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The Infinite is one of the most intriguing ideas in which the human mind has ever 

engaged. Full of paradoxes and controversies, it has raised fundamental issues in domains 

as diverse and profound as theology, physics, and philosophy. The infinite, an elusive and 

counterintuitive idea, has even played a central role in defining mathematics, a 

fundamental field of human intellectual inquiry characterized by precision, certainty, 

objectivity, and effectiveness in modeling our real finite world. Particularly rich is the 

notion of actual infinity, that is, infinity seen as a “completed,” “realized” entity. This 

powerful notion has become so pervasive and fruitful in mathematics that if we decide to 

abolish it, most of mathematics as we know it would simply disappear, from infinitesimal 

calculus, to projective geometry, to set theory, to mention only a few. 

From the point of view of cognitive science, conceptual analysis, and cognitive 

semantics the study of mathematics, and of infinity in particular, raises several intriguing 

questions: How do we grasp the infinite if, after all, our bodies are finite, and so are our 

experiences and everything we encounter with our bodies? Where does then the infinite 

come from? What cognitive mechanisms make it possible? How an elusive and 

paradoxical idea such as the infinite structures an objective and precise field such as 
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mathematics? Why the various forms of infinities in mathematics have the exact 

conceptual structure they have? These, of course, are not simple questions. Nor are they 

new questions. Some of them have been already approached in the fields of philosophy, 

philosophy of mathematics, and formal logic for centuries. The problem, however, is that 

historically, these disciplines developed quite independently of the natural sciences, and 

of the necessity of looking at real empirical data involving, for instance, real human 

reasoning and conceptual development. As a result, when dealing with the nature and 

structure of mathematical concepts they fail to consider important constraints imposed by 

findings in the contemporary scientific study of the human mind, the human language, 

and their biological underpinnings. In philosophy and logic the study of the nature and 

the foundation of mathematical entities is often ultimately reduced to discussions over 

formal proofs and axiomatization. The contemporary scientific study of the mind tells us 

that human reasoning and conceptual structures are far from functioning in terms of 

formal proofs and axioms. Therefore what we need in order to answer the above 

questions is to seriously take into account how the human mind works, and at the very 

least provide cognitively plausible answers, that eventually could be tested empirically. 

In this article, I intend to accomplish three things. First, I want to provide answers 

to the above questions based on findings in Conceptual Metaphor and Blending Theories, 

building on the work I have done in collaboration with George Lakoff in the field of 

Cognitive Science of Mathematics. In the process I’ll be using a technique we have called 

Mathematical Idea Analysis (Lakoff and Núñez, 2000). Second, I want to analyze a 

specific case of actual infinity, namely, transfinite cardinals, as conceived by one of the 

most imaginative and controversial characters in the history of mathematics, the 19th 
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century mathematician Georg Cantor (1845-1918). As we will see later, Cantor created a 

very precise and sophisticated hierarchy of infinities that opened up entire new fields in 

mathematics giving shape, among others, to modern set theory. Many celebrated 

counterintuitive and paradoxical results follow from his work. In this article I will try to 

explain the cognitive reasons underlying such paradoxes. Finally, I want to analyze what 

Lakoff and I called the BMI -- the Basic Metaphor of Infinity (Lakoff & Núñez, 2000)-- 

in terms of a conceptual blend (Fauconnier & Turner, 1998, 2002), more specifically, in 

terms of a double-scope blend. Lakoff and I have hypothesized that the BMI is a human 

everyday conceptual mechanism, originally outside of mathematics, that is responsible 

for the creation of all kinds of mathematical actual infinities, such as points at infinity in 

projective and inversive geometry, infinite sums, mathematical induction, infinite sets, 

infinitesimal numbers, least upper bounds, and limits1. We will see that, unlike in the 

domains of poetry, advertisement, music, and visual arts, in mathematics humans need to 

operate with very specific forms of conceptual mappings, which are highly normalized, 

precise, constrained, and remarkably stable. In this paper I will take the BMI to be a 

double-scope conceptual blend where “BMI” stands for the more generic term Basic 

Mapping of Infinity.  

 

What is special about Mathematics? 

Mathematics is a very peculiar form of knowledge where the entities constituting the 

subject matter are not perceived through the senses, yet they are incredibly precise and 

amazingly stable. Before discussing mathematical infinities and their conceptual 

                                                 
1 The analysis of how exactly the BMI gives the precise inferentia l structure observed in these 
mathematical concepts lies outside the scope of this article. For details see Lakoff and Núñez, 2000, 
chapters 8-14. 
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structure, it is important to step back for a moment, and make clear what is unique about 

mathematics in general, as a field of intellectual inquiry. In order to be precise and 

rigorous, our cognitive analysis will have to be constrained by the peculiarities of 

mathematics as a body of knowledge. This includes mathematical infinities. 

Mathematics, distinguishes itself from other bodies of knowledge and human 

conceptual systems in that it is highly idealized and fundamentally abstract. No purely 

empirical methods of observation can be directly applied to mathematical entities. Think, 

for instance, of a point, the simplest entity in the Euclidean plane, which has only 

location but no dimension. How could you possibly test a conjecture about Euclidean 

points by carrying out an experiment with real points if they don’t have dimension? And 

how could you empirically observe a line, if it only has length but no width? It is easy to 

see, how the same arguments apply to infinity. This, and other properties of mathematics 

give shape to the unique manner in which knowledge is gathered in this discipline. 

Unlike science, where knowledge increases largely via careful empirical testing of 

hypotheses, in mathematics knowledge increases via proving theorems, and by carefully 

providing formal definitions and axioms. Whereas in science after performing an 

experiment a scientist can declare that her hypothesis is confirmed with a 95% of 

confidence, a mathematician won’t be taken seriously if she announces, for instance, that 

“with 95% of confidence number X is prime.” The mathematician will need to prove with 

“absolute certainty” that number X is prime. An important consequence of proof-oriented 

deductive ways of gathering knowledge is that once a theorem is proved, it stays proved 

forever! This peculiar form of knowledge gathering in mathematics provides an 

amazingly stable conceptual system. 
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Besides stability, Lakoff and Núñez (2000) give a list of other basic properties of 

mathematics such as precision, consistency for any given subject matter, universality of 

fundamental results (such as “1 + 1 = 2” which doesn’t change across time and 

communities), symbolizability of its subject matters via discrete well-defined signs, 

calculability and generalizability of results, and discoverability of new entailments 

(theorems)2. Any account of the nature of mathematics, philosophical, cognitive, or other, 

must take into account these properties. In our case, the task will be to show that there are 

ordinary human cognitive mechanisms, such as aspectual schemas, conceptual 

metaphors, and conceptual blends, which when combining in very specific ways and 

being highly normalized, constrained, and stable can give an account of transfinite 

numbers as a special case of mathematical actual infinity. 

At this point, and in order to avoid any misunderstandings about the goal of this 

article and of the nature of mathematical idea analysis, it is very important to make clear 

that: 

1. A cognitive analysis that takes into account the properties of mathematics 

described above, and 

2.  the bodily-grounded nature of human cognitive mechanisms such as conceptual 

metaphors and conceptual blends, 

provides a non-arbitrary explanation of the nature of mathematics. This non-arbitrary 

approach radically differs from post-modern accounts, where mathematics is seen as an 

arbitrary social text or as a mere cultural artifact. The position we will endorse here 

                                                 
2 Lakoff & Núñez (2000) also mention another very important property of mathematics, that of being 
effective as general tools for description, explanation, and prediction in a vast number of activities. This 
property, however, is less relevant when transfinite numbers are concerned since they were not meant to 
actually model real physical, chemical, or biological phenomena. 
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recognizes the importance of culture and history in the emergence and development of 

mathematical ideas, but explicitly rejects the claim that mathematics is arbitrarily shaped 

by history and culture alone (for details see Lakoff & Núñez, 2000, pp. 362-363). With 

this perspective in mind, we are now ready to approach infinity. 

 

Potential and Actual infinity 

Investigations, speculations, and debates about the Infinite go back to the Pre-Socratic 

philosophers. One of the first to rigorously invoke the infinite to deal with questions 

regarding the origin, nature, and limits of things in the universe was Anaximander (611-

547 BC). He saw in απειρον (apeiron), which literally means “unlimited,” the ultimate 

source of all things. Arguing in opposition to Thales of Miletus (ca.624-ca.547 BC), who 

had asserted that water was the basis of all things, Anaximander defended the idea that 

the enormous variety of things in the universe must come from something less 

differentiated than water. For him, this primary source was eternal, boundless, endless, 

from where even opposites such as cold and hot originated. This primary source was 

apeiron. It was subject to neither old age nor decay, perpetually generating fresh 

materials and dissolving them. Because of its very nature (i.e., unlimited) no limits could 

apply to apeiron, and therefore it was conceived as sourceless, without creation, and 

indestructible. 

Later, Aristotle (384-322 BC) referred back to Anaximander, but with a very 

different view. One of the crucial problems raised by Aristotle was the issue of 

exhaustion. Giving the example of the collection of numbers, Aristotle argued that the 

totality of numbers cannot be present in our thoughts. In generating, one by one, the list 
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of numbers, we can’t generate a completed list. There will always be a number that hasn’t 

been considered before. In his Physics he argued that apeiron is not that thing outside of 

which there is nothing (i.e., exhausted), but outside of which there is always something 

(i.e., inexhaustible). Therefore apeiron, the “unlimited,” cannot be seen as a completed 

totality. What is completed has an end, and the end is a limiting element. By its very 

meaning there is a lack of that limit in apeiron. With Aristotle then, apeiron takes a 

negative connotation, due to its inherent incompleteness and non-actualizable potential. 

Because it cannot actually be realized in a clearly defined form, apeiron became 

associated with the idea of “undefined.” Moreover, in order to keep his fundamental tene t 

that the unknowable exists only as a potentiality, Aristotle rejected altogether the 

existence of the actual infinite: anything beyond the power of comprehension was seen as 

beyond the realm of reality. In his Physics, Aristotle stated quite clearly that infinity 

should be considered as something that “has potential existence” but never as an actual 

realized thing. Many analysts and historians consider this negative connotation to be the 

reason of the refusal of using actual infinity in Greek mathematics (for details see Zellini, 

1996; and Boyer, 1949). 

Since the time of Aristotle then, the infinite has been treated with extreme care. 

Many Greek thinkers considered the infinite as an undefined entity with no order, 

chaotic, unstructured. The infinite, therefore, was seen as an entity to be avoided in 

proper reasoning. This view dominated most of the debates (in Europe) involving the 

infinite all the way up to the Renaissance. In mathematics this was no exception and the 

distinction between potential and actual infinity has ever since been made, by readily 

accepting the former and by questioning or simply rejecting the latter. 
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Potential infinity is the kind of infinity characterized by an ongoing process 

repeated over and over without end. It occurs in mathematics all the time. For instance, it 

shows up when we think of the unending sequence of regular polygons with more and 

more sides (where the distance from the center to any of the vertices is constant). We 

start with a triangle, then a square, a pentagon, a hexagon, and so on. Each polygon in the 

sequence has a successor and therefore there is the potential of extending the sequence 

again and again without end (Figure 1). The process, at any given stage encompasses 

only a final number of repetitions, but as a whole doesn’t have an end and therefore does 

not have a final resultant state. 

 

[Insert Figure 1 about here] 

 

But more than potential infinity, what is really interesting and mathematically 

fruitful is the idea of actual infinity, which characterizes an infinite process as a realized 

thing. In this case, even though the process is in- finite, that is, it does not have and end, it 

is conceived as being “completed” and as having a final resultant state. Following on the 

example of the sequence of regular polygons, we can focus our attention on certain 

aspects of the sequence and observe that because of the very specific way in which the 

sequence is built certain interesting things happen. After each iteration the number of 

sides grows by one, the sides become increasingly smaller, and the distance r from the 

center to the vertices remain constant. As we go on and on with the process the perimeter 

and the area of the polygon become closer and closer in value to 2πr and to πr2, 

respectively, which correspond to the values of the perimeter and the area of a circle. 
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Thinking in terms of actual infinity imposes an end at infinity where the entire infinite 

sequence does have a final resultant state, namely a circle conceived as a regular polygon 

with an infinite number of sides (see Figure 2). This circle has all the prototypical 

properties circles have (i.e., area, perimeter, a center equidistant to all points on the circle, 

π  being the ratio between the perimeter and the diameter, etc.) but conceptually it is a 

polygon. 

 

[Insert Figure 2 about here] 

 

It is the fact that there is a final resultant state that makes actual infinity so rich 

and fruitful in mathematics. But it is also this same feature that has made the idea of 

actual infinity extremely controversial because it has often lead to contradictions, one of 

the worst evils in mathematics. A classic example is the “equation” k/0 = ∞, where k is a 

constant. This “equation” is based on the idea that (when finite values are concerned) as 

the denominator gets progressively smaller the value of the fraction increases 

indefinitely. So at infinity the denominator is 0 and the value of the fraction is ∞ (greater 

than any finite value). The problem is that accepting this result would also mean 

accepting that (0 · ∞) = k, that is the multiplication of zero times infinity could be equal to 

any number. This, of course, doesn’t make any sense. Becausee of contradictions like this 

one many brilliant mathematicians, such as Galileo (1564-1642), Carl Friedrich Gauss 

(1777-1855), Agustin Louis Cauchy (1789-1857), Karl Weierstrass (1815-1897), Henri 

Poincaré (1854-1912), among others had energetically rejected actual infinity. Gauss, for 
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instance, in a letter to his colleague Heinrich Schumacher dated 1831 wrote (cited in 

Dauben, 1990, p. 120): 

But concerning your proof, I must protest above all against your use of an 

infinite quantity as a completed one, which in mathematics is never 

allowed. The infinite is only a façon de parler, in which one properly 

speaks of limits. 

Here, limits are taken to be magnitudes to which certain ratios may approach as closely as 

desired when others are permitted to increase indefinitely, and are thus instances of 

potential infinity. Up to the 19th century there was a well-established consensus among 

mathematicians that at best actual infinity could provide some intuitive ideas when 

dealing with limits for instance (Gauss’ façon de parler) but that no consistent and 

interesting mathematics could possibly come out of an infinity actually realized. George 

Cantor, following some preliminary work by Bernard Bolzano (1781-1848) and Richard 

Dedekind (1831-1916) radically challenged this view, seeing in actual infinity a genuine 

mathematical entity. His controversial, unconventional, and highly disputed work 

generated amazing new mathematics. 

 

Transfinite cardinals: The standard story 

The 19th century was a very productive period in the history of mathematics, one that saw 

fundamental developments such as non-Euclidean geometries, and the so-called 

arithmetization of analysis. The latter, a program lead by Karl Weierstrass, Richard 

Dedekind, and others, intended to ban geometrical and dynamic intuition (thought to be 

the source of paradoxes) by reducing the whole field of calculus developed in the 17th 



Journal of Pragmatics 

 11

century by Newton and Leibniz, into the realm of numbers. Counting and focusing on 

discrete entities, like numbers, became essential. It is in this zeitgeist that Georg Cantor, 

originally interested in the study of trigonometric series and discontinuous functions, was 

brought into his development of transfinite numbers, dispelling well-establish views that 

abolish the use of actual infinities in mathematics. Today, Cantor is best known for the 

creation of a mathematical system where numbers of infinite magnitude define very 

precise hierarchies of infinities with a precise arithmetic, giving mathematical meaning to 

the idea of some infinities being greater than others. His work was highly controversial, 

produced many counter- intuitive results and for most of his professional life Cantor had 

to struggle against heavy criticism (for an in depth analysis of Cantor’s work and 

intellectual path, see Ferreirós, 1999, and Dauben, 1990). 

A basic problem for Cantor was to determine the number of elements in a set 

(which he called Menge, aggregate). This is, of course, a trivial problem when one deals 

with finite sets, but when one deals with sets containing infinitely many elements, such as 

the set of counting numbers 1, 2, 3, … , (i.e., the set of so-called natural numbers) this is 

literally impossible. How do you count them if they are infinitely many? Cantor focused 

on the fact that when comparing the relative size of finite sets, not only we can count 

their elements, but we can also set up pairs by matching the elements of the two sets. 

When two finite sets have the same number of elements, a one-to-one correspondence 

between them can be established. And conversely, when a one-to-one correspondence 

between two finite sets can be established we can conclude that they have the same 

number of elements. 
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Cantor elaborated on the idea of one-to-one correspondence so it would apply also 

to infinite sets in a precise way. He addressed questions such as: Are there more natural 

numbers than even numbers? A similar question had already been asked in the first half 

of the 17th century by Galileo, who observed that it was possible to match, one-by-one ad 

infinitum the natural numbers with their respective squares, but because the squares are 

contained in the collection of natural numbers they form a smaller collection than the 

natural numbers. Facing this paradoxical situation Galileo concluded that attributes such 

as “bigger than,” “smaller than,” or “equal to” shouldn’t be used to compare collections 

when one or both had infinitely many elements. In the 19th century Cantor could get 

around the “paradox” by building on the previous very creative though not well-

recognized work by Bernard Bolzano and by Richard Dedekind. These two 

mathematicians were the first to conceive the possibility of matching the elements of an 

infinite set with one of its subsets as an essential property of infinite sets and not as a 

weird pathology. Dedekind in fact, for whom infinite sets constituted perfectly acceptable 

objects of thought, provided for the first time in history a definition involving the infinite 

in positive terms (i.e., not in negative terms such as in- finite or non- finite). He stated (in 

modern terminology) that a set S is infinite if and only if there exists a proper subset S’of 

S such that the elements of S’ can be put into one-to-one correspondence with those of S. 

Only infinite sets have this important property (for historical and technical details, see 

Ferreirós, 1999). 

 

[Insert Figure 3 about here] 
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With this background, Cantor had the way paved for answering his question 

regarding the “size” of the sets of natural and even numbers. He then declared that 

“whenever two setsfinite or infinitecan be matched by a one-to-one correspondence, 

they have the same number of elements” (Maor, 1991, p. 57). Because such a 

correspondence between natural and even numbers, can be established (Figure 3) he 

concluded, there are just as many even numbers as there are natural numbers. In this 

framework, the fact that all even numbers are contained in the natural numbers (i.e., they 

constitute a proper subset of) doesn’t mean that the set of natural numbers is bigger. 

Following Dedekind’s definition above, that fact simply shows a property of infinite sets. 

And what about other kinds of infinite sets, with more challenging properties? 

Could such sets be put in one-to-one correspondence with the natural numbers? For 

instance, natural numbers and even numbers can be ordered according to magnitude such 

that every member has a definite successor. So what about say, rationa l numbers, which 

don’t have this property? Rational numbers are dense, that is, between any two rational 

numbers, even if they are extremely close, we can always find another rational number. 

Rationals don’t have successors. The set of rational numbers seems to have infinitely 

many more elements than the naturals because not only we can find infinitely many 

rationals bigger or smaller than a given number (i.e., towards the right or the left of the 

number line, respectively), but also we can find infinitely many rationals in any portion 

of the number line defined by two rationals. Is then the set of rationals bigger than the 

naturals? 

In order to try to establish a one-to-one correspondence between the rationals and 

the naturals one needs, first of all, to display both sets in some organized way. In the case 
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of even and natural numbers that organization was provided by order of magnitude. But 

because rationals are dense they can’t be ordered by magnitude. Cantor, however, found a 

way of displaying all rationals, one by one, in a clever infinite array. Figure 4 shows such 

array, which displays all possible fractions. Fractions with numerator one are displayed in 

the first row, fractions with numerator two are in the second row, and so on. And 

similarly, fractions with denominator one are in the first column, fractions with 

denominator two in the second column, and so on. In 1874 Cantor was able to show, with 

this array, and against his own intuition (!), that it was possible to establish a one-to-one 

correspondence between the rationals and the naturals. All you need to do is to assign a 

natural number to each fraction encountered along the path indicated in Figure 4. The 

path covers all possible fractions going diagonally up and down ad infinitum3.  

 

[Insert Figure 4 about here] 

 

When such a correspondence is established between two infinite sets, Cantor said that 

they have the same power (Mächtigkeit) or cardinal number. He called the power of the 

set of natural numbers, ℵ0, the smallest transfinite number (denoted with the first letter of 

the Hebrew alphabet, aleph). Today, infinite sets that can be put in a one-to-one 

correspondence with the natural numbers are said to be denumerable or countable, 

having cardinality ℵ0. 

Cantor’s next question was, are all infinite sets countable? Towards the end of 

1873 he found out that the answer was no. He was able to provide a proof that the real 
                                                 
3 A rational number can be expressed by different fractions. For the purpose of the one-to-one 
correspondence only the simplest fraction denoting a rational is considered. For example, 2/4, 3/6, 4/8, etc. 
are equivalent to 1/2, and therefore they are skipped. 
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numbers can’t be put into one-to-one correspondence with the natural numbers: the set of 

real numbers is not denumerable. Later Cantor gave a different, simpler proof, known 

today as the famous proof by diagonalization. He started by assuming that a 

correspondence between the natural numbers and the real numbers between zero and one 

was possible. Since every real number has a unique non-terminating decimal 

representation he wrote down the correspondence as follows4: 

1 → 0.a11a12a13… 
2 → 0.a21a22a33… 
3 → 0.a31a32a33… 
… → …… 

 

The list, according to the original assumption includes all real numbers between 0 and 1. 

He then showed that he could construct a real number that wasn’t included in the list, a 

number of the form 0.b1b2b3… where the first digit b1 of this number would be different 

from a11 (the first digit of the first number in the list), the second digit b2 of the new 

number would be different from a22 (the second digit of the second number in the list), 

and so on. As a result, the new number 0.b1b2b3…, which is bigger than zero but smaller 

than 1, would necessarily differ from any of the numbers in the list in at least one digit. 

The digit bk (the k-th digit of the new number) will always differ from the digit akk given 

by the diagonal (the k-th digit of the k-th number of the list). This leads to a contradiction 

since the original list was supposed to include all real numbers between 0 and 1, and 

therefore the one-to-one correspondence between the naturals and the reals in the interval 

(0, 1) can’t be established. Since the naturals were a subset of the reals this means that the 

reals form a non-denumerable set which has a power higher than the naturals: A 

                                                 
4 The proof requires that all real numbers in the list to be written as non-terminating decimals. For example, 
a fraction such as 0.3 should be written as 0.2999… 
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transfinite cardinal number bigger than ℵ0. Cantor called it c, for the power of the 

continuum. 

But Cantor’s work went beyond these two transfinite numbers, ℵ0 and c. He 

showed that in fact there is an entire infinite and very precise hierarchy of transfinite 

numbers. In order to do so Cantor elaborated on the idea of power set (i.e., the set whose 

elements are all the subsets of the original set, including the empty set and the original set 

itself), observing that for finite sets when the original set has n elements, its power set has 

exactly 2n elements. Cantor extended this idea to infinite sets showing that the power 

(cardinality) of the power set of natural numbers was exactly 2ℵ0. This new set in turn 

formed a power set whose cardinality was 22ℵ0
, and so on. This remarkable result defined 

a whole infinite hierarchy of transfinite cardinals holding a precise greater than 

relationship: 

ℵ0 < 2ℵ0 < 22ℵ0
< … 

Cantor was able to prove a further extraordinary result: The number of elements 

in the set of real numbers is the same as the number of elements in the power set of the 

natural numbers. In other words he proved the equation c = 2ℵ0 to be true, meaning that 

the number of points of the continuum provided by the real line had exactly 2ℵ0 points. 

But Cantor didn’t stop there. He was also able to show an extremely counter- intuitive 

result : Dimensionality of a space is not related with the numbers of points it contains. 

Any tiny segment of the real line has the same number of points as the entire line, and the 

same as in the entire plane, the entire three-dimensional space, and in fact in any “hyper-

space” with a denumerable number of dimensions. Cantor added many more counter-

intuitive and controversial results to his long list of achievements. He developed a very 
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rich work on transfinite ordinals (see Dauben , 1983, and Sondheimer & Rogerson, 

1981), and defined a precise arithmetic for tranfinite cardinals where unorthodox 

equations such as the following hold: 

ℵ0 + 1 = 1 + ℵ0 = ℵ0; 

ℵ0 + k = k + ℵ0 = ℵ0, for any natural number k; 

ℵ0 + ℵ0 = ℵ0; 

ℵ0 ⋅ k = k ⋅ ℵ0 = ℵ0, for any natural number k; 

ℵ0 ⋅ ℵ0 = ℵ0; 

(ℵ0)k = ℵ0, for any natural number k. 

These equations represented an extraordinary improvement in approaching and studying 

the infinite when compared to the old and vague idea represented by the symbol ∞. With 

Cantor infinite numbers acquired a precise meaning, and constituted the corner stone of 

the development of extremely creative, and ingenious new mathematics. Realizing how 

deep and rich Cantor’s work was, David Hilbert, one of the greatest mathematicians of 

the last couple of centuries said “No one shall drive us fro the paradise Cantor created for 

us.” 

So far, this is more or less a summarized version of the standard story about 

Cantor’s transfinite cardinals as it is told in general books and articles on the history and 

philosophy of mathematics (see, for instance, Boyer, 1968; Dauben, 1983; Klein, 1972; 

Kramer, 1981; Maor, 1991, Sondheimer & Rogerson, 1981). Let us now try to understand 

what is, from a cognitive perspective, the conceptual structure underlying Cantor’s 

ingenious work. 
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BMI and conceptual blending: The birth of actual infinities 

In order to understand the cognitive nature of actual infinity and the conceptual structure 

underlying transfinite cardinals, we need to refer to two main dimensions of human 

cognitive phenomena: One is aspect (Comrie, 1976), as it has been studied in cognitive 

semantics, and the other one is the BMI (originally described in Lakoff and Núñez, 2000, 

as the Basic Metaphor of Infinity) and here treated as the Basic Mapping of Infinity, a 

form of double-scope conceptual blend. Both, aspect and the BMI, being bodily-

grounded phenomena of human cognition provide the elements to understand how the 

embodied mind (Johnson, 1987; Varela, Thompson and Rosch, 1991) makes the infinite 

possible. 

Aspect 

In cognitive semantics, aspectual systems characterize the structure of event concepts. 

The study of aspect allows us to understand, for instance, the cognitive structure of 

iterative actions (e.g., “breathing,” “tapping”) and continuous actions (e.g., “moving”) as 

they are manifested through language in everyday situations. Aspect can tell us about the 

structure of actions that have inherent beginning and ending points (e.g., “jumping”), 

actions that have starting points only (e.g., “leaving”), and actions that have ending points 

only (e.g., “arriving”). When actions have ending points, they also have resultant states. 

For example, “arriving” (whose aspectual structure has an ending point) in I arrive at my 

parents’ house, implies that once the action is finished, I am located at my parents’ 

house. When actions don’t have ending points they don’t have resultant states. Many 

dimensions of the structure of events can be studied through aspect. 
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For the purpose of this article, the most important distinction regarding aspect is 

the one between perfective aspect and imperfective aspect. The former has inherent 

completion while the latter does not have inherent completion. For example, the 

prototypical structure of “jumping” has inherent completion, namely, when the subject 

performing the action touches the ground or some other surface. We say then that 

“jumping” has perfective aspect. “Flying,” on the contrary, does not have inherent 

completion. The prototypical action of “flying” in itself does not define any specific end, 

and does not involve touching the ground. When the subject performing the action, 

however, touches the ground, the very act of touching puts an end to the action of flying 

but does not belong to “flying” itself. We say that “flying” has imperfective aspect. 

Processes with imperfective aspect can be conceptualized both, as continuative 

(continuous) or iterative processes. The latter have intermediate endpoints and 

intermediate results. Sometimes continuous processes can be conceptualized in iterative 

terms, and expressed in language in such a way. For example, we can express the idea of 

sleeping continuously by saying “he slept and slept and slept.” This doesn’t mean that he 

slept three times, but that he slept uninterruptedly. This human cognitive capacity of 

conceiving something continuous in iterative terms turns out to be very important when 

infinity is concerned. Continuous processes without end (e.g., endless continuous 

monotone motion) can be conceptualized as if they were infinite iterative processes with 

intermediate endpoints and intermediate results (for details see Lakoff & Núñez, 2000). 

With these elements we can now try to understand how human cognitive 

mechanisms bring potential infinity into being. From the point of view of aspect, 

potential infinity involves processes that may or may not have a starting point, but that 
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explicitly deny the possibility of having an end point. They have no completion, and no 

final resultant state. We arrive then to an important conclusion: 

• Processes involved in potential infinity have imperfective aspect. 

 

BMI, the Basic Mapping of Infinity 

Now let’s analyze actual infinity, which is what we really care about in this article. It is 

here where the BMI becomes crucial. The BMI is a general conceptual mapping which is 

described in great detail elsewhere (Lakoff & Núñez, 2000). It occurs inside and outside 

of mathematics, but it is in the precise and rigorous field of mathematics that it can be 

best appreciated. Lakoff and Núñez have hypothesized that the BMI is a single human 

everyday conceptual mechanism that is responsible for the creation of all kinds of 

mathematical actual infinities, from points at infinity in projective geometry, to infinite 

sums, to infinite sets, and to infinitesimal numbers and limits. When seen as a double-

scope conceptual blend 5 the BMI has two input spaces. One is a space involving 

Completed Iterative Processes (with perfective aspect). In mathematics, these processes 

correspond to those defined in the finite realm. The other input space involves Endless 

Iterative Processes (with imperfective aspect), and therefore it characterizes processes 

involved in potential infinity. In the blended space what we have is the emergent 

inferential structure required to characterize processes involved in actual infinity. Figure 

5 shows the correspondences between the input spaces and the projections towards the 

blended space. 

 

                                                 
5 Details of conceptual blending can be seen in other contributions in this volume, and in the original work 
of Fauconnier and Turner (1998, 2002). 
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[Insert Figure 5 about here] 

 

It is important to see that the richness and peculiarity of the BMI is its 

organization and structure as a double-scope blend (Fauconnier & Turner, 2002). The 

correspondence between the two input spaces involves all the elements with the 

exception of the very last one, the single element that distinguishes in a fundamental way 

a finite process from a potentially infinite process. This provides a major conflict: a clash 

between a characterization of a process as explicitly having an end and a final resultant 

state, and one as explicitly characterizing the process as being endless and with no final 

resultant state. Often these conflicts lead to paralysis, where no blended space is formed 

at all, leaving the original input spaces as they were with their own local inferential 

structure. The history of science and mathematics provide many such examples. My 

interpretation, for instance, is that this is in part what occurred to Galileo when he 

observed that natural numbers and even numbers could be put in one-to-one 

correspondence, but failed to make any conclusions that would have required completing 

and endless process6. Rather than paralysis, a double-scope blend handles the conflict in a 

creative way providing fundamentally new inferential structure in the blended space. In 

the BMI, this is what occurs: 

• From the Completed Iterative Process Input (with perfective aspect) the fact that 

the process must have an end and a final resultant state is profiled and projected 

to the blended space, ignoring the clause that the process must be finite. 

                                                 
6 As we will see later, another important component contributing to his paralysis was, of course, that at that 
time he wasn’t able to operate with the conceptual metaphor SAME NUMBER IS PAIRABILITY, which is 
Cantor’s metaphor. 
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• And from the Endless Iterative Processes (with imperfective aspect), the fact that 

the process has no end is profiled and projected into the blended space, ignoring 

the clause that the processes does not have a final resultant state. 

• As a result, in the blended space there is now new inferential structure, which 

provides an endless process with an end and a final resultant state. 

As Lakoff & Núñez (2000) have pointed out, a crucial entailment of the BMI is that the 

final resultant state is unique and follows every nonfinal state. The uniqueness comes 

from the input space of completed processes, where for any completed process the final 

resultant state is unique. The fact that the final resultant state is indeed final, means that 

there is no earlier final state. That is, there is no distinct previous state within the process 

that both follows the completion stage of the process yet precedes the final state of the 

process. Similarly, there is no later final state of the process. That is, there is no other 

state of the process that both results from the completion of the process and follows the 

final state of the process. 

In order to illustrate how the BMI works, let’s take the example mentioned earlier 

of the sequence of regular polygons (Figure 2). As Lakoff & Núñez (2000, Chapter 8) 

point out, in order to get from the BMI as a general cognitive mechanism to special cases 

of actual infinity, one needs to parameterize the mapping. That is, one must characterize 

precisely what are the elements under consideration in the iterative process. In our 

example the first input space (located on the left in Figure 5) provides a finite process 

with perfective aspect. The process is a specific sequence of regular polygons where the 

distance from the center to any of the vertices is kept constant. The process starts with a 

triangle, then a square, a pentagon, and so on, all the way to a polygon with a finite 
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number of sides, say 127 sides. At each stage, we have specific values for the perimeter 

and area of each polygon in the sequence, which get closer to 2πr, and πr2, respectively 

(where r is the distance from the center to the vertices). The perimeter and the area of the 

final resultant state in this first input space (i.e., polygon with 127 sides) has the closest 

values to 2πr, and πr2, respectively. The second input space (located on the right in 

Figure 5), involves the sequence shown in Figure 1, that is, an endless sequence of 

regular polygons (which has imperfective aspect). At each stage we obtain specific values 

for the perimeter and area of each polygon in the sequence, which get endlessly closer to 

2πr, and πr2, respectively. The distance from the center to any of the vertices is always 

constant, namely, r. There is no final resultant state in this second input space. 

In the blend, all the corresponding elements are projected, which gives us the 

sequence of regular polygons with a triangle, a square, a pentagon, and so on. The 

conflict between the final resultant state of a finite sequence of polygons (i.e., polygon of 

127 sides) and the endless nature of the sequence is handled by the double-scope blend to 

give an endless sequence of regular polygons with a final resultant state (with infinitely 

many sides). At this final resultant state no difference in terms of perimeter, area, and 

distance from center to vertices can be detected between the “final” polygon obtained via 

the BMI and a circle. For the circle the values of the perimeter, the area, and the radius 

are precisely 2πr, πr2 and r, respectively. Therefore, when parameterized in this manner, 

the final resultant state is conceived as an actual unique polygon-circle: A very peculiar 

kind of polygon with an infinite number of sides, a distance from center to vertices equal 

to r, a perimeter equal to 2πr, and an area equal to πr2. The BMI guarantees that this 
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figure is unique and that is indeed the final resultant state. No polygon comes after the 

polygon-circle in the process. 

 

Transfinite cardinals: The cognitive story 

It is now time to come back to Cantor’s work by looking closely to one of his classic 

texts. Here is Cantor himself at the beginning of his Contributions to the Founding of the 

Theory of Transfinite Numbers: 

Every aggregate M has a definite “power,” which we will also call 

“cardinal number.” We will call by the name “power” or “ cardinal 

number” of M the general concept which, by means of our faculty of 

thought, arises from the aggregate M when we make abstraction of the 

nature of its various elements m and of the order in which they are given 

(p. 86). 

By “aggregate” (Menge) Cantor means “any collection into a whole (Zusammenfassung 

zu einem Ganzen) M of definite and separate objects m of our intuition or our thought” 

(p.85) (For the purpose of this discussion, aggregates can be seen as collections or sets). 

The objects he refers to are the “elements” of M. Cantor then defines the crucial concept 

that will allow him to build the notion of transfinite number, which as we will see is a 

metaphorical extension of cardinal numbers of finite aggregates. This is the idea of 

equivalence: 

We say that two aggregates M and N are “equivalent” … if it is possible to 

put them, by some law, in such a relation to one another that to every 
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element of each one of them corresponds one and only one element of the 

other (p. 86). 

With these extremely simple but powerful notions (i.e., aggregate, element, cardinal 

number, equivalence), Cantor wants to build an entirely new theory of numbers that 

would encompass at the same time his transfinite numbers and the usual counting 

(natural) numbers. These are his own words: 

We will next show how the principles which we have laid down, and on 

which later on the theory of actually infinite or transfinite cardinal 

numbers will be built, afford also the most natural, shortest, and most 

rigorous foundation for the theory of finite numbers (p. 97-98). 

This is a crucial passage. Cantor is explicitly telling us that he is not only concerned with 

actual infinity. But, why someone interested in infinity would attempt to give rigorous 

foundations to finite numbers as well? The reason is simple. He has a more ambitious 

goal: to generalize in a rigorous way the very notion of number in itself! He wants to do 

this by building transfinite and finite numbers, using the same principles. Cantor 

proceeds by building the natural numbers from scratch: 

To a single thing e0, if we subsume it under the concept of an aggregate E0 

= (e0), corresponds as cardinal number what we call “one” and denote by 1 

… Let us now unite with E0 another thing e1, and call the union-aggregate 

E1, so that E1 = (E0, e1) = (e0, e1). The cardinal number of E1 is called 

“two” and is denoted by 2 … By addition of new elements we get the 

series of aggregates E2 = (E1, e2), E3 = (E2, e3), ...  which give us 
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successively, in unlimited sequence, the other so-called “finite cardinal 

numbers” denoted by 3, 4, 5, … (p. 98). 

Notice that each finite aggregate En = (En-1, en), and it has cardinality (n + 1). Because En 

is formed via the union of the predecessor En-1 with the “thing” en, this implies that En-1 is 

contained in (using modern terminology we would say, “is a proper subset of”) En. The 

series of aggregates is constructed exhibiting a nested structure (under the relation of 

being a proper subset of) where the difference between any two consecutive aggregates 

En and En-1 is just the “thing” en, being their cardinal numbers (n + 1) and n, respectively. 

Cantor then is able to state a (apparently naïve but) very important theorem: 

• The terms of the unlimited series of finite cardinal numbers 1, 2, 3, …, ν… are all 

different from one another, “that is to say, the condition of equivalence 

established [earlier] is not fulfilled for the corresponding aggregates” (p. 99; our 

emphasis). 

When finite natural numbers are concerned this theorem is innocuous and it seems to be 

totally irrelevant. Basically, it says that the number 1 is different from the number 2, and 

that they are different from the number 3, and so on. The theorem is simply telling us that 

the cardinal number of two finite sets are different if the sets cannot be put into one-to-

one correspondence (i.e., they are not equivalent). This is a simple fact, but it has 

profound consequences: From this conceptualization, the number 2 and the number 3, for 

instance, are different, not because the latter is the result of counting an aggregate with 

“three” elements, while the former is the result of counting an aggregate with only “two,” 

but because the aggregates from which they are cardinal numbers of cannot be put in a 

one-to-on correspondence (i.e., they do not fulfill the condition of equivalence). The real 
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power of the notion of equivalence and of this theorem becomes visible when he finally 

introduces the smallest transfinite cardinal number Aleph-Zero: 

The first example of a transfinite aggregate is given by the totality of the 

finite cardinal numbers ν; we call its cardinal number “Aleph-zero” and 

denote it by ℵ0 … That ℵ0 is a transfinite number, that is to say, is not 

equal to any finite number µ, follows from the simple fact that, if to the 

aggregate {ν} is added a new element e0, the union aggregate ({ν}, e0) is 

equivalent to the original aggregate {ν}. For we can think of this 

reciprocally univocal correspondence between them: to the element e0 of 

the first corresponds the element 1 of the second, and to the element ν of 

the first corresponds the element ν+1 of the other. … we thus have ℵ0 + 1 

= ℵ0 (p. 103-104) 

 

This is another crucial passage. It constitutes one of the first moments in history 

in which a (rather unorthodox but) well-defined equation involving infinite quantities is 

established. Extending the nested construction of the series of finite aggregates, where En 

= (En-1, en), he now builds the aggregate ({ν}, e0) by adding the element e0 to {ν}, the 

infinite aggregate containing all finite cardinal numbers. But an important difference with 

the finite cases emerges: Although {ν} is contained in ({ν}, e0) (i.e., it is a proper subset 

of), now these two aggregates do fulfill the conditions of equivalence (i.e., they can be 

put in a one-to-one correspondence). Some fundamental entailments follow: 

1. A finite number k and the transfinite number ℵ0 are different, not because the 

latter is the result of counting the aggregate of all finite cardinal numbers, while 
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the former is the result of counting an aggregate with only “k” elements, but 

because the aggregates from which they are cardinal numbers of cannot be put in 

a one-to-on correspondence (i.e., they do not fulfill the condition of equivalence). 

2. The transfinite numbers ℵ0 and ℵ0 + 1 are equal, not because the latter is the 

result of counting the aggregate of all finite cardinal numbers, while the former is 

the result of counting the same aggregate plus one element, but because the 

aggregates from which they are cardinal numbers of can be put in a one-to-on 

correspondence (i.e., they do fulfill the condition of equivalence). 

3. These criteria for discriminating finite numbers from transfinite ones, are 

consistent with Richard Dedekind’s revolutionary definition of infinite sets 

mentioned earlier: A set S is infinite if and only if there exists a proper subset S’of 

S such that the elements of S’ can be put into one-to-one correspondence with 

those of S. 

What has Cantor done with this new “generalized” notion of number? A could 

such a generalization apply in a consistent way to finite and infinite numbers? What are 

the major implicit cognitive steps he has gone through? With the cognitive tools 

described in the previous section we can now analyze the conceptual structure underlying 

Cantor’s transfinite cardinals. 

 

1) Cantor’s Metaphor: SAME NUMBER AS IS PAIRABILITY 

In order to characterize his notion of power (Mächtigkeit), or cardinal number, for infinite 

sets (or aggregates, Mengen), Cantor makes use of a very important conceptual metaphor: 

SAME NUMBER AS IS PAIRABILITY (EQUIVALENCE) (for details, see Lakoff & Núñez, 
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2000). This metaphor allows him to create the conceptual apparatus for giving a precise 

metaphorical meaning to the comparison of number of elements (i.e., power, cardinality) 

of infinite sets. This is how this works. 

The everyday notions of “same numbers as” and “more than” are, of course, 

based on the experience we have with finite –not infinite– collections. The following are 

everyday (non-formal) characterizations of these finite notions: 

• Same Number As: A (finite) collection (or aggregate) A has the same number of 

elements as (a finite) collection B if, for every member of A, you can take away a 

corresponding member of B and not have any members of B left over. 

• More Than: A (finite) collection (or aggregate) B has more elements than (a 

finite) collction A if, for every member of A, you can take away a member of B 

and still have members left in B. If collection A happens to be contained in (is a 

proper subset of) B, the sub-collection of elements left over after the matching is 

equal to the sub-collection of elements in B that are not in A. 

There is nothing uncontroversial about these everyday notions, to the point that we totally 

take them for granted. In fact, decades ago, the Swiss psychologist Jean Piaget described 

in detail how these fundamental notions get organized quite early in children’s cognitive 

development without explicit goal-oriented education (Piaget, 1952, Núñez, 1993). So, if 

we extend the left-over idea to infinite cases, and approach the question “Are there more 

natural numbers than even numbers?” equipped exclusively with the ordinary notions of 

“same number as” and “more than,” the answer is straightforward. We can match the 

elements of both sets as shown in Figure 6 and arrive to the conclusion that there are 

indeed more natural numbers, because there are the odd numbers left over. Following the 



Journal of Pragmatics 

 30

previous characterization of “more than,” the collection of even numbers is contained in 

(is a proper subset of) the collection of natural numbers, and therefore what is left over 

after the matching corresponds to the sub-collection of elements in the natural numbers 

that are not in the collection of even numbers. This is nothing other than the sub-

collection of odd numbers. In this sense an answer based on a natural notion of “more 

than” is unambiguous. 

 

[Insert Figure 6 about here] 

 

But, it is true that the two sets, if arranged properly, are also pairable (equivalent) in the 

sense that we can put them in a one-to-one correspondence as shown earlier in Figure 3. 

Pairability and “same number as,” however, are two very different ideas. They do have 

the same extension for finite collections, as Cantor carefully pointed out when 

constructing the natural numbers from scratch (i.e., they cover the same cases giving the 

same results). However, they are cognitively different and their inferential structures 

differ in important ways. In his investigations into the properties of infinite sets, Cantor 

used the concept of pairability (equivalence) in place of our everyday concept of same 

number as. In doing so, and by implicitly dropping the “left-over” idea, he established a 

conceptual metaphor, in which one concept (same number as) is conceptualized in terms 

of the other (pairability). Figure 7 shows the mapping of Cantor’s simple but crucial 

conceptual metaphor. 

 

[Insert Figure 7 about here] 
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It is very important to understand that this new conception of number is 

metaphorical in nature. By simply being able to establish pairability one doesn’t get too 

far. As we said earlier, this is exactly what happened to the brilliant Galileo two centuries 

before Cantor. In order to be able to extend the notion of cardinality from finite sets, 

which we can literally count, to infinite sets, which we cannot literally count, we do need 

to actively and fully ignore the “left over” clause embedded in the ordinary notion of 

“more than.” Only then we can go on with the metaphorical extension to conceive 

cardinality for infinite sets. 

We often see in mathematics books, textbooks, and articles statements like 

“Cantor proved that there are just as many positive even integers as natural numbers.” 

According to a cognitive account of our ordinary notion of “As Many As” Cantor proved 

no such thing. What Cantor did was simply to prove that the sets were pairable 

(assuming, via the BMI, that you can pair all of the natural numbers with their 

corresponding even integers). It is only via Cantor’s metaphor that it makes sense to say 

that he “proved” that there are, metaphorically, “just as many” even numbers as natural 

numbers. Unfortunately, many mathematics texts ignore the metaphorical nature of 

Cantor’s new meaning given to the idea of pairability, ascribing to it a kind of 

transcendental truth, and failing to see its truth as derived from a very human conceptual 

metaphor. As a consequence, they often conclude that there is something fundamentally 

wrong with human intuition when dealing with infinity. Consider for instance the 

following citation: 
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“Would it be possible, for example, to match on a one to one basis the set 

of all counting numbers with the set of all even numbers? At first thought 

this seems impossible, since there seem to be twice as many counting 

numbers as there are even numbers. And yet, if we arrange all the even 

numbers in a row according to their magnitude, then this very act already 

shows that such a matching is possible … So our intuition was wrong!” 

(Maor, 1991, p. 56, our emphasis). 

The same applies to views within mathematics regarding the role of everyday language. 

Consider the following citation concerning the problem of comparing similar infinite 

sets: “The confusions and apparent paradoxes in this subject arise from the transfer of 

everyday language, acquired from experience with finite collections, to infinite sets 

where we must train ourselves to work strictly with the mathematical rules of the game 

even though they lead to surprising results.” (Sondheimer & Rogerson, 1981, p. 149). 

Our cognitive analysis shows that there is nothing wrong with our “intuition” per 

se. And there is nothing wrong with “everyday language” either. Extensive work in 

cognitive linguistics shows that conceptual metaphor and conceptual blending are not 

mere linguistic phenomena, but they are about thought and cognition. In the practice of 

mathematics what is often called “intuition” or naïve ideas expressed by “everyday 

language” are in fact very well organized conceptual structures based on bodily-grounded 

systems of ideas with very precise inferential structures. But in mathematics, often what 

counts as primary are the “strict” and rigorous “mathematical rules” (which from a 

cognitive perspective need to be explained as well!). “Intuition” and “everyday language” 

are seen as vague and imprecise (for further discussion of this and its implications for 
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formal programs in mathematics see Núñez & Lakoff, 1998; Núñez & Lakoff, 

submitted). 

Consider this other statement: “[Cantor concluded,] there are just as many even 

numbers as there are counting numbers, just as many squares as counting numbers, and 

just as many integers (positive and negative) as counting numbers” (Maor, 19, p. 57). In 

our ordinary conceptual system, this is not true. Not because our intuition is wrong, or 

because our everyday language is imprecise and vague, but because it is an inference 

made within a different conceptual structure with a different inferential structure. 

According to our ordinary notion of “more than” there are indeed more natural numbers 

than there are positive even integers or squares. And there are more integers than there 

are natural numbers. There is a precise cognitively-structured logic underlying this 

inference, which we can make as rigorous as we want. Lack of rigor, then, is not the 

issue. 

This of course doesn’t lessen Cantor’s brilliant results. Cantor’s ingenious 

metaphorical extension of the concept of pairability and his application of it to infinite 

sets constitutes an extraordinary conceptual achievement in mathematics. What he did in 

the process was create a new technical mathematical concept—pairability 

(equivalence)—and with it, new mathematics.This new mathematics couldn’t have been 

invented only with our everyday ordinary notions of “same number as” and “more than.” 

But, as we saw above in Cantor’s original text (and presumably for ideological and 

philosophical reasons), Cantor also intended pairability to be a literal generalization of 

the very idea of number. An extension of our ordinary notion of “same number as” from 

finite to infinite sets (for historical details see Ferreirós, 1999). There Cantor was 
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mistaken. From a cognitive perspective, it is a metaphorical rather than literal extension 

of our very precise everyday concept. 

 

2) The BMI and the proof of rationals denumerability 

As we saw earlier, Cantor provided a very simple, elegant, and powerful proof of the 

possibility of establishing a one-to-one correspondence between the natural numbers and 

a dense set such as the rational numbers. What is rarely mentioned in mathematics texts 

(to say the least) is that this proof makes implicit use of human cognitive mechanisms 

such as conceptual metaphor and blending. Consider Cantor’s infinite array of fractions 

shown in Figure 4. There the BMI is used over and over, implicitly and unconsciously, in 

comprehending the diagram. It is used in each row of the array, for assuring that all 

fractions are included. First, the BMI is used in the first row for assuring that all fractions 

with numerator one are included in a completed collection, without missing a single one. 

Then, the BMI is used to assure that all fractions with numerator two are actually 

included, and so on. In the same way, the BMI is implicitly used in each column of the 

array to assure that all fractions with denominator one, two, three, and so on, are actually 

included in this infinite array providing completion to it. Finally, the BMI is used in 

conceptualizing the endless arrow covering a completed path. The arrow covers every 

single fraction in the array assuring, via the BMI, the possibility of the one-to-one 

correspondence between all rationals and naturals. The BMI together with Cantor’s 

metaphor discussed earlier validate the diagram as a proof that the natural numbers and 

the rational numbers can be put into one-to-one correspondence and therefore have the 

same power—that is, the same cardinality. 
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3) The BMI in Cantor’s diagonal proof of the non-denumerability of real numbers 

Cantor’s celebrated diagonal proof also makes implicit use of the BMI. First, there is the 

use of the special case of the BMI for infinite decimals. Each line, is of the form 

0.aj1aj2aj3…., where j is a natural number denoting the number of the line. Thanks to the 

BMI each of these unending lines can be conceived as being completed. It is important to 

remind that Cantor’s diagonal proof requires that all real numbers in the list to be written 

as non-terminating decimals, which provide another name for the same number. It is the 

BMI that allows a fraction like 0.5 (with terminating decimals) to be conceived and 

written as 0.4999… a non-terminating –yet completed-- decimal. Second, there is the use 

of the special case of the BMI for the set of all natural numbers. Each row corresponds to 

a natural number, and all of them must be there. This provides the conditions for testing 

the assumed denumerability of the real numbers between zero and one. Third, the proof 

(which works by reductio ad absurdum) assumes that all real numbers between zero and 

one are included in the list. This provides the essential condition for the success of the 

proof because it guarantees that there is a contradiction if a number is constructed that is 

not included in the originally assumed completed list. This is indeed the case of the new 

constructed number 0.b1b2b3…. Fourth, there is the sequence along the diagonal formed 

by the digits of the form ajk where j = k. It, too, is assumed to include all such digits on 

the diagonal. The fact that all real numbers must be written as non-terminating decimals 

guarantees that a digit ajk when j = k (on the diagonal) is not a part of an endless 

sequences of zeroes (i.e., an endless sequence of zeroes for digits ajk when j < k, which 

would be the case of a fraction such as 0.5000…). This is another implicit use of the 

BMI. And finally, there is the process of constructing the new number 0.b1b2b3… by 
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replacing each digit ajk (with j = k on the diagonal) with another digit. The process is 

unending, but must cover the whole diagonal, and must create the new real number, not 

included in the original list, written as a non-terminating—yet complete--decimal. 

Another implicit special case of the BMI. 

 

Conclusion 

In this article I have briefly introduced one aspect of George Cantor’s creative work--

transfinite cardinals--and I have analyzed some of his celebrated counterintuitive and 

paradoxical results. Counter- intuitive ideas and paradoxes are very interesting and fertile 

subject matters for cognitive studies because they allow us to understand human 

abstraction through conflicting conceptual structures. From the point of view of cognitive 

science, especially from cognitive linguistics and Mathematical Idea Analysis, it is 

possible to clarify what makes Cantor’s results counterintuitive. These analyses show 

also that, contrary to many mathematicians’ and philosophers of mathematics’ beliefs, the 

nature of potential and actual infinity can be understood not in terms of transcendental (or 

platonic) truths, or in terms of formal logic, but in terms of human ideas, and human 

cognitive mechanisms. Among the most important mechanisms for understanding the 

cognitive nature of transfinite cardinals and actual infinities are: 

• Aspectual systems; with iterative and continuative processes, perfective and 

imperfective structures with initial states, resultant states, and so on. 

• Conceptual metaphors, such as Cantor’s Metaphor SAME NUMBER AS IS 

PAIRABILITY. 
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• Conceptual blending, such as the multiple implicit uses of the BMI, the Basic 

Mapping of Infinity, in Cantor’s proofs. 

These mechanisms are not mathematical in themselves. They are human embodied 

cognitive mechanisms, realized and constrained by the peculiarities of human bodies and 

brains. 

Transfinite cardinals are the result of a masterful combination of conceptual 

metaphor and conceptual blending done by the extremely creative mind of Georg Cantor, 

who worked in a very prolific period in the history of mathematics. These ideas and the 

underlying cognitive mechanisms involved in Cantor’s work, are bodily-grounded and 

not arbitrary. That they are not arbitrary is a very important point that often gets 

confused in the mathematical and sometimes the philosophical communities where 

human-based mechanisms are often taken to be mere “social conventions.” What is 

ignored is that species-specific bodily-based phenomena provides a biological ground for 

social conventions to take place. This ground, however, is not arbitrary. It is in fact 

constrained by biological phenomena such as morphology, neuroanatomy, and the 

complexity of the human nervous system (Varela, Thompson, and Rosch, 1991; Thelen 

& Smith, 1994; Núñez & Freeman, 1999). Abundant literature in conceptual metaphor 

and blending tells us that source and target domains, input spaces, mappings, and 

projections are realized and constrained by bodily-grounded experience such as thermic 

experience, visual perception and spatial experience (Johnson, 1987; Lakoff, 1987). In 

the case of transfinite numbers these constraints are provided by container-schemas for 

understanding (finite) collections and their hierarchies, genetically-determined basic 

quantity-discrimination mechanisms (e.g., subitizing), visual and kinesthesic experience 
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involved in size comparison and the matching of elements, correlates between motor 

control and aspect, and so on (for details see Lakoff & Núñez, 2000, Chapter 2). The 

strong biological constraints operating on these mechanisms provide very specific 

inferential structures which are very different from non (or weakly) constrained “social 

conventions” like the color of dollar bills or the font used in stop signs. These non-

arbitrary cognitive mechanisms, which are essential for the understanding of conceptual 

structures, can be studied empirically and stated precisely, and cognitive science 

techniques such as Mathematical Idea Analysis can serve this purpose. 

In this article, I mainly referred to transfinite cardinals, as an example of a very 

rich and interesting case of actual infinity. But this is only one case. Lakoff and Núñez 

(2000) have shown that there are many other instantiations of actual infinity in 

mathematics realized via the BMI, such as points at infinity in projective and inversive 

geometry, infinite sets, limits, transfinite ordinals, infinitesimals, and least-upper bounds. 

What is important to make clear about these mathematical infinities is the following: 

1. They belong to completely different fields within mathematics. 

2. They have, from a purely mathematical point of view, their existence guaranteed 

by very specific tailor-made axioms in various fields. In set theory, for instance, 

one can make use of infinite sets simply because there is a specific axiom, the 

axiom of infinity, that grants their existence. The existence of other mathematical 

actual infinities in other fields is guaranteed by similar axioms. 

With this in mind, we can now see the relevance of the BMI: 

• It explains with a single mechanism cases of actual infinity occurring in different 

non-related mathematical fields. Whereas in mathematics actual infinities are 
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characterized by different sets of axioms in different fields, cognitively, they can 

be characterized by a single cognitive mechanism: the BMI. 

• It provides a cognitively plausible explanation of the nature of actual infinity that 

is constrained by what is known in the scientific study of human cognition, human 

conceptual structures, human language, and the peculiarities of the human body 

and brain. 

Mathematical axioms, don’t have to comply any constraints of this kind, because they 

only operate within mathematics itself. Therefore, axioms can’t provide explanations of 

the nature of transfinite cardinals, actual infinities, or, for that matter, of mathematical 

concepts in general. The BMI, along with other cognitive mechanisms, such as 

conceptual metaphors and the use of aspect, allows us to appreciate the beauty of 

transfinite cardinals, and to see that the portrait of infinity has a human face. 
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Figure 1. 

A case of potential infinity: the sequence of regular polygons with n sides, starting with n 

= 3 (assuming that the distance from the center to any of the vertices is constant). This is 

an unending sequence, with no polygon characterizing an ultimate result. 

 

 

 

 

Figure 2. 

A case of actual infinity: the sequence of regular polygons with n sides, starting with n = 

3 (assuming that the distance from the center to any of the vertices is constant). The 

sequence is endless but it is conceived as being completed. The final resultant state is a 

very peculiar entity, namely, a circle conceived as a polygon with infinitely many sides of 

infinitely small magnitude. 

 

 

 

 

 

Figure 3. 

A mapping establishing the one-to-one correspondence between the sets of natural and 

even numbers. 

 

… 

… 

Natural numbers 

Even numbers 

1 2 3 4 … 

2 4 6 8 … 
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Figure 4. 

Cantor’s infinite array of rational numbers conceived for the proof of their 

denumerability. Each fraction covered by the arrow can be mapped to a natural number 

thus establishing a one-to-one correspondence between the natural and the rational 

numbers. 

 

 

 

 

 

 

 

 

1/1 1/2 1/3 1/4 … 
 
2/1 2/2 2/3 2/4 … 
 
3/1 3/2 3/3 3/4 … 
 
4/1 4/2 4/3 4/4 … 
 
…    … 
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Figure 5. 

The BMI, the Basic Mapping of Infinity, as a double-scope conceptual blend. 
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Figure 6. 

A mapping between the natural and even numbers based on the ordinary notion of “same 

as” and “more than.” The mapping shows that one can pair elements of the two 

collections and have the odd numbers left over (shown with a circle). The entailment of 

this natural mode of reasoning is that there are more natural numbers than even numbers. 

 

 

 

 

 

Figure 7. 

Georg Cantor’s fundamental conceptual metaphor SAME NUMBER AS IS PAIRABILITY. 

This simple but ingenious metaphor is at the core of transfinite numbers and modern set 

theory. 
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