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Abstract: Beauty judgments for regular polygon tessellations were examined in two experiments.
In experiment 1 we tested the three regular and eight semi-regular tilings characterized by a single
vertex. In experiment 2 we tested the 20 demi-regular tilings containing two vertices. Observers
viewed the tessellations at different random orientations inside a circular aperture and rated them
using a numeric 1–7 scale. The data from the first experiment show a peak in preference for tiles with
two types of polygons and for five polygons around a vertex. Triangles were liked more than other
geometric shapes. The results from the second experiment demonstrate a preference for tessellations
with a greater number of different kinds of polygons in the overall pattern and for tiles with the
greatest difference in the number of polygons between the two vertices. Ratings were higher for tiles
with circular arrangements of elements and lower for those with linear arrangements. Symmetry
group p6m was liked the most and groups cmm and pmm were liked the least. Taken as a whole
the results suggest a preference for complexity and variety in terms of both vertex qualities and
symmetric transformations. Observers were sensitive to both the underlying mathematical properties
of the patterns as well as their emergent organization.
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1. Introduction

We are surrounded by geometric patterns. These can be seen in the tiles on floors, in wallpaper
patterns on our walls, and in the clothes we wear. They are also found in decorative artwork that
adorns the outside of buildings and in signs, advertising, and in graphic and web design [1]. All major
cultures have produced and enjoyed them [2,3]. What is the allure of these patterns? Why have we
been compelled to create and view them over the course of human history? In this paper, we will
examine these questions by looking at a group of tessellations, also known as tilings, whose geometric
and mathematical properties are well defined. We will use these properties to predict and help explain
their aesthetic appeal. In what follows, we outline the different types of tessellations, showing that they
can be categorized by the types of polygons they contain, the way they are arranged around defining
vertices, and their symmetry properties.

A plane tessellation is a pattern made up of one or more shapes, completely covering a surface
without any gaps or overlaps [4,5]. All tessellations can be extended in the plane infinitely in every
direction. Tilings are made up of closed figures that form the overall design. Closed figures all have a
perimeter and area. The simplest type of closed figure is a polygon, made of straight-line segments
and defined by number of sides and angles. Any regular triangle, quadrilateral, or hexagon will
tessellate the plane by itself. Regular in this instance means that all sides and angles are equal. Regular
pentagons, heptagons, or any other regular polygon will not tile the plane. These three types of tilings
are called regular. Any other tiling of the plane by regular polygons must occur through a combination
of two or more polygons. There are eight such types, known as semi-regular tilings.

Every regular tiling is defined by a vertex point. This vertex is surrounded by a group of polygons
that in sequence serve as a signature for its identification. The first group of 11 regular and semi-regular
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tilings are defined by one vertex point and are studied in experiment 1 (shown in Figure 1). These are
known as 1-uniform patterns. The second group of regular tilings are defined by two different vertices
and are explored in experiment 2. All of these tessellations are edge-to-edge, meaning the polygons
share common edges and vertices. However, it is possible to tessellate the plane with regular polygons
that are not arranged this way. These are called non-congruent tilings. In addition, one can tile the
plane with polygons that are not regular and do not have equal sides and angles. These tessellations are
referred to as irregular. Non-congruent and irregular tilings will not be examined in the current study.

Regular and semi-regular tilings are characterized by a set of rules first formulated in 1785 by
The Rev. Mr. Jones [6]. The first is that these tilings must have polygon angles meeting at a vertex
that sum to exactly 360◦. The second is that they must have at least three polygons and no more than
six meeting at each vertex. The third is that no semi-regular tiling can have four different types of
polygons meeting at a vertex. The study provides a more extended and technical discussion of these
rules [6]. The polygons in a shape are clearly visible and may have an impact on their perceived beauty.
People may prefer certain polygons over others or may prefer patterns with certain types of vertices.

Another way to characterize tessellations is by their symmetry properties [7]. There are four basic
symmetry transformations that when applied can transform a shape in a tessellation upon itself or
another identical shape. These are translation, reflection, rotation, and glide reflection. In translation a
shape is simply moved. In reflection it is mirror-imaged about an axis. In rotation it is rotated or spun
about a point. When shapes are rotated, they can be described by their order of rotation. If a shape
has an order of rotation of 2 it has 2-fold rotational symmetry and can be rotated into congruence
with itself by a 180◦ spin. Order 3 is 3-fold (120◦), order 4 is 4-fold (90◦), and order 6 is 6-fold, (60◦).
In glide reflection, the shape is both translated and then reflected. All of these symmetries are present
in polygon tessellations. When looking at tile patterns, one can consciously or subconsciously perceive
these transformations and so they may play a role in determining their visual beauty.

Despite their ubiquity, there is remarkably little research on the aesthetic qualities of tessellations.
Much of the work in this area has focused on individual polygons and dates from the 19th and 20th
centuries [8–13]. According to a recent study, participants judged the perceived attractiveness for all
basic types of squares and quadrilaterals [14]. There was a preference for regularity. Triangles with
smaller side length standard deviations (more equal sides) were found to be more beautiful. Observers
in that study liked equilateral triangles more than any other type of triangle. The same result was found
for quadrilaterals. As four-sided shapes become more regular, they are preferred more. Symmetry also
predicted liking for these polygons but could not completely account for all of the ranked preferences.

Symmetry is a major property affecting preference for two-dimensional geometric pattern. In one
study, participants were asked to judge the subjective beauty of novel graphic patterns [15]. Symmetry
correlated highly with aesthetic assessments as did stimulus complexity. However, they also found
individual differences, in which some of the participants preferred non-symmetric patterns. Their data
fit both a group model and an individual case model, indicating universal and particular tastes.
Another study similarly found individual differences in preferences for single polygons [16].

Recent work found that geometric symmetrical patterns are used most frequently in life, but are
also produced spontaneously in the lab [17]. In addition, they are rated significantly more attractive
than random patterns. In prior work, the researchers looked at the spatial distribution characteristics of
“Crazy Quilts” and ordered quilt patterns [18]. Crazy quilts, first created in the 1870s, are intended to
appear haphazard and unstructured. They found that these two quilt types belong to separate classes,
the first corresponding to randomness and the second to ordered production methods. The ordered
patterns were based on regular pattern motifs that repeated in the designs. Preference for random
patterns however, appear to be an exception, with most decorative arts of this nature being highly
ordered [19].

In a different study, researchers interviewed six fourth-grade children as to how they conceptualized
tessellations and compared their responses with those of two adult mathematicians [20]. Preference
tasks showed the students had a slight preference for symmetric over random patterns but judged on a
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number of other criteria such as color, complexity and motif. Although children agreed on the criteria,
there were substantial individual differences on which criteria determined appeal for a given pattern.
The children rarely created random tilings if they could make a symmetric one and often pointed out
the “patterns” in random tilings they had constructed. The mathematicians disliked tessellations with
only one interesting dimension and thus seemed to have a preference for complexity. They also enjoyed
tessellations that surprised them or were thought provoking. In addition, mathematicians preferred
tilings whose aesthetic qualities aligned with those identified by previous researchers. Children focused
on some themes the adults did not like variety of color and real-world connections. This study shows
that even young children have a sense of aesthetics and that they can apply this to both evaluating and
creating tessellations.

The current study is exploratory rather than confirmatory in nature. We thus make no a priori
predictions about which tessellations will be considered more beautiful than others. This is because
each tiling differs considerably in the kind and complexity of both the polygons that make it up and
the symmetry transformations that map these polygons onto themselves and one another. We instead
analyze a number of polygon and symmetry features to see if these can predict preference. The main
variables measured are the kind of polygons, the number of polygons around each vertex, their
symmetry group and lattice type, the kind of symmetries, their rotation order, and other characteristics,
such as the location of rotation centers. In experiment 1, we look at the 11 regular and semi-regular
tile types defined by a single vertex. In experiment 2, we test the 20 types defined by two vertices,
sometimes called demi-regular tessellations.

2. Experiment 1

2.1. Participants

Thirty-two Manhattan College undergraduates participated to fulfill a class requirement.
There were 17 males and 15 females. Vision was normal or corrected to normal. Average age of
the students was approximately 19 years. All participants volunteered to participate and signed a
consent form prior to running in the experiment. American Psychological Association ethical standards
and data confidentiality were adhered to.

2.2. Stimuli

All of the tiling patterns used in both experiments are regular, meaning they consist only of
regular convex polygons whose sides and angles are equal. The types of polygons that occur in these
tessellations are equilateral triangles, squares, hexagons, octagons, and dodecagons. All of the tiles
are edge-to-edge, in which every side of every tile is an edge of the tiling, and each side of a tile is
also a side of precisely one other tile. There are 11 distinct edge-to-edge tilings by regular polygons.
These are shown in Figure 1.
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Figure 1. The 11 types of regular polygon tessellations shown in experiment 1. The black dot indicates
a defining vertex.

One of these patterns, (F36A or 34.6) has an enantiomorphic, or mirror image form. The two
versions of these are difficult to distinguish perceptually and so only one of these versions was included
in the study. Each of these regular tessellations is identified by a unique type of vertex surrounded by
a circular sequence of polygons. For example, the purely triangular tiling F33 is defined by the vertex
(36), in the expanded notation (3.3.3.3.3.3) because the vertex is surrounded by six equilateral triangles.
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The pattern F3434 or (3.3.4.3.4) has a vertex surrounded by two equilateral triangles, a square, an
equilateral triangle, and a square.

Patterns F33, F4, and F66 (36), (44), and (63) are labeled as regular tilings or tessellations. These three
are regular if the symmetry group of the tiling acts transitively on the flags of the tiling [21]. A flag is a
triple consisting of a mutually incident vertex, edge, and tile of the tiling. For every pair of flags there
is a symmetry operation mapping the first flag to the second. The remaining eight tilings are known as
Archimedean, uniform, or semi-regular tilings. These are characterized by vertex-transitivity, meaning
that for every pair of vertices, there is a symmetry operation mapping the first vertex to the second.
In vertex-transitivity each vertex is surrounded by the same kinds of face in the same or reverse order
and with the same angles between corresponding faces.

Each pattern can also be categorized by its symmetry group that lists the type of symmetry
operations mapping motifs or elements of the pattern onto themselves and one another. For example,
the triangular tiling (36) belongs to group p6m, characterized by rotations of orders 2 (180◦), 3 (120◦),
and 6 (60◦), as well as reflections and glide-reflections. The pattern F3434 or (32

·4·3·4) belongs to
symmetry group p4g. This has reflections and rotations of orders 2 and 4 and four axes of reflection.
Table 1 lists the notations, symmetry group and polygon features for each of the 11 patterns, listed by
the preference rank determined in experiment 1. Table 2 lists the properties of each symmetry group
for the tilings used in both experiments.

Table 1. Notations, Symmetry Group and Polygon Properties for the Tilings of Experiment 1.

File
Notation

Standard
Notation

Expanded
Notation

Symmetry
Group

Polygon
Types

Polygons
in Pattern

Polygons
around Vertex

Preference
Ranking

F3434 32.4.3.4 3.3.4.3.4 p4g TS 2 5 1
F36A 34.6 3.3.3.3.6 p6 TH 2 5 2
F34A 33.42 3.3.3.4.4 cmm TS 2 5 3
F3464 3.4.6.4 3.4.6.4 p6m TSH 3 4 4
F33 36 3.3.3.3.3.3 p6m T 1 6 5

F3636 3.6.3.6 3.6.3.6 p6m TH 2 4 6
F48 4.82 4.8.8 p4m SO 2 3 7
F666 63 6.6.6 p6m H 1 3 8

F4612 4.6.12 4.6.12 p6m SHD 3 3 9
F4 44 4.4.4.4 p4m S 1 4 10

F312 3.122 3.12.12 p6m TD 2 3 11

Polygon Types: (T = Triangle, S = Square, H = Hexagon, O = Octagon, D = Dodecagaon).

Table 2. Symmetry Group Properties for the Tilings in Experiments 1 and 2.

Symmetry
Group Lattice Symmetry

Types
Rotation
Orders Other Features

cmm Rhombus Rf, Rt 2 Rf in two perpendicular directions

p4g Square Rf, Rt, Gl 2, 4 Rf in two perpendicular directions
Order 2 Rt centers are at the intersections of Rf axes

p4m Square Rf, Rt, Gl 2, 4 Rf lines intersect at 45◦

All Rt centers lie on Rf axes

p6 Hexagon Rt 2, 3, 6 No Rf; No Gl

p6m Hexagon Rf, Rt, Gl 2, 3, 6 Rf in six directions
Possibly the most complex

pgg Rectangular Rt, Gl 2 No reflections. Gl in two perpendicular directions
Rt centers not located on Gl axes

pmm Rectangular Rf, Rt 2 Rf in two perpendicular directions
Rt centers at the intersection of Rf axes

Symmetry Types: (Rf = Reflection, Rt = Rotation, Gl = Glide Reflection).
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2.3. Procedure

The tilings were presented within a circular aperture that measured 16 cm in diameter. This
was done to prevent familiarity and any framing effects where the lines in the pattern may have
aligned with prominent orientations such as gravitational vertical or the sides of the computer
monitor. Five versions of each tiling were generated. Each version corresponded to a different random
orientation. This yielded 55 trials per block. Six blocks were presented for a total of 330 trials in an
experimental session. Trial order within a block was randomized. Observers were given as much time
as they needed to respond. On average a session took about 25 min to complete.

Participants judged the beauty of each tiling using a 7-point rating scale. A “7” on the scale
corresponded to “Very Beautiful”, while a “1” corresponded to “Very Ugly”. The students were
encouraged to use the entire range of the scale, including “4”, which indicated a neutral response of no
preference. They used the number keys that ran across the top of the computer keyboard. Participants
were additionally instructed that there was no right or wrong answer and to rate the tessellations in
any manner they wanted. This was done in order to reduce experiment-induced judgment criteria or
demand characteristics. If any number other than 1–7 was entered, the participant would not be able
to advance to the next trial. In this case, they were told to re-enter an appropriate value.

Following the experiment, all participants completed a questionnaire to compile basic demographic
information. They were also asked to respond personally as to what tilings they liked and what
features of the patterns may have affected their responding. They read a written debrief form and any
remaining questions they had concerning the study were answered by the research assistant.

2.4. Results and Discussion

Any responses that exceeded seven seconds were considered moments of inattention and removed
from the data prior to analysis. These constituted about less than 3% of all the responses. Beauty ratings
were normalized by the formula of (score −min)/(max −min) where the minimum and maximum
were determined across subjects. Reaction time measures were also taken but did not produce any
interpretable results so are not reported here.

One-way analysis of variance (ANOVA) tests were performed for number of unique polygons in
the overall tile pattern (Polygons in Pattern), number of polygons around the vertex (Polygons Around
Vertex), symmetry group (Symmetry Group) and for type of tile pattern (Tile Pattern). There was a
significant effect of Polygons in Pattern, F(2, 93) = 114.03, p < 0.01, with peak responding found for
tilings with two polygons (Figure 2). Effect size as Eta Squared was (η2 = 0.05). Polygons Around
Vertex was also significant, F(3, 124) = 320.16, p < 0.01, (η2 = 0.14) with peak mean beauty ratings for
five polygons (Figure 3). Symmetry Group was analyzed next, F(4, 155) = 254.73, p < 0.01, (η2 = 0.22)
with the highest rating for tiles with group p4g (Figure 4). Finally, we looked at mean ratings for Tile
Pattern, F(10, 341) = 136.39, p < 0.01, (η2 = 0.17)with peak responding found for tile F3434 (32

·4·3·4).
This is shown in Figure 5.
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The results show that participants preferred tiles with the second greatest number of different
polygons. One might have predicted a variety effect, in which ratings increased continuously on
this variable, but this was not obtained suggesting a moderate preference for polygonal variety.
Preference also increased with number of polygons around the vertex, but only up to five. This may
indicate a limit to liking how tightly packed a pattern is with polygons, as polygon density increases
with number around the vertex. Average angle and size of polygons around the vertex are also
correlated with number. The greater the number the lower the average angle and the smaller in area
the polygons become.

Figure 5 shows mean beauty ratings by each of the 11 tessellation types. These were analyzed in
terms of the type of polygons they contained to see if participants preferred certain polygons. Looking
at ranked preference in Table 1 we see that tilings with triangles dominated the top of the list. Excluding
F312 tiles triangles occupied the top six positions. Tiles with dodecagons (F4612 and F312) were near
the bottom of the list, at positions nine and eleven respectively. These preferences were independent of
the number of different polygons around the vertex.

Preference for symmetry groups ranked high to low was as follows: p4g, p6, cmm, p6m, and
p4m. We can evaluate these rankings looking at some of the basic symmetry properties shown in
Table 2. Each tiling is characterized by an underlying lattice type. Each lattice type has a geometric cell
structure that contains the tiling’s basic pattern or motifs and which when fit together will tile that
pattern to completely fill the two-dimensional plane. Lattice type did not predict rankings. The p4g
tiling has a square lattice and was preferred the most. The p4m tiling also has a square lattice but was
preferred the least.

We can also examine the type of symmetry operations in each tiling. It was not the case
that tessellations with more symmetries were rated higher. Tile p4g has rotation, reflection, and
glide-reflection and was liked the most. But tile p4m also has these three symmetries and was ranked
lowest. Rotation order additionally did not predict liking. Tiles with the greatest number of rotation
orders (2, 3, 6) were not liked more than those that had only two (2, 4) or one (2) order of rotation.
Tile p6 and tile p6m have three rotation orders but were not liked equivalently, ranked at positions
two and four respectively. One explanation for tile p4g’s popularity is that it has reflections in two
perpendicular directions and order 2 rotation centers that are at the intersections of reflection axes. So,
the type and location of rotation centers for this pattern may be meaningful.

3. Experiment 2

The first experiment examined the 11 regular and semi-regular tiles. These are designated as
1-uniform because they are characterized by a single vertex. However, there is another class of
regular tiles that are 2-uniform, meaning they are defined uniquely by two different vertices. There are
20 distinct types of 2-uniform edge-to-edge tilings by regular polygons. These are shown in Figure 6
with the two dots indicating the vertices. These patterns allow us to potentially replicate and generalize
the findings from experiment 1 to a larger class of similar patterns. They also allow us to examine the
relationship between two vertices and how those might affect beauty judgments.

3.1. Participants

Thirty-three Manhattan College undergraduates participated to fulfill a class requirement.
There were 18 males and 15 females. Vision was normal or corrected to normal. Average age
of the students was approximately 19 years. All participants volunteered to participate and signed a
consent form prior to running in the experiment. American Psychological Association ethical standards
and data confidentiality were followed.

3.2. Stimuli

All of the tiling patterns were again regular containing polygons of equal sides and angles.
This time however there were 20 tilings characterized by having two defining vertices. Each of these
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are shown in Figure 6. Table 3 lists the notation, symmetry group, and polygon features for these
20 patterns, listed by their order of preference from the second experiment data. Table 2 lists the
properties for each of the symmetry groups including the two new groups of pgg and pmm. It should
be noted that there are several tilings among the two-uniform grouping that have equivalent vertex
designations but that differ in their appearance. These differences are explored in the data analysis.
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Table 3. Notations, Symmetry Group and Polygon Properties for the Tilings of Experiment 2.

File
Notation

Standard
Notation

Symmetry
Group

Polygon
Types

Polygons
in Pattern

Polygons
Vertex 1

Polygons
Vertex 2

Preference
Ranking

F346G 3ˆ3.4ˆ2;3.4.6.4 p6m TSH 3 5 4 1
F346C 3ˆ2.4.3.4; 3.4.6.4 p6m TSH 3 5 4 2
F346D 3ˆ6; 3ˆ2.4.3.4 p6m TS 2 6 5 3
F346F 3.4ˆ2.6; 3.4.6.4 p6m TSH 3 4 4 4

F3462A 3.4.6.4; 4.6.12 p6m TSHD 4 4 3 5
F3462B 3ˆ6; 3ˆ2.4.12 p6m TSD 3 6 4 6
F36D 3ˆ6; 3ˆ2.6ˆ2 p6m TH 2 6 4 7
F3412 3.4.3.12; 3.12ˆ2 p4m TSD 3 4 3 8
F34B 3ˆ3.4ˆ2;3ˆ2.4.3.4 p4g TS 2 5 5 9

F346E 3ˆ4.6; 3ˆ2.6ˆ2 cmm TH 2 5 4 10
F34C 3ˆ3.4ˆ2;3ˆ2.4.3.4 pgg TS 2 5 5 11
F36C 3ˆ6; 3ˆ4.6 p6m TH 2 6 5 12

F346G 3ˆ3.4ˆ2;3.4.6.4 p6 TH 2 6 5 13
F346C 3ˆ2.4.3.4; 3.4.6.4 pmm TH 2 4 4 14
F346D 3ˆ6; 3ˆ2.4.3.4 pmm TS 2 6 5 15
F346F 3.4ˆ2.6; 3.4.6.4 cmm TSH 3 4 4 16

F3462A 3.4.6.4; 4.6.12 pmm TSH 3 4 4 17
F3462B 3ˆ6; 3ˆ2.4.12 cmm TS 2 6 5 18
F36D 3ˆ6; 3ˆ2.6ˆ2 cmm TS 2 5 4 19
F3412 3.4.3.12; 3.12ˆ2 cmm TS 2 5 4 20

Polygon Types: (T = Triangle, S = Square, H = Hexagon, O = Octagon, D = Dodecagaon).

3.3. Procedure

The procedure was identical to that in the first study. The tilings were presented within the
same-sized circular aperture. Five versions of each tiling were generated. Each version corresponded
to a different randomly determined orientation. This yielded 100 trials per block. Three blocks were
presented for a total of 300 trials in an experimental session. Trial order within a block was randomized.
Observers were given as much time as they needed to respond. On average a session took about 25 min
to complete. Participants judged the beauty of each tiling using the same 7-point rating scale and the
same set of instructions described previously. Following the experiment, all participants completed a
demographic questionnaire and debrief form.

3.4. Results and Discussion

Any responses that exceeded seven seconds were considered moments of inattention and removed
prior to analysis. These constituted about less than 2% of all the responses. Beauty ratings were
normalized by the formula of (score −min)/(max −min) where the minimum and maximum were
determined across subjects. Reaction time measures did not produce meaningful results and are
not reported.

One-way ANOVAs were performed for number of unique polygons in the overall tile pattern
(Polygons in Pattern), the difference in the number of polygons between the two vertices (Polygons
Vertex 1 − Vertex 2, where vertex 1 contained the larger number), the tessellations symmetry group
(Symmetry Group) and for type of tile pattern (Tile Pattern). There was a significant effect of Polygons
in Pattern, F(2, 96) = 84.46, p < 0.01, (η2 = 0.09) with ratings increasing with the number of polygons
(Figure 7). Ratings for the difference in the number of polygons between the two vertex centers was
also significant, F(2, 96) = 51.97, p < 0.01, (η2 = 0.06) with mean beauty ratings at a minimum for tilings
with equal numbers of polygons and rising as the difference increases (Figure 8). Symmetry Group was
analyzed next, F(6, 224) = 247.32, p < 0.01, (η2 = 0.10) with the highest rating for tiles with group p6m,
followed by p4m, p4g, pgg, p6, pmm, and cmm (see Figure 9). Finally, we looked at mean ratings for
each of the 20 unique patterns, what we call Tile Pattern, F(19, 640) = 104.60, p < 0.01, (η2 = 0.26) with
peak responding found for four tiles in the F346 group, intermediate level responding for several tiles
in the F36 group and lowered ratings for some of the F34 group of tiles. This is depicted in Figure 10.
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Participants preferred tiles with the greatest number of different polygons. Unlike experiment 1,
in this study ratings increased continuously on this variable. In fact, going from 2–4 polygons the effect
looks quite linear. The results suggest a preference for either complexity or variety of basic polygon
shapes. Perhaps the difference between the two experiments has to do with the range of polygons
presented. When a greater number of types are present, there may be a preference shift towards
increased complexity.

In this experiment the patterns are categorized based on two vertex centers with different numbers
and types of polygons. In order to capture whether participants are sensitive to the presence of these
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centers we took the difference in the number of polygons between them and used this to predict
ratings. The results show a clear preference for centers that differ from each other in polygon number.
Patterns in which the number was the same were liked the least with an upward trend as the difference
increased. Patterns with different centers are less homogenous so this result could again indicate a
preference for variety or complexity. These results show that participants are sensitive to vertices and
that they do seem to affect aesthetic judgments.

We compared tiles that had equivalent vertex designations but varying similarity. Some of these
equivalents are nearly identical to one another in appearance while others are more dissimilar. If there
is no difference in responding between such equivalents then the underlying vertices play a more
important role in determining perceived beauty. If there is a difference between equivalents that is
discernible, then surface appearance should be the more important factor. A Least Squared Means
Differences analysis (Tukey HSD) was performed for all pair-wise tiles (α = 0.05, Q = 3.54). There was
no significant difference in mean ratings between any of the vertex equivalent pairs (F36B–F36C,
F34D–F34E, F34B–F34C, F34A–F34F, F346A–F346B). We conclude that the vertices, although less
obvious than some of the larger features in these patterns, affected responding more. This result
corroborates the vertex difference findings reported above and shows that our observers are sensitive
to vertex properties.

Unlike in experiment 1 it is difficult to determine a preference for triangles, since all of the patterns
contain them. Looking at the rankings for polygon type in Table 3 there doesn’t seem to be a preference
either for patterns with a particular collection of polygons. To illustrate, patterns containing triangles,
squares, and hexagons (TSH) are in positions 1, 2, 4, 16, and 17, which are at both the top and bottom
of the list.

However, there are some clusters present in the rankings related to specific types of tile patterns.
F346G, F346C, F346D, and F346F are all in the top four positions. These tiles all have a global motif
consisting of a hexagon surrounded by triangles and squares, indicating that the holistic configuration
of polygons is important for aesthetic evaluation. The result implies that participants were perceiving
emergent collections of shapes within the tiles and not just processing them at the individual vertex
or polygon level. Tiles F3462A and F3462B were also ranked high, at positions five and six as was
F3412 at position eight. These tessellations are characterized by large dodecagons surrounded by
interconnecting collections of triangles, squares and hexagons. These patterns can be characterized as
having prominent, more circular central spaces.

The tessellations at the bottom of the rankings are also informative. F34D, F34F and F34A were
the least preferred at positions 18, 19, and 20, respectively. They all have linear stripes of squares that
run through them along with stripes of interlocking triangles. The same can be said for F34E, F346B
and F346A at positions 15, 16 and 17. Emergent linear formations thus seem to be less liked than
other configurations.

The results with regard to symmetry group based on Table 3 fall into roughly three categories.
First, tiles with symmetry group p6m were preferred the most. These tessellations made up the
top seven rankings and position 12. p6m tiles have a hexagonal lattice, contain all three symmetry
operations (Rf, Rt, Gl) and rotation orders of 2, 3, and 6. As such they appear to have the highest
degree of symmetric complexity. Second, tessellations in group cmm and pmm were liked the least.
These were in the bottom seven positions and at ranking number ten. cmm have rhombic lattices,
contain reflections and rotations and a rotation order of 2. pmm have rectangular lattices, reflections
and rotations, with a rotation order of 2. Third, the remaining symmetry groups p4m, p4g, pgg, and p6
were in approximately intermediary locations in the list.

4. Conclusions

In this study, we examined preference for tessellations containing regular polygons. In experiment
1 we tested the three regular and eight semi-regular (Archimedean) tilings characterized by a single
vertex, excluding the single enantiomorphic alternate. In experiment 2 we tested the 20 demi-regular
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tessellations defined by two vertices. The data from the first experiment show a peak in preference for
tiles with two types of polygons and for five polygons around a vertex. Triangles were preferred more
than other geometric shapes. There was no clear-cut effect of symmetry group and no preference for
tiles with a greater number of symmetry operations. The results from experiment 2 show a preference
for tessellations with a greater number of different kinds of polygons in the overall pattern and for tiles
with the greatest difference in the number of polygons around the two vertices. There was increased
preference for tessellations with hexagonal and dodecagonal centers and decreased preference for
those with linear square striping. Symmetry group p6m was liked the most and groups cmm and pmm
were liked the least.

There are several themes that emerge from the results. The first of these is complexity. This is
notoriously difficult to define in a visual stimulus and can vary based on a number of factors [22].
Nevertheless, in our study we will define it based on several features. Tessellations with a greater
number of polygon types may be considered more complex since they contain a greater variety of
different geometric shapes. We see a preference for this in experiment 2. Another form of complexity
may be the number of polygons around the defining vertices. This peaked at the second highest number
in experiment 1 but showed a linear increasing effect in experiment 2. We measured this as the difference
between the two vertices in the second study. The greater this difference the more heterogeneous the
pattern becomes. This was also found to drive responses demonstrating a complexity preference.

Complexity can also be demonstrated in terms of the symmetry group. Pattern p6m appears to
be the most complex. It has all three types of symmetric transformations, all three rotation orders
and reflection in six different directions. p4g and p4m have the three symmetry types but only two
rotation orders. p6 has all three rotation orders but only one type of symmetry. p6m was the number
one preferred type in experiment 2. In contrast, cmm and pmm were least liked in that study and may
be considered the least complex. They have two symmetry types but only one rotation order. However,
this result must be interpreted with some caution. Pgg shares these properties but has no reflections,
which may reduce its complexity. It is not clear how to interpret lattice types in terms of complexity
but hexagonal lattices were liked the most overall, followed by square lattices. Rhombic lattices were
liked the least with square and rectangular lattices occupying the middle ground.

One of the earliest studies examining fractal patterns varied dimension, recursion, and number
of segments in starting generator lines [23]. Ratings of complexity were affected most by recursion
and fractal dimension. More recent work has shown that preference for fractal patterns increases with
these same measures of stimulus complexity [24]. This study presented artificially generated fractals
to observers who evaluated them aesthetically. Preference ratings for most of the participants went up
with an increase in fractal dimension. The presence of symmetry interacted with the other variables
in their study. Preference for patterns at low levels of recursion were increased by the presence of
symmetry. Most of those tested required a high level of recursion to increase liking for patterns lacking
in symmetry. Some but not all of the patterns with high rankings in our study had high estimated
dimensionality. Pattern F346D and F36B both have lots of space-filling curves, but only the former was
rated highly. Although our patterns did not have exact repeating structures at different scales, there
was approximate repetition for some shapes. For example, F3462A, F3462B, F346D, F346G and F36D
all have recursive circular formations by individual polygons or collections of polygons at different
sizes and were highly ranked but F36D, which was also highly rated, does not.

A second major theme regards centers. In experiment 2 the preference for vertex centers differing
in number of polygons was somewhat surprising because these centers are not always easy to locate,
even when one is aware of their presence. Our participants were naïve with regard to the mathematical
properties of the patterns and average response time was often quick, around one second. The data
therefore suggest that observers were able to rapidly process information about the two vertex centers
and that these vertex centers had a clear influence on their aesthetic judgments. This finding is
corroborated by the vertex equivalent pairs, which were responded to similarly despite cases where
their outward appearances were different. It is probable that our participants did not locate these centers
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analytically or count the number and type of polygons around them, as they had little knowledge
of their existence. Instead they were able to perceptually detect the difference somehow by noting
changes in the arrangement of polygons across the pattern.

Based on the experiment 2 results our participants showed a preference for tiles containing
hexagonal and dodecagonal centers and did not seem to like as much tiles with linear arrangements
of squares or triangles. Centers in this sense refer not to vertex centers but to prominent polygons
that other polygons organize around. For example, pattern F346C has prominent hexagons with
triangles and squares around it. It also has salient triangles with other triangles and squares around it.
In comparison pattern F34F has no perceptually noticeable centers. It appears to consist of alternating
linear bands of squares two rows thick interspersed with single linear rows of triangles.

To further determine the role of circular and linear arrangements we assigned each of the 20
tessellations in experiment 2 one of three rankings, “C” if it contained a primarily circular configuration
of elements, “L” if it had a mostly linear arrangement and “M” if it contained a mixture of circular and
linear elements. 71% of the upper third of rankings were circular, 57% of the middle third were mixed,
and 100% of the bottom third were linear. This suggests a preference for tessellations with rotational
rather than linear configurations. It also strongly demonstrates that emergent structures made of
multiple individual polygons are affecting perceived beauty. It may be that recursive spatial scales are
more detectable with circular arrangements and that this could be driving preference in these patterns.

It is not clear how to reconcile some of the differences between the two experiments. In experiment
1 there appears to be a preference for moderate complexity in terms of preference for number of
polygons in the pattern and around the vertex. More complex symmetry groups were not predictive in
that study and there was no preference for circular vs. linear arrangements (a linear configurations
appears at ranking position 3 and 10). In contrast, for experiment 2 there were trends towards
increased complexity based on polygons and symmetry, and a distinct circular arrangement preference.
One explanation may concern the variety of tilings viewed. If the viewing set is small and the range of
pattern examples is limited in terms of complexity and variety, participants may correspondingly limit
their preference to lower levels of these measures. When the viewing set is larger and contains a greater
variety of different examples, then there may be a shift toward preference for greater complexity.

There is much further fruitful ground for study. Many different categories of tessellations exist
that have yet to be examined from an aesthetics standpoint. These include three-uniform patterns with
regular polygons defined by three vertices, mixtures of regular and non-regular polygons, tessellations
with star and diamond polygons, monohedral tessellations made from a single shapes like triangles,
quadrilaterals, and pentagons, N-morphic monohedral tilings in which the same shape can tile the
plane in different ways, homohedral tiles that are similar but not identical, polyiamonds, polyominoes,
and polyhexes, Escher and Penrose tilings, and many more [25–28]. The aesthetics of tessellations and
the properties that determine their appeal has hopefully just begun.
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