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Abstract

The Sleeping Beauty (SB) transposon is a non-viral integrating vector system with proven efficacy for gene transfer and
functional genomics. However, integration efficiency is negatively affected by the length of the transposon. To optimize the
SB transposon machinery, the inverted repeats and the transposase gene underwent several modifications, resulting in the
generation of the hyperactive SB100X transposase and of the high-capacity ‘‘sandwich’’ (SA) transposon. In this study, we
report a side-by-side comparison of the SA and the widely used T2 arrangement of transposon vectors carrying increasing
DNA cargoes, up to 18 kb. Clonal analysis of SA integrants in human epithelial cells and in immortalized keratinocytes
demonstrates stability and integrity of the transposon independently from the cargo size and copy number-dependent
expression of the cargo cassette. A genome-wide analysis of unambiguously mapped SA integrations in keratinocytes
showed an almost random distribution, with an overrepresentation in repetitive elements (satellite, LINE and small RNAs)
compared to a library representing insertions of the first-generation transposon vector and to gammaretroviral and lentiviral
libraries. The SA transposon/SB100X integrating system therefore shows important features as a system for delivering large
gene constructs for gene therapy applications.
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Introduction

The Sleeping Beauty (SB) transposon is a member of the Tc1/

mariner transposon superfamily. Tc1/mariner elements are

generally 1,300–2,400 bp in length and contain a single gene

coding for the transposase that is flanked by terminal inverted

repeats (IR). The IRs of SB host a pair of binding sites containing

short, 15–20 bp direct repeats (DRs). Both the outer and the inner

pairs of transposase-binding sites are required for transposition.

The SB transposase binds the IRs in a sequence-specific manner,

and mediates precise cut-and-paste transposition in a wide variety

of vertebrate cells including human cells [1–3]. For this reason, the

SB-based integration system is a valuable tool for functional

genomics in several model organisms and represents a promising

vector for human gene therapy [4,5]. However, a major bottleneck

of any transposon-based application is the low transposition

efficiency. Therefore, considerable effort was dedicated to improve

the SB integration machinery by modifying its IRs and system-

atically mutating the transposase gene. In 2002, Cui et al. carefully

explored the structure and functions of the IRs. They modified the

outer and inner DR sites of both IRs and the spacer sequence

between the DRs generating a new version of transposon IR,

called T2, with fourfold increased transposition efficiency [6].

However, the transpositional activity of this system (and that of the

first-generation transposon [7]) is negatively affected by the size of

transposon, resulting in an exponential drop for every kb

introduced between the two IR.

In 2004, Zayed et al. constructed the ‘‘sandwich’’ (SA) version of

the transposon vector [8]. The SA IR consists of two complete

transposon elements in a head to head orientation, flanking a

DNA expression cassette, thereby forming a sandwich-like

arrangement. Mutation of the 59 terminal CA nucleotides of the

right IR abolishes cleavage at the innermost transposon ends;

therefore, only the four terminal DRs represent the catalytic

substrate for the ‘‘cut and paste’’ transposition. The SA transposon

showed a 3.7-fold enhanced activity over first generation

transposon to integrate ,7.5 kb-DNA sequence upon SB10

transposase delivery. Five years later, a transposase 100-fold more

active than SB10, named SB100X, was developed by a high-

throughput, PCR-based DNA shuffling strategy [1]. The im-

proved integration efficiency associated with SB transposition

opened new avenues for its application. The hyperactive SB100X

transposase was employed to obtain highly efficient germline

transgenesis in pigs [9,10] rabbits [11] and rodents [12,13], stable
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transfer of therapeutic genes in clinical relevant cells [1,14–18],

and reprogramming of mouse embryonic and human foreskin

fibroblasts into iPS cells [19].

In this study, we investigated the integration efficiency of large

expression cassettes mediated by the optimized SB elements: the

SA transposon and the SB100X transposase. We report a side-by-

side comparison between the SA and the T2 transposons carrying

DNA cargo of increasing length. We performed a deep molecular

characterization of SA-mediated integrants in epithelial cell lines

and in primary immortalized keratinocytes stressing the SB system

with cargos up to 18 kb. These data provide evidence for stability

of SB-mediated integration and the reproducibility of the cut-and-

paste mechanism even with large transposons embedded between

two double IRs. Moreover, clonal analysis reveals a linear

correlation between transposon copies harboured into the genomic

DNA and their expression, an important characteristic for gene

therapy application. Finally, high-resolution, genome-wide map-

ping of SA integrations in human keratinocytes revealed a close-to-

random integration pattern with respect to genes and chromo-

somes, highlighting a relative low risk of genotoxicity as previously

reported for SB transposition in cell lines [20–23]. Interestingly,

the high-throughput analysis of SA integration sites showed an

overrepresentation of integration events into repetitive elements

(RE) of the human genome, in particular satellite, small RNA and

LINE elements.

Materials and Methods

Cell culture
HeLa cells were cultured using DMEM medium (Lonza) added

with 10% Fetal Bovine Serum (FBS), 1% L-Glutamine (L-Gln)

and 1% Penicillin-Streptomycin (Pen/Strep). For each experi-

ment, an aliquot of cryo-preserved HeLa cells was thawed and

plated on 8 cm dishes. Upon reaching 80–90% of confluency, cells

were re-plated on 6-wells culture plates at a concentration of

26105 cells/well. After 24 h, cultures in each well were at 70–

80% confluency, ready to be transfected.

Mouse NIH3T3 fibroblast cell line was maintained in

Dulbecco’s Modified Eagle’s medium (Euroclone), supplemented

with 10% bovine serum.

We have used SV40 immortalized keratinocytes derived from a

patient affected by generalized atrophic benign epidermolysis

bullosa (GABEB) produced by Borradori et al. [24] and kindly

provided by J.W. Bauer. GABEB cells were cultivated in EpiLife

medium supplemented with human keratinocyte growth supple-

ment (HKGS) (Invitrogen, US). EpiLife is a serum-free keratino-

cyte culture medium with a low calcium (0.06 mM) concentration

supplemented with HKGS which results in a final concentration of

0.2% (v/v) BPE, 5 lg/mL bovine insulin, 0.18 lg/mL hydrocorti-

sone, 5 lg/mL bovine transferrin and 0.2 ng/mL human EGF.

Upon reaching 80–90% of confluency, cells were re-plated on 6-

wells culture plates at a concentration of 2.36105 cells/well. After

24 h, cultures in each well were at 70–80% confluency, ready to

be transfected.

Plasmid constructs
The plasmid carrying the T2 IRs including a Venus reporter

gene driven by the chicken b actin promoter fused to CMV early

enhancer element (CAGGS) and the construct coding for the

SB100X were described in Mates et al. [1]; the SA transposon IRs

were described in Zayed et al. [8]. The CAGGS Venus expression

cassette was Dra III excised from pT2 3.2 and introduced into

EcoRV digested pSA to obtain pSA 5.7. pT2 3.2 and pD28 [25]

were digested with XbaI to clone a non coding DNA of 2.7 kb

from pD28 into the transposon.

Two fragments of the first intron of the HPRT gene were PCR

amplified and cloned into the pCR 2.1 (TOPO cloning kit,

Invitrogen) plasmid. The pT2 10 plasmid was cloned ligating the

pT2 CAGGS Venus SpeI with NheI fragment of the amplified

HPRT intron 1. The pT2 14 plasmid derives from pT2 10

digested with ClaI ligated to the NotI fragment of the amplified

HPRT intron 1. Finally, pT2 18 was obtained by ligating a third

sequence amplified from the HPRT intron 1 with pT2 14 through

EcoRI restricted ends. The pSA 5.7 plasmid was digested with

NheI and ligated to the NheI non coding fragment of the HPRT

gene to obtain the pSA 9.7. Then the pSA 9.7 was digested with

PmeI enzyme and ligated with a PvuII fragment of the HPRT

intron 1 to obtain the pSA 14. To enlarge the pSA14, a sequence

amplified from the intron 3 of the Lamb3 gene was introduced by

EcorV compatible ends to obtain pSA 18.

Transfection-based transposition and calculation of
transposition efficiency

HeLa and GABEB cells were both transfected with FugeneHD

transfection reagent (Roche). For each sample 2 mg of DNA were

added to 100 ml of either DMEM (for HeLa) or EpiLife (for

GABEB). The media used for this transfection reaction mix were

not added with FBS, L-Gln or Pen/Strep.

The transposon/transposase amounts of plasmid DNA were

calculated to respect the stoichiometric ratio of 1:1 or, for

transposon .10 kb, 2:1, in a total quantity of 2 mg. 2 mg of

transposon-only plasmid were used for non-transposed control.

Each transfection reaction mix was complexed with 6 ml of

FugeneHD (10 ml with SA and T2 18 in GABEB cells) and

subsequently mixed by pulse-vortexing for a few seconds. The

mixes were thereafter left at room temperature for 109 in order to

allow the formation of lipoplexes. After the 109 had expired, each

mix was added drop-by-drop to a cell culture sample, which was

subsequently incubated at 37uC.

HeLa cells were transfected with Calcium Phosphate method

using 15 mg of 14- or 18 kb transposons mixed with the plasmid

carrying the transposase expression cassette.

The percentage of Venus+ cells was determined 2 and 20–30

days post-transfection via flow cytometry and the transposition

efficiency was calculated as: Venus+ cells at 20–30 days post

transfection/Venus+ cells at Day 26100. Cells that were only

transfected with the transposon plasmid represented the control

for background integration events.

Transposed clones were analysed via flow cytometry to

determine the presence of doublets and the Venus mean

fluorescence intensity (MFI).

Isolation of single cell clones
GABEB cells were limiting diluted to obtain a concentration of

0.5 cell/well, plated onto lethally irradiated NIH3T3 cells and

cultured in keratinocyte growth medium, a DMEM and Ham’s

F12 media mixture (2:1) containing FCS (10%), penicillin-

streptomycin (1%), glutamine (2%), insulin (5 mg/ml), adenine

(0.18 mM), hydrocortisone (0.4 mg/ml), cholera toxin (0.1 nM),

and triiodothyronine (2 nM). After 1 week, the medium was

replaced by EpiLife medium supplemented with HKGS. After 2

weeks GABEB cells were trypsinised at subconfluence and re-

plated without the NIH 3T3 feeder-layer in EpiLife HKGS

medium.

HeLa cells were seeded to obtain a concentration of 0.3 cells/

well in a 96 well plate in DMEM medium complemented with

10% FBS.
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Southern blot analysis
Ten mg of genomic DNA, extracted from 1256106 cells by a

QIAmp DNA Mini kit (Qiagen), were digested overnight with

NheI (SA 9.7-derived clones) and AflII (T2 10-derived clones) to

verify the copy number of the transposed cassette, or with NcoI
(SA 9.7-derived clones) and MfeI plus NdeI (T2 10-derived clones)

to verify the integrity of the transposed cassette. Digested gDNA

was run on a 0,8% agarose gel, transferred to a nylon membrane

(Duralon, Stratagene) by Southern capillary transfer and probed

with 26107 cpm 32P-labeled Venus probe according to standard

techniques [26].

PCR screening for episomal SB vectors
About 100 ng of template gDNA were used in a PCR reaction.

Primers capable to amplify the Amp resistance gene or the

SB100X transposase (Table S1) were used to detect genomic

integrations of SA 9.7 backbone and SB100X, respectively. PCR

conditions were as follows: 3099 at 94uC, 3099 at 58uC and 3099 at

72uC for 30 cycles.

LM-PCR and bioinformatic analysis
Integration sites were amplified by Linker Mediated PCR (LM-

PCR), as described [27]. Briefly, genomic DNA was extracted

from 0.5256106 transposed cells and digested with MseI and

XhoI enzyme to prevent amplification from internal mutated IR

fragments. An MseI double-stranded linker was then ligated and

LM-PCR performed with nested primers specific for the linker and

SA IR/DR (Table S1).

LM-PCR derived amplicons were run on a Roche/454 GS

FLX using titanium chemistries by GATC Biotech AG Next Gen

Lab. A valid integration contained: the TAGpSAIR nested primer

and the entire SA IR/DR sequence up to a TA dinucleotide.
Alignment pipeline. 31,603 sequencing reads were tested for

the presence of the SA IR sequence and TA dinucleotide. The SA

IR and any primer sequences were trimmed, and the remaining

reads starting with TA dinucleotides were mapped to the human

genome (hg19) using NCBI BLAST (blastn with default param-

eters). We kept only reads which were mapped to a single genomic

site with at least 90% sequence identity and an E-value of at most

0.05. Only reads which could be mapped from their 59 end

onwards were considered for further analysis. Redundant reads

mapping to identical genomic positions were collapsed. This way

we got 2019 unique SA integration sites.

For the statistical analysis we generated 10,000 control sites in-

silico taking into account the bias introduced by LM-PCR

techniques. We first generated artificial reads starting with TA

dinucleotide of the human genome in a way that the control

sequences had both the length and the frequency of MseI
restriction sites (TTAA) as observed in real sequencing reads.

The artificial reads were then processed by the same mapping

criteria used for the SA sites.
RM blast analysis. Analyses of repetitive element were

performed with RepeatMasker Blast (http://repeatmasker.org)

[28]. To achieve reliable and comparable results we processed the

raw sequences trimming out the primer sequences used in LM-

PCR, the IR/LTR/linker specific sequences following the

primers. Resulting reads were further trimmed till the 40th

nucleotide discarding every sequence with less than 40 nucleotides.

Finally, we collapsed the reads that were either identical or with

one mismatch. A two-sample test for proportions was used for

pairwise comparison of the RE within the different datasets.

For statistical analysis we created control sets as follows. We first

randomly sampled 1 Million sequences 49 bp in length from the

human reference genome (hg19). Then we discarded all sequences

not starting with TA. The resulting set of 65,826 TA-weighted

sequences was used as a background for Tneo SB integrations. For

a second random control set we first randomly sampled 10 Million

sequences of length 120 bp from the genome. Then we discarded

all sequences not starting with TA, or either not containing the

MseI restriction motif TTAA or having a TTAA within the first

39 bp of the sequence. After removing the part of the sequences

following the first occurrence of TTAA, we received 292,917

sequences of lengths between 40 bp and 120 bp, which were

weighted for TA and MseI and could be used as a background for

SA integrations. We passed the generated sequences through the

same filtering/trimming pipeline as the actual integration reads.

A third random control set of 45,235 genomic sequences

weighted for MseI was adapted from Cattoglio et al. [29] and used

as a background for MLV and HIV integrations.

Bidirectional PCR mapping on GABEB clones
Transposon integrations in GABEB clones were amplified by

LM-PCR as described. PCR products were shotgun-cloned

(TOPO TA cloning kit, Invitrogen) and then sequenced.

Sequences between the TA and the linker primers were mapped

onto the human genome by the BLAT genome browser (UCSC

Human Genome hg19). Sequences featuring a unique best hit with

$90% identity to the human genome were considered genuine

integration sites. To confirm the genuine integration in both

directions we design primers on the genomic region hit and

performed a direct PCR in conjunction with the pSAIR specific

primer for the SA IR sequence (Table S1). The derived

amplicons were loaded on agorose gel and checked for the

expected length.

Results

Efficiency of T2 and SA transposons
The sandwich (SA) transposon vector has superior ability to

transpose .10 kb transgenes with respect to the first-generation

transposon when SB10 transposase was provided [8]. Neverthe-

less, the T2 transposon, resulting from site-specific mutations in

the IR sequences and insertion of double TA flanking each IR, has

been demonstrated to have a four-fold enhanced activity over the

first-generation transposon construct [6]. A side-by-side compar-

ison of SA and T2 transposon was needed to address the

transposition efficiency of increasing DNA cargoes and to verify

their molecular behaviours once integrated into the human

genome.

We generated SA- and T2-based plasmids (SA 5.7 and T2 3.2

Figure 1) keeping the Venus reporter gene as standard expression

cassette. Increasing sizes of a non-coding human stuffer DNA (4-,

8.3- and 12.3 kb in the SA plasmid; 6.8-, 10.8- and 14.8 kb in the

T2 plasmid) were introduced between the two IR/DR to produce

transposons of comparable length. For the sake of simplicity, we

named these plasmids with the transposon construct type and the

size of the transposable cassette expressed in kilobases (Figure 1).

Transposition experiments were performed in HeLa cells and in

immortalized primary keratinocytes derived from patients affected

by Generalized Atrophic Benign Epidermolysis Bullosa (GABEB),

an inherited skin adhesion defect. All the experiments aimed at the

identification of the integration efficiency of the IR-flanked

transgene were measured by long-term Venus fluorescence in

the absence of selective pressure. We co-transfected the SB100X

transposase-expressing plasmid together with transposon plasmids

in two different molar ratios (1:1 or 1:2) depending on the

transposon length. Larger cargos required more transposon DNA

to reach good transfection efficiency.

Sleeping Beauty Transposition in Human Cells
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At least three independent experiments for each cell type and

transposon were performed in order to reduce variability due to

the transfection procedure. Mock-transfected HeLa and GABEB

cells, and cells transfected with the T2 or SA Venus constructs

alone were used as controls (in the absence of transposase, no

transposition event should occur and residual reporter gene

expression after long periods would only be attributable to noise or

to rare random plasmid integration events). Transgene expression

all along the culture period (up to 31 days) was measured via flow

cytometry to follow the trend of the signal that persists in presence

of SB100X and drops without the transposase (Figure S1).

The transposition efficiency was normalized by transfection

efficiency (numbers of cells that received the plasmids after

transfection) and calculated as the ratios between the percentage of

Venus+ cells at the endpoint (20–31 days) and the percentage of

transfected cells 2–3 days after DNA delivery to the cells. The

endpoint of each experiment is achieved when the percentage of

Venus+ cells in the sample transfected with the transposon alone

stabilized to less than ,0.5%.

Figure 2A and 2B show the transposition rate obtained in

HeLa and GABEB cells. As previously reported [1,8], the

transposition efficiency was inversely proportional to the transpo-

son size. In HeLa cells, the transposition efficiency dropped 7.8

fold (from 58.5% to 7.5%) when increasing the cargo payload from

3.2 kb to 18 kb, independently of the transposon structure (T2 or

SA). Interestingly, this size-dependent effect was less pronounced

in GABEB cells. In this cell type the decrease was of 1.8 fold (from

44% to 24%) for T2 and SA and the transposition rate for 18 kb

transposons remained approximately 24% compared to the 7.5%

in HeLa cells.

Clonal molecular analysis
Although we performed a molecular characterization of almost

all T2 and SA vectors in HeLa or GABEB cells (Table S2.), we

focused our genomic analysis on a relatively large T2 and SA

transposons cassette (10 kb) and on GABEB keratinocytes. Bulk

populations of transposed cells were sorted for Venus expression

20–35 days post transfection and cloned by limiting dilution.

Genomic DNA extracted from each clone was first investigated by

PCR for the presence of the transposon backbone and SB100X

expressing plasmid. Notably, we scored 14.8% of clones (8 out of

54) positive for the Ampicillin sequence present within the

transposon backbone about 60 days post transfection, while few

(2 out 54) of the analysed clones were positive for the SB100X

sequence (Table S2).

Figure 1. Transposon fleet. Schematic representation of the generated plasmids. SB100X carries the Hyperactive Sleeping Beauty transposase
coding sequence placed under the control of the CMV promoter and followed by an SV40 poly-Adenylation (pA) signal. The transposons T2 and SA
possess the expression cassette consisting of the CAGGS promoter, VENUS reporter gene and SV40 pA signal. The stuffer DNA represented has
variable increasing size. The arrows represent the IR/DR ends recognised by the transposase. SA constructs are characterized by the presence of two
complete IR/DR at each ends (white and black arrows) and the asterisks underline the IR mutated site not recognized as a catalytic substrate by the
transposase. Numbers following T2 or SA abbreviation indicate the size in kilobases of the transposed cassette.
doi:10.1371/journal.pone.0112712.g001
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We next performed Southern blotting on the genomic DNA of

16 clones for each transposon type to determine the transgene

copies harboured in the genome and their integrity. To this end,

we digested the genomic DNA with AflII (T2 clones) or NheI (SA

clones) that release fragments longer than 3.4 and 4.2 kb.

Hybridization with a Venus-specific probe showed that most of

the SA treated samples (13 out of 16) carry a single integrated

transposon, only 1 clone (#26) had 3 copies, and 2 out of 16 clones

contained 2 copies (#8, #13) resulting in an average copy number

of 1.3. Surprisingly, 16 GABEB clones obtained with T2, harbour

1 to 7 copies with an average of 3 integrated transposons per clone

(Figure 3A). In general we observed that the mean copy
number is more affected by the transfection efficiency
(Table S2) respect to the size and type of transposons.

Further restriction analysis performed with MfeI and NdeI on 9

T2 clones and with NcoI on 8 SA clones showed that all clones

harbour the full-length transposon cassette (Figure 3B). Among

the 21 integrated transposons in the 9 T2 clones, only one,

belonging to clone #3, is shorter than expected. None of the 13

integrated transposons in the 8 SA clones was rearranged.

To unequivocally prove that all the integration events mediated

by SA transposition resulted from a genuine ‘‘cut and paste’’

mechanism, we mapped the insertion site at both transposon ends

using an adapted version of Linker-Mediated PCR (LM-PCR)

[27]. Ten Venus-expressing GABEB clones, derived from

transposition of the SA 5.7 plasmid, were examined. Six integrants

(#1, 4, 7, 13, 14, 16) belonging to 5 clones were bi-directionally

mapped by LM-PCR. Additional 21 integrants were revealed by

LM-PCR and confirmed by specific PCR on the genomic region

flanking the opposite IR (Figure 3C). Importantly, almost all the

integration events occurred without genomic rearrangements,

deletions or insertions, in the target sites. Only 2 out of 27

integrations (#26 and #27 belonging to clone 34) could not bi-

directionally confirmed.

Finally, we correlated the expression level of the reporter gene

with the copy number of the transposon. The positional effect

variegation primarily observed with retroviral and lentiviral

vectors [30] could lead to the silencing of the therapeutic gene

delivered by the vector. We asked weather the SB integrations

would be affected by this phenomenon. We correlated the

expression of Venus protein, measured by Mean Fluorescence

Intensity (M.F.I.), with copy number of either the SA and T2

transposon, as determined by Southern blot or q-PCR analyses of

62 GABEB clones. For comparison, we analysed the M.F.I of a

GFP reporter gene, driven by the human Keratin 14 promoter, in

70 HaCaT clones isolated upon LV transduction. A linear

correlation curve was traced to retrieve the R2 coefficient of

determination. Transposon samples show an R2 = 0.759 with a

statistically defined correlation between two variables (PN = 0.6).

LV samples display an R2 = 0.001 with a null defined correlation

(Figure 4). Independent analysis of transposed clones obtained in

different cells (HaCaT and GABEB) and carrying a reporter gene

driven by PGK or CAGGS promoter showed comparable results

indicating common directly correlation between MFI and copy

number (data not shown). We conclude that SB integrants tend to

express their cargo faithfully, and multi-copy integrants express in

a copy-number dependent manner, consistent with earlier

observations [31].

Integration pattern analysis
In the last few years, several papers described the integration

profile of the SB, piggyBac (PB), and Tol2 transposons [20–23,32–

36]. Here we report the integration profile and preference of the

sandwich compared with the first-generation SB transposon [20]

in human epithelial cells. To generate a library of SA integration

events, we transfected 20 million GABEB cells with SA

transposon- and SB100X-carrying plasmids. The 20% of Venus-

positive cells were sorted three days after transfection to enrich the

population expressing the reporter gene. A 90%-pure sorted

population was kept in culture for 3 weeks to dilute the un-

integrated SA vector reaching a stable 78% Venus+ bulk

population. We used LM-PCR and pyrosequencing to generate

6,084 non-redundant SA-linked genomic sequences in human

immortalized GABEB keratinocytes. The Blast alignment re-

trieved 2,019 unambiguously mapped integration sites. As a

control, 10,000 random unique sequences were generated in silico

balancing the biases introduced by the LM-PCR (amplicon lenght

and MseI proximity) and the availability of the TA dinucleotides in

the genome. In the analysis we also annotated a large dataset

(59,169 hits) generated in HeLa cells transposed with the first-

generation Tneo transposon and selected for 2 weeks with

neomycin [20]. The integration sites and control sites were

annotated as transcriptional start site (TSS)-proximal when

mapping in the 62.5 kb window around a TSS, intragenic when

mapping within a transcription unit, and intergenic in all other

cases. Among SA integrations, 58.6% were in an intergenic

position, 38.9% were within the transcribed portion of at least 1

gene, and 2.5% was within a 5 kb window encompassing the TSS

Figure 2. Transposition efficiency. HeLa (A) and GABEB (B) cells
were co-transfected with the T2 and SA transposons- and transposase-
carrying plasmids. The transposition rate, on the Y axis, is derived by the
ratio between the percentage of Venus+ cells at about 20 and 2 days
post transfection. Data are representative of three independent
experiments (mean 6 SEM; n = 3).
doi:10.1371/journal.pone.0112712.g002
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Figure 3. Molecular characterization of the Sleeping Beauty-mediated integration events in GABEB cell clones. (A) Southern blot
analysis of genomic DNA from GABEB cell clones digested with NheI (SA clones) or AflII (T2 clones), single cutter in the transposon cassette, and
hybridized to a Venus probe. A single band higher than 4.2 kb (SA clones) and 3.4 kb (T2 clones) indicates integration of one copy of the transposon
into the genome. Multiple Venus-specific bands correspond to repeated integration events. (B) Southern Blot analysis of genomic DNA from 8 (SA)
and 9 (T2) clones digested with NcoI (SA clones) or MfeI and NdeI (T2 clones). The expected Venus-specific band corresponding to 6 kb for SA and
8.9 kb for T2 transposon indicates the correct integration of the transposons into the genome. C, mock-transfected cells; red bars, Venus-specific
probe. Clone showing rearrangement of the transposon cassette is highlighted by black asterisk. (C) Bi-directional mapping of the junctions between
transposon and genomic DNA. The table summarizes 27 integrations belonging to 10 single clones. For each integrant, the underlined sequence
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(Figure 5A; the complete list of sequences is available in

GenBank database with the accession number SRP047118). In

general, the distribution of the SB integrants in both datasets is

fairly random and resembles the composition of the human

genome showing no statistical differences compared to their

relative controls, i.e. all p-values (both two-sample tests for

proportions and Fisher’s Exact Tests) were .1022.

We then analysed the frequency of human repetitive elements in

the transposon libraries, SA and Tneo [20], and their relative

weighted controls availing of the RM Blast browser [28]. For

comparison we also analysed two viral-derived integration datasets

(MLV and HIV) generated in human CD34+ multipotent

hematopoietic progenitor cells (HPCs) [29] and their control

library weighted for MseI restriction site distribution. The raw

data generated by deep sequencing of the LM-PCR (applied to

SA, MLV and HIV treated cells) and LAM-PCR (applied in [20])

products were filtered and trimmed in order to rescue the genuine

integration events (see materials and methods). After filtering and

trimming we retrieved 6,084 and 165,887 unique sequences in SA

and first-generation vector libraries, respectively, and 37,873 and

31,204 unique sequences from MLV and HIV datasets, respec-

tively. We generated large control datasets taking into account the

bias introduced by the respective technique. In particular from the

hg19 genome database we retrieved 45,235 control reads weighted

for MseI, 65,570 sequences weighted for the presence of TA

dinucleotide hit by the SB transposons, and 209,913 sequences

MseI- and TA-double weighted.

The RM Blast analysis revealed an overrepresentation of REs in

the SA integrations (34%) with respect to the TA and MseI-

weighted control (14%) and to all the other datasets analysed

(Figure 5B). In particular, Satellite, small RNA and LINE

elements were enriched in the SA library (24-, 7.6- and 3.5-fold

increase over the background, respectively) whereas in the first-

generation vector library only a slight increase in the satellite and

simple repeats elements was measurable (3.5- and 2.6-fold over the

background, respectively); comparable LINE frequency was

detected.

Besides the higher frequency in the satellite elements, the two

SB transposon datasets share a slight under-representation of

SINE, LTR and DNA transposable elements in comparison with

their random control libraries. We introduced MLV and HIV

libraries to compare the frequency of integration into RE

generated by a retroviral integrase-mediated integration mecha-

nism. The RM Blast analysis pointed out that viral vectors

disfavour integration in RE (14–16% vs 24%), and, in particular,

satellite, LTR and LINE elements are underrepresented. These

data clearly confirm a difference in the integration site selection

between viral vectors and SB transposons and identify new

signatures in the SA integrome that should be taken into

consideration when using them as tools for genetic manipulation.

Discussion

The SB transposon IRs were mutated to improve their capacity

to be mobilized and, to date, there is not a direct comparison that

define genetic characteristics of the T2 and SA IRs [8]. In this

study, HeLa cells and GABEB keratinocytes [24] were transfected

with a panel of T2 or SA transposons carrying size-increasing

Venus expression cassette in combination with SB100X plasmid

(Figure 1). Transfection rate was higher in HeLa than in GABEB

cells (Figure S1) and the transposition efficiency was inversely

proportional to the transposon size (Figure 2). Interestingly,

HeLa cells were severely affected by the transposon size compared

to primary immortalized cells. These results suggest that the

transposase activity could be favoured by some cellular factor

differentially expressed in GABEB and HeLa cells. Nonetheless,

T2 and SA constructs carrying cargos of comparable size showed

similar transposition efficiency in both cell lines. From these data

we can conclude that the T2 IR construct is interchangeable with

the SA construct with some advantages: T2 has shorter IRs

thereby it could accept a larger cargo cassette.

Transposed GABEB and HeLa populations were subjected to

limiting dilution to obtain a single cell derived expansion. The

derived clones were employed to characterize several molecular

parameters: transposon-independent insertion, copy number,

genomic stability, faithful transposition activity, correlation

between copy number and expression of the integrated cassette.

The SB100X sequence was retrieved in 6 out of 211 analysed

clones while almost 14% of the clones (30 clones) were found

positive for the transposon backbone sequences (Table S2). We

hypothesize that the plasmid backbone carrying the transposon

could have some advantages to remain episomal or to integrate in

the genome. The transposon excision step from the plasmid leaves

the backbone with a double strand break that induce recruitment

of the endogenous repair machinery and integration into the cell

genome. We also analysed the copy number of the clones.

Figure 3A shows an average of 1.3 SA copies/clone while T2

copy number spans from 1 to 7 transposons with an average of 3

copies. This difference mostly depends on the transfection

efficiency as confirmed by the analysis of the other transposed

cell populations generated in this study. Therefore, it is possible to

fine tune this parameter by adjusting the ratios of the two SB

represents a portion of the transposon IRs, left (CAGTT) and right (AACTG) separated by dots; TA dinucleotide (in bold) is the target site correctly
duplicated after transposition. Hit chromosomes and positions are reported. UnK, unknown region of the human genome based on UCSC hg19
assembly.
doi:10.1371/journal.pone.0112712.g003

Figure 4. Correlation between copy number and expression of
the integrated cassette. Mean fluorescence intensity (M.F.I.) of 62
GABEB clones positive for Venus expressing SB transposons are
represented as circles; triangles indicate the M.F.I. of 70 GFP+ HaCaT
clones transduced with a lentiviral vector (LV). Standard deviation bars
are present for those clones carrying the same copy number. R2

coefficients of determination were extracted from the linear regression
plot, green line for SA and T2 transposons and red line for LV.
doi:10.1371/journal.pone.0112712.g004
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components used for transfection or, as previously reported,

bypass the transfection procedure through the viral delivery of

transposase and transposon by adenoviral vector [37], integration

defective lentiviral vector [38,39], retroviral particle [40] and

adeno-associated vectors [41].

We were able to associate copy number of the transposon with

the expression level of the Venus fluorescence gene. Mean

Fluorescence Intensity does follow a direct proportion with the

copies harboured (Figure 4). In contrast, expression of the

reporter gene in lentiviral-mediated integrants does not correlate

with copy number and is more subjected to the activity of

surrounding genomic sequences [42,43].

Next, the integrated transposons in these clones were also

analysed for their integrity via Southern Blot. Retroviral and

lentiviral vectors can rearrange during the reverse transcription

step resulting in partially-deleted integrated proviruses, a frequent

occurrence in transgene hosting repetitive sequences [44,45]. The

SB mediated integration, by contrast, does not require reverse

transcription and thus is expected to preserve the integrity of the

transgene. Ninety-eight percent of the integrants, resulting from

T2 and SA transposition, have a correct size (Figure 3 B).

The sandwich transposon has a doubled IR/DR structure at

both ends with 8 transposase binding sites in total. In principle,

every transposase unit, bound to one DR site, could interact with

the others to create different chiasm geometries (also described in

[6]); some of these conformations could modify the integration

activity resulting in chromosomal aberrations. To investigate the

fidelity of the transposition process 10 GABEB clones were

mapped bi-directionally by LM-PCR and transposon-genome

junction was amplified by site-specific PCR. Twenty-five integra-

tions, out of 27 (92.6%), were validated for a canonical

transposition event with the TA target site duplication signature

at both ends (Figure 3C). Two integrations mapped by LM-PCR

were not confirmed in the opposite transposon end suggesting

Figure 5. Integration pattern analysis. (A) Integration sites were annotated as ‘‘TSS-proximal’’ when occurring within a distance of 62.5 kb from
the gene’s TSS, as ‘‘Intragenic’’ when occurring in a gene body and as ‘‘Intergenic’’ in all other cases. Black bars represent exons of a schematic gene,
arrowhead indicates the direction of transcription. Distribution of SA, Tneo and random integration sites in the genome is plotted accordingly to
defined annotations. (B) Distribution of Repetitive Elements in SB SA and Tneo libraries, in MLV and HIV libraries. Relative weighted random libraries
were reported: TA and MseI-weighted for SA, TA-weighted for Tneo and MseI-weighted for MLV and HIV libraries. **p#1023, *p#1022.
doi:10.1371/journal.pone.0112712.g005
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rearrangements probably caused by the repair mechanism

occurred in the transposition break.

LM-PCR was also employed to derive a high-definition map of

SA/SB100X integration sites in the genome of a transposed

GABEB bulk population. This analysis is commonly applied to

integrating vectors (i.e. retroviral and lentiviral vectors) because it

allows to evaluate genotoxicity [46,47] and to understand

molecular mechanism driving the integration towards specific

regions of the genome [29,48–50]. The technique returned 2,019

SA unambiguously mappable integration sites randomly distrib-

uted throughout the human genome, in accordance with

previously published data on first-generation transposon [20,23]

(Figure 5A). For gene therapy purposes, the SB system results in a

safer integration profile compared to other integrating vector such

as Tol2, PB transposon and retroviral vectors [20–23,32,33],

which favor TSS-proximal regions or gene body sequences.

Although the integration site distribution in relation to genes

was found close to random, the RM Blast analysis shows a

significant bias distribution of SA integrations in repetitive

elements (RE), particularly in satellite, LINE and small RNA

genes. It could be that these genomic regions are favourable for

integration due to their base composition (TA-richness) or there

might be molecular mechanisms that actively recruit the

transposon/transposase complex at specific RE sites [51–55].

Curiously, the frequency of RE elements in the first-generation

transposon library and its weighted control were comparable.

Differently from the SA (obtained in 80% Venus expressing

immortalized keratinocytes without selective pressure), the first-

generation transposon library derives from transposed HeLa cells

[56] selected for two weeks by antibiotic resistance. This culture

condition could negatively select those integrations landing into

poorly expressed genomic loci or into heterochromatin regions

[35]. Nevertheless, the first-generation transposon integrations

were slightly increased into satellite regions and SINE, whereas

LTR and DNA elements were underrepresented compared to the

background.

These data identify some common features in SB datasets.

Conversely, MLV and HIV-derived viral vectors disfavour

integration in RE (satellite, LTR and LINE accordingly also to

[57]) suggesting an active role of viral integrase in the selection of

integration sites that could better support the expression,

replication and survival of the viral progeny. The genomic

features newly identified in the SA integrome raise an interesting

matter that needs to be deeply investigated for future application.

Supporting Information

Figure S1 Transposition trend. Expression of Venus

fluorescence protein was detected by cytofluorimetric analyses at

different time points in HeLa cells (A) and in GABEB cells (B). The

days post transfection (p.t.) are plotted on the X axis, while the

percentage of Venus+ cells are represented on the Y axis. The

maximum expression from a transfected reporter gene was

achieved 2 days p.t (black vertical dotted line). The plot shows

the samples co-transfected with SB100X and transposon plasmids:

T2 3.2 or the SA 5.7 (blue), T2 10 or SA 9.7 (green), T2 14 or SA

14 (purple), and the 18 kb transposons (orange). SA constructs

represented with dashed lines, T2 with continuous lines. In gold

are represented the negative controls transfected with T2 3.2 or

SA 5.7 alone, without the SB100X plasmid.

(EPS)

Table S1 List of primers used for plasmid episomial
amplification, LM-PCR, and site-specific amplification
of the SA-genome junctions.

(DOC)

Table S2 Transposed clones were analysed to show the
following parameters: number of retrieved Venus+

clones for each bulk; percentage of Venus+ cells in bulk
populations 48 hours p.t.; percentage of stable Venus
expressing cells in bulk populations; percentage of
clones positive for the Ampicillin or SB100X sequence
carried by transfected plasmids; mean copy number
retrieved by Southern blot analysis; recombinant events
detected in transposed clones by Southern blot analysis.

(DOC)
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