any other times. But the expectation of making
this experience is available (and relevant) to her at other times, specifically before
being put to sleep, and it is equal to the conditional probability that she assigns to
being awake, given day 1, or P(W |D1).

A natural objection towhat I just saidwill be that Beauty is certain that it is not day 1
on (whatwewill call) day 0, before being put to sleep. So, the conditional probability of
W , given D1, is simply undefined, since on day 0 P(D1) = 0. Of course, I do not want
to deny that, on day 0, Beauty should be certain that it is not day 1.6 But notice that, by
the same reasoning, it would also seem that we have an argument for the claim that, in
the sweater case, the probability that it is chilly in Viennawhen I am there is undefined.
The way in which we should solve the issue, I propose, is to allow Beauty’s prior
probabilities to be defined as a conditional probability structure, assigning probabilities
to each logically possible state, conditional on different times, as is implicit in my
construction of the sample space �′. This proposal, versions of which have been
discussed in the literature on self-locating beliefs (see Moss 2012; Stalnaker 2008;
Meacham 2016; Schwarz 2017; Wenmackers 2017),7 has the advantage of allowing

6 To be precise, to model Beauty’s beliefs on day 0 we should expand the state space to include a time point
relative to day 0. Consider the resulting expanded state space �′′ = {ws0, ws1, ws2, ww0, ww1, ww2}:
since P(D0|D0) = 1, and since D0 and D1 are mutually exclusive events, P(D1|D0) has to be equal to
0. The expanded state space �′′ can be used to more accurately model Beauty’s credences before being
put to sleep, but since the propositions that we are interested in are those relative to her states during the
experiment (that is, conditional on it being either day 1 or day 2), there is no loss in using �′ to solve the
equations in Sects. 2–2.1.
7 See also Horgan (2004) and Neal (2006) for related discussions. The ‘generalised Conditionalization’
principle defended by Horgan differs from standard Conditionalization by its reliance on what Horgan calls
‘preliminary probabilities’, which are distinct from prior probabilities. Horgan defends the thirder position,
but as I show the halfer position is also consistent with Conditionalization.
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for a unified and straightforward treatment of both cases like ‘sweater’ and Sleeping
Beauty.8

Having clarified the nature of Beauty’s priors, in the next section I turn to the task
of deriving a numerical solution within the framework I have presented.

3 Solution

As we’ve seen in the previous section, the solution to the Sleeping Beauty problem
comes down to computing the value of P(H |W ) in Eq. 2. To do this, we need to
specify what is the value of α, which is not explicitly fixed by the description of
the experimental setup. Is there a correct or most plausible assignment of value to
α? Moreover, does the value assigned to α match the value assigned to β, or do
they differ? (Although the value of β does not matter to the solution of the original
Sleeping Beauty problem, it affects the solution to the further questions I described in
the previous section.)

There are, I think, two possible ways to go from here. One possibility would be to
say that we simply cannot assign any value to α and β, since these are left unspecified
by the description of the experimental setup. This would leave us unable to compute
the posterior probability of Heads given that Beauty wakes up.9 Although theoretically
coherent, this solution is not very attractive.

A second way to go is to proceed and assign a value to α (and to β, if we have
any interest in answering the further questions that Sleeping Beauty might consider,
described in Sect. 2.1). If we take this route, it remains to be decided which values
are the most appropriate. The most natural assignment—in my view—is α = 1

2 and
β = 1

2 . The rationale for this assignment is the following. Since Beauty is uncertain
about what day it is, we should conceptualise the day i that she observes as if it had
been selected through some sort of randomising mechanism.We don’t need to be very
specific about the nature of the sampling mechanism that we imagine.10 The point is
simply that, in order to represent Beauty’s uncertainty about what day it is, the way
in which we model the problem must respect the intuition that both day 1 and day 2
are possible. The parameter α (respectively, β) represents the prior probability that a
day randomly selected through this hypothetical mechanism is day 1, given that the

8 This proposal generalises the one defended by Moss (2012) (who, in turn, expands the analysis of the
Sleeping Beauty problem presented in Stalnaker 2008), by giving up the assumption of reducibility of de
se to de dicto beliefs. Due to space constraints, I do not address here some further concerns related to the
choice of priors discussed by Meacham (2016), though I pursue these further elsewhere. In any case, these
issues do not affect the main point of this paper, that is providing a Bayesian formulation of the Sleeping
Beauty problem. This issue is separate from that of the choice of priors.
9 An additional possibility, that I will not explore here (but that would constitute a possible extension of
the representation that I give in this paper), would be to introduce imprecise probabilities and allow a set
or an interval of possible values for the posterior (I thank an anonymous referee for drawing my attention
to this possibility). See Bovens and Ferreira (2010) for a related discussion, though they do not apply it
specifically to the Sleeping Beauty case.
10 In the terminology of Bovens and Ferreira (2010), this would corresponds to different protocols through
which Beauty could learn the relevant pieces of information. I resist using this terminology here, as the
parameters α and β do not, in themselves, constitute protocols, but they could be seen as consistent with
different choices of protocols.
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result of the coin toss is Heads (respectively, Tails). In other words, α = P(D1|H)

and β = P(D1|T ).
Since the experiment is expected to run over two days, regardless of the result

of the coin toss, it makes sense to assume a uniform prior distribution over the two
days in both scenarios (whether the coin toss comes up Heads or Tails). On this view,
when considering what values to set for α and β, Beauty employs the Principle of
Indifference (PI, for short): since she has no reason to believe, assuming that the result
of the coin toss is Heads (respectively, Tails) and before anything else is learned, that
any one of the two experimental days is more likely to be selected than the other,
she should assign them an equal probability, and therefore set α = 1

2 (respectively,
β = 1

2 ).
PI is a notoriously controversial principle, and I will not attempt to defend it here,

although a consideration that might favour it in this particular instance is the fact
that points in time are linearly ordered, so each day should intuitively have the same
weight. But it is important to note that my application of PI is conceptually distinct
from a related line of reasoning that is often applied to the Sleeping Beauty problem,
which is known in the literature as the Restricted Principle of Indifference (RPI, for
short). According to RPI, any two events that take place within the same history (such
as the awakenings on day 1 and day 2, in the event of the coin toss coming up Tails)
and which would be subjectively indistinguishable for an agent experiencing them
given some evidence E , should receive equal posterior probability after learning that
E . This principle places a substantive restriction on the posterior probabilities that
an agent may come to have upon a learning event, and has come under independent
criticism (see Marcoci 2018, Weatherson 2005). In contrast, PI—as I have employed
it—gives us a way to set Beauty’s prior probabilities, which I take to be more in line
with the general commitments of Bayesian reasoning (I also consider alternative ways
to fix the prior parameters in Sect. 3.2).

3.1 A Numerical Answer

To represent Beauty’s uncertainty about which day it is when she wakes up within a
probabilistic framework (on the assumption that Beauty reasons as a Bayesian agent)
we have refined the simple state space �, and then we employed the Principle of
Indifference to generate Beauty’s prior probabilities for the events that we defined
relative to the refined state space �′.

If we now plug in the chosen values for α and β to Eqs. 1 and 2 from Sect. 3, we
are finally able to compute the desired probabilities:

P(W ) = 1 + 1
2

2
= 3

4
(7)

P(H |W ) =
1
2

1 + 1
2

= 1

3
(8)
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And moreover, answering the further questions in Sect. 2.1:

P(H |D1) = 1

2
(9)

P(H |L) = 1

2
(10)

P(W |D1) = 1 P(W |D2) = 1

2
(11)

None of the above answers seems particularly surprising. If Beauty is told that it
is day 1, she intuitively is in the same situation as someone who doesn’t (yet) know
the result of a fair coin toss, and this explains why we have a strong intuition that
she should assign a probability of 1

2 to Heads. Similarly, if Beauty learns that this is
the last time she wakes up, but does not know if it is day 1 or day 2, she knows that
it is Heads if and only if it is day 1, and Tails if and only if it is day 2. This means
that P(H |L) = P(D1|L), and it is very plausible that both should equal 1

2 . Finally,
the probabilities in Eq. 11 are simply in line with the description of the experimental
setup.

3.2 Tweaking the Parameters

Although the motivations I gave to support it in Sect. 3 are different, my numerical
solution to the Sleeping Beauty problem agrees with the one put forward by Elga
(2000),11 and which is known in the literature as the ‘thirder’ solution. However,
Elga’s original paper did not settle the answer to the Sleeping Beauty problem, as
attested by a literature growing around it to this day. In this section, I review another
prominent alternative solution to the Sleeping Beauty problem, Lewisian halfing. I
show how this solution too can be derived within the framework that I gave in Sect. 1,
and then critically examine a possible rationale for it.

An early reply to Elga by David Lewis (2001) advocated a different solution to
the original problem, which has come to be known as ‘halfing’. According to Lewis,
Beauty’s credence in Heads should not change between the time before she is put to
sleep and when she wakes up on day 1, but should stay equal to 1

2 . In other words, for
Lewis, both P(H) = 1

2 and P(H |W ) = 1
2 . The rationale given by Lewis to defend

this ‘halfer’ solution is that, upon waking up, Beauty does not learn anything new. She
was aware all along that she would wake up at least once during the experiment, and
therefore an awakening does not give her additional clues about the outcome of the
coin toss. Given this consideration, halfers argue that Beauty should not change her
credence in Heads upon waking up. Since she knows the coin to be fair, she should
maintain a credence of 1

2 in Heads.

11 Dorr (2002) also gives an argument in favour of Elga’s solution based on a variation of the problem
where Sleeping Beauty is awakened every day with her memory temporarily erased, but remembers the
Monday awakening after a little while on Tuesday if Heads. Due to space constraints, I do not elaborate
on this variation here, but note that Dorr’s argument is different from the one presented here, as different
solutions cannot be rationalised in his approach.
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Lewis’s solution, like Elga’s, can be derived within the refined state space �′ that I
have given in Sect. 1 (see Table 1). This is because both Lewis and Elga agree that we
need to model Beauty’s uncertainty regarding what day it is, since this information is
relevant to the probability ofHeads. They also agree that, if the coin lands Tails, Beauty
is equally likely to wake up on day 1 as she is on day 2, that is β = 1

2 . However, in
order to get Lewis’s solution, the conditional probability of day 1 given Heads should
be set equal to 1, that is, α = 1.12 When we set the parameters in this way, the prior
probability of the event W is:

P(W ) = 1 + 1

2
= 1 (12)

And the resulting numerical solution to the Sleeping Beauty problem is therefore:

P(H |W ) = 1

1 + 1
= 1

2
(13)

The halfer solution is known to generate some counter intuitive answers when it
comes to the further questions I formulated in Sect. 2.1. These can all be easily derived
in the formalmodel I have given in Sect. 1. One problem for the Lewisian halfers is that
the probability that Beauty assigns to Heads appears to increase if, upon awakening,
she is informed that it is day 1, as (by Eq. 3):

P(H |D1) = 1

1 + 1
2

= 2

3

This result is clearly puzzling, since Beauty’s awakening on day 1 happens inde-
pendently of the result of the coin toss. Lewis himself acknowledged the puzzling
nature of this result, arguing that it constitutes an interesting case of getting evidence
‘about the future’ (Lewis 2001, p. 175).

In spite of the puzzling result it generates, Lewisian halfing remains a relatively
popular solution. This is because it makes a basic appeal to an intuition that is shared
by many people, regarding what is the content of Beauty’s evidence upon waking up.
The idea behind Lewisian halfing is the following: if the coin toss comes up Heads,
Beauty can only wake up on day 1. Moreover, Beauty only observes a day if she gets
to wake up on that day. Therefore, if Heads, day 1 is experienced with certainty. There
is no possible scenario in which Beauty gets to observe day 2, if Heads, and so the
prior probability assigned to day 2 given Heads should be 0.

Although it appears intuitive, this motivation for the halfer solution may rest on a
misunderstanding of what is the observable event W in the Sleeping Beauty problem.
As I explained in Sect. 1, W contains all the outcomes of the refined state space �′
in which Beauty is awake. When she is put to sleep, Beauty considers it possible that

12 Another popular solution, that I will not review here, is ‘double halfing’ (see e.g. Meacham 2008; Cozic
2011). This solution, too, can be derived within my framework by setting α = 1 and β = 1, but has the
drawback of violating the third assumption from Sect. 2 (though see Hawley (2013) for an argument in
favour of this option). It can also be subjected to a similar DDB argument as the one for the Lewisian halfer
that I discuss in Sect. 5 below.
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she will not wake up on every day during the experiment. This is because she knows
that it is possible that she will sleep through day 2, namely if the result of the coin
toss is Heads. So, even though she knows that she will not be consciously aware of it
if and when it happens, day 2 given Heads is a live possibility at the outset, to which
she intuitively should assign a positive prior probability. If the halfer solution were
correct, however, then Beauty would be certain that the prior probability ofW is equal
to 1, since (plugging in α = 1 in Eq. 1) P(W ) = 1+1

2 = 1. Moreover, puzzlingly, she
would also be certain towake up, conditional on it being day 2, aswe can see by solving

Eq. 6: P(W |D2) = 1− 1
2

2−1− 1
2

= 1. In other words, according to Lewisian halfing, Beauty

would be certain that she wakes up on every day during the experiment—even though
this clearly is contrary to the description of the experimental setup, which specifies
that the prior probability that she wakes up on day 2 is equal to the probability that
the coin toss comes up Tails—which, the coin being fair, is in turn equal to 1

2 .
Another reason to believe that the halfer intuition may rest on a misunderstanding

is that halfers often justify the value of β = 1
2 on the basis of the same Restricted

Principle of Indifference advocated by Elga (but which is not necessary to derive the
thirder solution, as I have shown). This means that (at least in the case where the coin
toss comes up Tails) Lewisian halfers allow for the possibility that we should think
of the day Beauty observes as if it were randomly selected from the set of possible
days within a Tails run. But why should this same reasoning not apply to the Heads
run, as well? After all, the indifference should reflect the ignorance of which day it is
according toBeauty’s priors, and not be taken as away to set her posterior probabilities.

4 Matters of Principle

In this section, I examine how the proposed representation and solution tally with two
principles, Conditionalization and Reflection, which concern the relationship between
an agent’s credences at different times.The fact that the thirder solution seems toviolate
Conditionalization and Reflection could be taken as indication that these principles are
not necessary conditions for diachronic rationality. However, I show that the thirder
solution derivedwithinmy frameworkupholds bothConditionalization andReflection,
when appropriately construed.

4.1 Conditionalization

The Sleeping Beauty problem is generally taken to present a challenge to the principle
of Conditionalization.13 Conditionalization is theway inwhichBayesian reasoners are
expected to update their credences over time, upon learning new pieces of information.
It works like this: suppose that at time t1, you learn a new piece of evidence E (and
nothing else). For any event A, the probability that you assign to A at t1 after learning
that E should be equal to the conditional probability you used to assign to (A|E) at the

13 See Titelbaum (2016), p. 667: ‘The current consensus in the self-locating credence literature is that
obtaining a general updating scheme for degrees of belief in both centered and uncentred propositions
requires us to alter (or at least supplement) conditionalization in some way.’
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time t0 just before learning E . More formally, denoting by Pt0 and Pt1 your credences
at t0 and t1, respectively, Conditionalization places the following constraint on how
your credences should change between t0 and t1, when the only thing that you learn
in the interval between these two times is E :

Definition 1 (Conditionalization). Pt1(A) = Pt1(A|E) = Pt0(A|E)

The question now is: Does Beauty update her credences via Conditionalization
upon waking up on day 1? It is often argued that if Beauty is a thirder, then the way
her credence in Heads is updated when she wakes up on day 1 is not compatible with
Conditionalization. Elga himself makes this point:

Before being put to sleep, your credence in H was 1/2. […] when you are
awakened on [day 1], that credence ought to change to 1/3. This belief change is
unusual. It is not the result of your receiving new information—youwere already
certain that you would be awakened on [day 1]. (Elga 2000, p. 146)

The upshot, for Elga, is that Conditionalization does not always apply. In cases where
an agent receives only centered evidence, his or her credences may change in ways
that conflict with Conditionalization.

In light of the analysis I have offered in Sect. 2, we can see how Elga’s argument
here cannot be right. To say that the change in Beauty’s credence in Heads ‘is not
a result of [her] receiving new information’ implies that Beauty is certain that she
will receive evidence W , or—more precisely—it implies that the prior probability
P(W ) equals 1. But, as we have seen, relative to the assignment of values to α and
β consistent with the thirder solution, this is not true, because for α = 1

2 we have
that P(W ) = 3

4 �= 1. In other words, if she is a thirder, Beauty is not certain that
she always learns W . Moreover, as I argued in Sect. 3, learning W is relevant to the
probability of H .

The last sentence from Elga’s quote indicates where the problem lies. When Elga
says that Beauty does not receive new information, that is because she is certain of
waking up on day 1. This explains why, intuitively, on day 0 she is certain that she
will receive evidenceW at least once in the future—namely, on day 1. Conditional on
her being awake and it being day 1, Beauty’s credence in Heads should indeed remain
unchanged (as I also argued in Sect. 3), since P(H) is independent of P(W ∩ D1)—
that is, P(H |W ∩ D1) = 1

2 = P(H). However, upon waking up, Beauty does not
learn thatW ∩ D1. Instead, her evidence is justW , and since P(H) is not independent
of P(W ), this is relevant information upon which she should update her credences via
Conditionalization. My solution allows this, and thus vindicates Conditionalization.

Lewis’s halfer solution—contrary to Elga’s—does not entail a violation of Condi-
tionalization. Lewis simply starts from the assumption that the evidenceW is irrelevant
to H , and as we have seen this can be achieved within the representation I have given
by setting α = 1 and β = 1

2 . Given this setting, the prior probability P(W ) = 1,
and so Beauty is indeed certain that she will receive evidence W , which then gives us
P(H |W ) = 1

2 = P(H), without any violations of Conditionalization.
Based on this discussion, we can now see that the key difference between the

halfer and thirder solutions is the characterisation of the event W . For halfers, W is
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certain, and so learningW does not affect the probability of Heads. For thirders, on the
contrary, W is not always certain, and therefore learning it affects the probability of
Heads, via Conditionalization. Given these results, we can see that once the problem is
correctly represented, the solution to the Sleeping Beauty problem does not challenge
the validity of Conditionalization as a principle for updating one’s credences in the
face of newly acquired evidence.

4.2 Reflection

Another rationality principle that appears to be violated in the Sleeping Beauty case
is van Fraassen’s Reflection principle (Van Fraassen 1984). Suppose that you are a
rational Bayesian agent, that you always plan to update your credences via Condi-
tionalization, and you do not expect to suffer any cognitive mishap that would lose
you some of your previous evidence. Then let, as before, Pti denote your credences
at a time ti , and Pt j denote your credences at some later time t j>i . If you know, at ti ,
that your later credence Pt j (A) in some event A will be equal to some real number
0 ≤ p ≤ 1, then, intuitively, your credence at Pt0(A) should match that same value.
That is, stated somewhat more formally (see Schervish et al. 2004):

Definition 2 (Reflection). Pti (A|Pt j (A) = p) = p.

Clearly, you do not typically know what probability you will assign to an uncertain
event in the future. This is because you do not generally know in advance which
possible pieces of evidence you will learn in the future, and so you do not know
what posterior probability you will assign to A by the time t j . However, if you were
certain that you will receive a particular piece of evidence E (and nothing more) by
t j , which would lead you to update your credence in A (via Conditionalization) to
Pt j (A) = Pti (A|E) = p, then it seems reasonable to suppose that you should already
have the same credence Pti (A) = p at the earlier time ti . This is indeed confirmed
by the probability calculus: to be certain, at ti , that you will receive evidence E just
means that Pti (E) = 1, and so naturally Pti (A) = Pti (A|E) = p.

Despite this natural reading, the principle ofReflection has comeunder considerable
critical scrutiny (Mahtani 2016). The Sleeping Beauty problem, in particular, provides
one instance where the principle of Reflection appears to be violated. If Beauty is a
thirder, and assigns a probability of 1

3 to Heads upon waking up on day 1, it seems
that her prior credences on day 0, before the experiment begins, violate Reflection.
This is because she knows, at t0 = day 0, that she will receive the evidence W at t1 =
day 1. By Reflection, then, it seems that her earlier credence in H at t0 should be
Pt0(H |Pt1(H) = 1

3 ) = 1
3 . Beauty’s credence in Heads on day 0, however, is not equal

to 1
3 but to

1
2 , in accordance with what she knows about the experimental setup, which

explicitly sets the prior P(H) = 1
2 . So, it seems that either the initial probability

of Heads is not 1
2 , or Beauty’s credences do not satisfy Reflection. Both alternatives

seem very bad: the former flatly contradicts the setup of the problem, while the latter
is inconsistent with the probability calculus, under the assumption that Beauty is a
rational agent who updates her credences via Conditionalization. What can possibly
have gone wrong?
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The puzzle, I think, derives from the rather informal statement of Reflection, which
has led us to a subtlemis-interpretation. To find the solution to the puzzle, we need only
look more closely into the conditions under which Beauty expects to learn W . This is
because it is well-known (see Mahtani 2016; Briggs 2009; Schervish et al. 2004) that
a rational agent’s credences at t0 should not reflect her credences at a successive time
t1 when the agent at t0 should not ‘trust’ her later self at t1 because either:

1. the agent expects to suffer memory loss between t0 and t1, losing some relevant
evidence; or

2. it is the case that both (a) at t1, the agent does not know that it is t1;14 and (b)
learning that t1 has arrived would give her new evidence, which would change her
credences at t1.

We can easily verify that conditions 2.a and 2.b are both satisfied in the Sleeping
Beauty case, hence why her credence at t0 is not required by Reflection to match her
expected credence at t1. Given what she knows about the experimental setup, Beauty
expects to receive evidence W on day 1, since she is certain that the experimenters
wake her up on day 1 irrespective of the coin toss. This consideration is reflected
in the prior probability P(W |D1) = 1, as can be easily verified (see Sect. 3). So,
when we say that Beauty is certain to learn W (and, as a consequence, to update the
probability of Heads to P(H |W ) = 1

3 ), what we really mean is that Beauty is certain
to experience an awakening on day 1. But, clearly, t1 is not a stopping time for Beauty,
since upon waking up she does not know what day it is. If at t1 she was in a position
to conditionalize on learning W ∩ D1, then indeed Reflection would be satisfied, as
expected: Pt0(H |W ∩ D1) = Pt1(H |W ∩ D1) = 1

2 . However, Beauty does not learn
W ∩ D1 at t1, but only W . This explains why her credence at t0 does not reflect her
credence at t1: that is not because she is irrational, or violates Conditionalization in the
way she updates her credences between these two times, but because at t0 she can only
be certain that she learns W given D1, but the latter event is not part of her evidence
at t1. It would be incorrect to say that Pt0(W ) = 1, since Pt0(W ) = 3

4 . Therefore,
Beauty is not certain of W at the earlier time, and she can’t reflect on it.

Notice that the same argument for why Reflection does not hold in the Sleeping
Beauty case also applies to the halfer solution, since it is also true under this solution
that day 1 is not a stopping time for Beauty and, moreover, learning that it is day 1
would lead the halfer to increase her credence in H from 1

2 to 2
3 . This indicates that

the fact that the halfer does not change her credence in H between t0 and t1 is not due
to an application Reflection.

5 Bets and Odds

As I showed in the previous sections, both the thirder and the halfer solutions can be
represented within a Bayesian framework, in a way that is compatible with the prin-
ciples of Conditionalization and Reflection. A well known result by Lewis, reported
by Teller (197315 and generalised by Skyrms 2009) shows that a Bayesian agent can

14 That is, in Schervish et al. (2004)’s terms, t1 is not a stopping time.
15 See also Lewis (2010).
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avoid falling victim to a Diachronic Dutch Book (DDB, for short) only if she plans to
update her credences via Conditionalization. A DDB, in this context, is a series of bets
offered to the agent before and after she learns a given piece of evidence, such that each
individual bet is fair, but when taken in combination they guarantee her a sure loss.
For illustration, imagine that Betty is a Bayesian who plans to update her credences
via Conditionalization. Before a fair die is rolled, we can assume that she might accept
a bet X that pays £5 if the die shows a 3, and loses £1 otherwise. The expected value
of this bet for Betty now is 0, as she expects to lose £1 with a probability of 5

6 , and
win £5 with a probability of 1

6 . She also currently estimates that the probability that
she wins the bet, conditional on the die showing an odd number, is equal to 1

3 , which
is higher than her current unconditional probability of winning. So, Betty would also
be prepared now to accept a conditional bet Y that pays £9 if the die shows a 3, and
loses £3 otherwise, all conditional on the die showing an odd number (that is, the bet
is void if the die shows an even number, but gives 1:2 odds on 3, conditional on an odd
number). Suppose that later, the die is rolled and Betty receives the information that
it shows an odd number. At that point, given that she plans to update her credences
via Conditionalization, she will be prepared to accept an unconditional bet Z on the
die showing a 3, at the same odds as the conditional bet Y . The expected value of Z ,
later, is the same for Betty as the expected value of Y now—so, if the expected value
of Y is non-negative, the same must be true for Z .

Regardless of whether she is a halfer or a thirder, on the solution I have given in
Sect. 3 Beauty does not violate Conditionalization. So, by Lewis’s result, she should
not be Dutch bookable, just as Betty would not be in the example I just gave. Indeed,
this solves one side of the puzzle that I identified in Sect. 1: since, on the solution that I
have proposed, thirders do not violateConditionalization (see Sect. 4.1), this vindicates
the fact that no genuine DDB against thirders has been found in the literature.16

What is, however, surprising is that the halfer solution should be vulnerable to a
DDB—completing the puzzle that I identified in Sect. 1. As I have shown in Sect. 3.2,
the halfer solution can be derived within my framework with a choice of prior proba-
bilities that assigns a value of 1 to the parameter α. Moreover, since under this prior
probability assignment Beauty is certain to learn the evidence W , her credences do
not change upon waking up during the experiment, and she does not violate Condi-
tionalization. So, since they satisfy Conditionalization, we would not expect halfers
to be vulnerable to DDBs. But consider the following set of bets: On day 0, the bookie
offers Beauty a bet on H at even odds, that pays £15 if the result of the coin toss is Tails,
and loses £15 if Heads. Since Beauty assigns equal probability to Heads versus Tails,
she can accept the bet. Then, every time that Beauty wakes up during the experiment,
the bookie offers her another bet, also at even odds, but which pays £10 if Heads,
and loses £10 if Tails. Again, assuming that Beauty is a halfer (and so her probability
for Heads does not change upon waking up) she can accept these bets as well. But
accepting all the bets that she is offered amounts to buying a Dutch Book: no matter

16 See Hitchcock (2004), Bradley and Leitgeb (2006), Bovens and Rabinowicz (2011).
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what the result of the coin toss, by the end of the experiment she is certain to lose £5.17

Notice that the bookie does not need to have any more information than Beauty does
on each awakening to be able to offer her these bets—in fact, we can imagine that the
bookie undergoes the same series of awakenings as Beauty. How can we explain this?
Is the existence of DDBs against the halfer proof that this solution is incoherent, or
does it provide a counterexample to Lewis’s result, undermining a standard argument
for Conditionalization?

Given that the halfer solution can be derived within the framework I put forward
in Sect. 2, we know that this solution is probabilistically coherent, so we can dismiss
the first worry. Meanwhile, the second worry merits closer consideration. A crucial
feature of the DDB against halfers is that it requires the possibility of an additional
bet, that is placed on day 2 only if the result of the coin toss is Tails. What this means
is that, in the event of Tails, the book purchased by Beauty contains three bets, which,
as we have seen, taken together have a negative value. But the DDB considered in
Lewis/Teller (1973) only takes into account an agent’s probability assignments at two
distinct points in time, before and after learning a new piece of evidence E . In other
words, let P−(A) be the probability that the agent assigns to an event A at t0, and
P+(A) be the probability that the agent assigns to A at ti , after learning a piece of
evidence E . Lewis shows that, unless P+(A) = P−(A|E), there is a DDB that can
be formulated against the agent by offering her some bets at t0 and at ti . But even if
the agent updates via Conditionalization between t0 and ti , Lewis’s result does not
say anything about bets that the agent could take at some additional time t j , j �= i .
So, technically, the DDB against the halfer does not constitute a counterexample to
Lewis’s Dutch Book argument for Conditionalization. Is this enough to get standard
Conditionalization off the hook?

Maybe not quite. While this vindicates Lewis’s and Skyrms’s results, the problem
remains that planning to update via Conditionalization is not sufficient to ensure that
the agent does not commit to a series of bets that guarantee a sure loss. A way out of
the impasse, discussed by Briggs (2010), may be to argue that halfers should adopt
evidential decision theory. But this option has several drawbacks, among others the
fact that it would generate a DDB against the thirder solution (also discussed in Briggs
2010), and that it would give unstable recommendations to the halfer under slight vari-
ants of the problem (Conitzer 2015). Perhaps, then, one should bite the bullet and try to
argue that only pairwise DDBs are significant means of eliciting an agent’s epistemic
attitudes, while allowing DDBs to vary in length introduces strategic considerations
that can influence Beauty’s betting odds, as she needs to coordinate the choice she
makes on the bet she is offered with the choices she would make on bets that might be
offered to her at other times. Ultimately, the most plausible lesson to draw from the
DDB against the halfer may be that satisfying Conditionalization is a necessary, but
not sufficient, condition to ensure invulnerability from DDBs of varying length.

17 If Heads, Beauty loses £15 on the first bet on day 0, and wins £10 on the second bet she takes on day 1,
amounting to an overall loss of £5. If Tails, Beauty wins £15 with the bet taken on day 0, but then accepts
the second bet both on day 1 and on day 2, each time losing £10, again amounting to an overall loss of £5.
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6 Conclusion

The Sleeping Beauty problem has generated a great deal of controversy, as all the
main attempts to solve it in the literature appear to violate some or other rationality
constraint (Titelbaum2016). This creates a puzzling state of affairs, as thirder solutions
are usually thought to violate the principles ofConditionalization andReflection,while
halfer solutions seem vulnerable to a diachronic Dutch Book.

I have shown that it is possible to model a range of possible solutions to the Sleep-
ing Beauty problem in a Bayesian framework. All the solutions that can be derived
within this framework, including the thirder solution that I have defended, respect
Conditionalization, thus explaining why they are not subject to Lewis-style DDBs.
Moreover, DDBs against the halfer solution do not provide a counterexample to the
claim that Conditionalization is a necessary condition for diachronic rationality.

I take the main lessons that can be drawn from my discussion to be the following:

1. Bayesian reasoning can be naturally applied to self-locating uncertainty. The locus
of disagreement between different solutions to the Sleeping Beauty problem con-
cerns only the choice of priors.

2. In order to avoid puzzling conclusions, we should be careful to model what is the
prior probability of receiving different pieces of evidence.

3. The case of Sleeping Beauty does not present a counterexample to the principles
of Conditionalization and Reflection. It does, however, raise interesting questions
with respect to whether Conditionalization is sufficient to ensure invulnerability
to certain types of DDBs.
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