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Abstract--To help characterize complicated physical and mathematical structures and phenomena, 
computers with graphics can be used to produce visual representations with a spectrum of perspectives. 
In this paper, unusual "tesselation automata" (TA) are presented which grow according to certain 
symmetrical recursive rules. TA are a class of simple mathematical systems which exhibit complex behavior 
and which are becoming important as models for a variety of physical processes. This paper differs from 
others in that its focuses on symmetrical TA derived from a single defect, and reader involvement is 
encouraged by giving "recipes" for the various chaotic forms which represent a visually striking and 
intricate class of shapes. 

I N T R O D U C T I O N  

"Some people can read a musical score and in their minds hear the music . . . .  Others can see, in their 
mind's eye, great beauty and structure in certain mathematical functions . . . .  Lesser folk, like me, need 
to hear music played and see numbers rendered to appreciate their structures." 

P. B. SCHROEDER 

Today,  there are several scientific fields devoted to the study of  how complicated behavior can arise 
in systems from simple rules and how minute changes in the input of  nonlinear systems can lead 
to large differences in the output; such fields include chaos and tesselation automata  (TA) 
theory. In this paper, I briefly discuss some empirical results obtained by experimentation with a 
particular class of  symmetrical TA. Some of  the resulting patterns are reminiscent of  the planar 
ornaments  of  a variety of  cultures (ornaments with a repeating mot i f  in at least two nonparallel 
directions). 

"Tesselation au tomata"  are a class of  simple mathematical  systems which are becoming 
important  as models for a variety of  physical processes. Referred to variously as "cellular 
au tomata" ,  "homogeneous  structures", "cellular structures" and "iterative arrays",  they have been 
applied to and reintroduced for a wide variety of  purposes [1-4]. The term "tesselation" is used 
in this paper  for the following reasons: when a floor is covered with tiles, a symmetrical and 
repetitive pattern is often formed--s t ra ight  edges being more common then curved ones. Such a 
division of  a plane into polygons, regular or irregular, is called a " tesse la t ion"--and I have chosen 
"tesselation" here to emphasize these geometric aspects often found in the figures in this paper. 

Usually TA consist o f  a grid of  cells which can exist in two states, occupied or unoccupied. The 
occupancy of  one cell is determined from a simple mathematical analysis of  the occupancy of  
neighbor cells. One popular  set of  rules is set forth in what has become known as the game of  
" L I F E "  [2]. Though the rules governing the creation of TA are simple, the patterns they produce 
are very complicated and sometimes seem almost random, like a turbulent fluid flow or the output 
of  a cryptographic system. 

The term "chaos"  is often used to describe the complicated behavior of  nonlinear systems, and 
TA are useful in describing certain aspects of  dynamical systems exhibiting irregular ("chaotic") 
behavior [5, 6]. Other simple algorithms studied by the author which produce interesting and 
complicated behavior are described in Ref. [7]. Apar t  from their curious mathematical properties, 
many  nonlinear maps now have an immense attraction to physicists, because of  the role they play 
in understanding certain phase transitions and other chaotic natural phenomenon [5]. 

The present paper  is number  eight in a "Mathematics  and Beauty" series [7] which presents 
aesthetically appealing and mathematically interesting patterns derived from simple functions. 
The resulting pictures should be of interest to a range of scientists as well as home-computer  
artists. 
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MOTIVATION 

One goal of this paper is to demonstrate and emphasize the role of recursive algorithms in 
generating complex forms and to show the reader how to create such shapes using a computer. 
Another goal is to demonstrate how research in simple mathematical formulas can reveal an 
inexhaustible new reservoir of magnificent shapes and images. Indeed, structures produced by these 
equations include shapes of startling intricacy. The graphics experiments presented, with the variety 
of accompanying parameters, are good ways to show the complexity of the behavior. This paper 
differs from others in that its focuses on TA derived from a single defect (explained below) using 
symmetrical rules, and that reader involvement is encouraged by giving "recipes" for the various 
chaotic forms which represent a visually striking and intricate class of  shapes. 

METHOD AND OBSERVATIONS 

TA are mathematical idealizations of physical systems in which space and time are discrete [1]. 
Here I present unusual patterns exhibited by figures "growing" according to certain recursive rules. 
The growth occurs in a plane subdivided into regular square tiles. Note, in particular, that with 
the rules of growth in this paper, the figures will continue increasing in size indefinitely as time 
progresses. In each of my cases, the starting configuration is only 1 occupied square, which can 
be thought of a single defect (or perturbation) in a lattice of all 0s, represented by: 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

(1) 

TA Type I 

This is the simplest system to set up, yet the behavior is still interesting. Given the nth generation, 
I define the (n + 1)th as follows. A square of the next generation is formed if it is orthogonaUy 
contiguous to one and only one square of the current generation. Starting with the pattern in 
equation (1) for n = 1 pattern for n = 2 would be: 

iioooo 0 1 0 0 
1 1 1 0 

0 1 0 0 

0 0 0 0 

(2) 

Figure 1 indicates the results at n = 200. This TA is similar to that described in Refs [2, 4]. Note 
that no "death 's" of squares occur (i.e. no 1 ~ 0 transitions can occur; deaths are employed in many 
CA experiments [2]). Note also that on the four perpendicular axes [which go through (0, 0)], all 
the squares will be present. These are the stems from which branching occurs. 

TA Type 2. Time dependence of rules 

A. "Mod 2" TA. Given the nth generation, I define the (n + 1)th as follows. A square of the 
next generation is formed if: 

1. It is orthogonally contiguous to one and only one square of the current generation for even 
n (i.e. n mod 2 = 0). 

2, It is contiguous to one and only one square of the current generation, where the local 
neighborhood is both orthogonal and diagonal, for odd n (n mod 2 = 1). 
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In other words, for (n mod 2 = 0) 

if ~ Corth = 1 ~ CO.= 1, 

where 

For (n mod 2 = 1) 

co,, = I t , j÷ , .  cij_ ,. C,+ ,j. C,_ ,j]. 

(3) 

(4) 

(5) if ~ Corth_diag ---~ 1 ~ C/j = l, 

where 

Cort,~i~ = [Cij+ ,, Cij_ ,, C,+ ,j, Ci_ ,j CI+ ,j+,, Ci_ ,j_ l, Ci_ t..,+ ,, Ci+ , j_ ,]. (6) 

Notice the discrete symmetrical planes running through these TA. For example, see the planes in 
Figs 2 and 3. 

We can use this observation to get a visual idea of resultant patterns, for large n, in a multi-defect 
system (see TA Type 3). 

B. "Mod 6" TA. Given the n th generation, I define the (n + 1)th in a same manner as for Type 
2A, except that n rood 6 = 0 vs n mod 6 :/: 0 determines the temporal evolution of the pattern 
(Fig. 4). 

TA Type 3. Contests between defects 

More than one initial defect can be placed on a large infinite lattice. We can let them each grow 
and finally merge (and compete) according to a set of  rules. Figure 5 is a TA of Type 2A, 
and it shows three defects after just a few generations (this figure is magnified relative to others). 
Figure 6 shows the growth for large n. 

To help see the numerous symmetry planes and to get an idea about the shape of  the figure as 
it evolves, the reader can draw the primary radiating symmetrical discrete planes [see Type 2A] for 
example, see Fig. 6. For a recent fascinating article on competition of  TA rules, see Ref. [8] which 
models biological phenomena of  competition and selection by TA "subrule competition". 

Type 4. Defects in a centered rectangular lattice 

In this type of TA, a single defect is placed in a lattice of the form: 

I 0" 
0 1 

1 0 
0 1 

1 0 

(7) 

F0 1 0 
1 0 1 
0 1 0 

1 0 1 
0 1 0 

This is known as a "centered rectangular lattice" [9]. In some experiments, two different 
background lattices with adjacent boundaries are used, and the defect propagates from its 
beginning point in the centered rectangular lattice through the interface into the second lattice 

(8) 

defined by: 

- 0  1 0 1 0 -  
0 1 0 1 0 

0 1 0 1 0 
0 1 0 1 0 

0 1 0 1 0 

(known simply as a "rectangular lattice"). Adding a defect to these two-phase systems bears some 
similarity to seeding supersaturated solutions and watching the crystallization process grow and 
"hi t"  the boundary of a solution with a different composition. In the examples in this paper, the 
two phases are also reminiscent of  metal-metal interfaces--such a silicon 100 (centered rec- 
tangular) and chromium (rectangular). Note that with no defect present, the rules described have 
no effect on either lattice! Only when the defect is placed in the lattice does any growth occur. 



324 C .A.  PICKOVER 

Fig. 1. TA Type 1 "growing" for 200 generations, starting with a single seen in the center of this figure. 
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Fig. 2. TA Type 2A. The TA presented here has a time dependency to its rules of growth. 
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Fig. 3. Same as Fig. 2, but  plotted as its negative. 
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Fig. 4. TA Type 2B, with time dependent growth. 

Fig. 5. Multi-defect system composed of three initial seeds of TA Type 2 (figure is magnified relative to 
Fig. 6). 

CAMWA 17-1/3--U 



328 C.A.  PICKOVER 

Fig. 6. Same as Fig. 5, except computed for longer time. 

Fig. 7. TA Type 4A defect which has been growing from a center position in a centered rectangular lattice 
(seen as a diffuse grey background at this resolution). Without the presence of  the defect, the rules have 

no effect on the lattice. 
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The rules for growth of the defects are as follows (note that deaths of cells can occur in these 
systems): 

A. TA Type 4,4. 

if ~ C = 3 ^  if C ~ , j = O ~ C i j = I ,  (9) 

if ~ C = 3 ^  if C~,j=I--*Ci, j=O, (10) 

where 

if 

if 

Type 5. Larger local neighborhood 

c = ICe.j+,, c i . j_ , ,  c,+,j, c,._,~., C+,j+,, c,. ,j_,]. (ll) 

The symbol A denotes a logical "and".  Figure 7 shows a defect which has been growing from a 
central position in a centered rectangular lattice (which is seen as a diffuse grey background at this 
resolution). Figures 8(a)-(d) show the propagation of the defect through a two-phase boundary. 
Note that the propagation behavior is visually different once in the second layer. For example, 
notice that the growth in the bottom layer appears to be constrained to planes 0 ° and 60 ° with 
respect to the lattice. 

The introduction of "germ" cells appears to be useful in simulating real nucleation processes. 
An interesting paper in the literature describes solid-solid phase transformations of shape memory 
alloys, such as Cu-Zn-AI,  using a 1-D cellular automata approach [10]. In this investigation, each 
cell represents several hundred atoms. 

The search for muitiphase systems, such as the ones in this paper, which are unaffected by a rule 
system until a defect is added, remains a provocative avenue of future research. 

B. TA Type 4B. This case (see Fig. 9) is the same as the subset 4A, except that 

if ~ C = 3 / x C ~ , j = I ~ C ~ , j = O  (12) 

if ~ C = 3 ^ C~,j = 0 --. C~,j = 1 (13) 

C #3ACi ,  j= 1 ---~Ci, j=  1 (14) 

C ~ 3 ^ Cj, j = 0 ~ Ci, j = 0. (15) 

In TA Types 1-4, the neighborhood was defined as being within one cell of the center cell under 
consideration. In this system, the local neighborhood is larger. The rule is as follows: 

if ~ C = 0(mod 2) ---, Cij = 0, (16) 

if ~ C  #O(mod2)-- ,Ci , j= 1, (17) 

where 

C = [C/- 2j+2, Ci+2./+2, Cij+ ,, Ci_ ,.j, Ci+ ,j. Cij_ I, C~-2j-2, C,'+ 2./- 2]. (18) 

Figures 10(a)--(e) show the evolution of a two-state background defined by the lattices in equations 
(7) and (8) for several different snapshots in time. Unlike Type 4, the background without a defect 
is disturbed by this rule-set. Notice the visually unusual behavior of this system with both symmetry 
and stochasticity present. Also note the interesting growth of the two defects which have been 
placed next to each other in the top layer. 

SUMMARY AND CONCLUSIONS 

"Blindness to the aesthetic element in mathematics is widespread and can account for a feeling that 
mathematics is dry as dust, as exciting as a telephone took . . . .  On the contrary, appreciation of this 
element makes the subject live in a wonderful manner and burn as no other creation of the human mind 
seems to do." 

P. J. DAvis and R. HERscr~ 

Among the methods available for the characterization of complicated artistic, mathematical and 
natural phenomena, computers with graphics are emerging as an important tool (for several papers 
by this author, see Ref. [11]). In natural phenomena, there are examples of complicated and ordered 
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Fig. 8(a). Magnified picture of the beginning of propagation of a Type 4A defect through a two-phase 
system. The top phase is a centered rectangular lattice, while the bottom phase is a rectangular lattice. 

Fig. 8(b). Same as Fig. 8(a) except less magnified and computed for 60 generations. The defect has just 
"broken through" the boundary. 
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Fig. 8(c). Same as Fig. 8(b), for 80 generations. 

Fig. 8(d). Same as Fig. 8(c), for 100 generations. 
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Fig. 9(a). Propagation for TA. Type 4B in a two-phase system (n = 120). 

structures arising spontaneously from "disordered" states and examples include: snowflakes, 
patterns of flow in turbulent fluids, and biological systems. As Wolfram points out [1], TA are 
sufficiently simple to allow detailed mathematical analysis, yet sufficiently complex to exhibit a wide 
variety of complicated phenomena, and they can perhaps serve as models for some real processes 
in nature. 

In contrast to previous systems where mathematical and aesthetic beauty relies on the use of 
imaginary numbers [12], there calculations use integers--which also facilitates their study with 
programming languages having no complex data types on small personal computers. The forms 
in this paper contain both symmetry and stochasticity, and the richness of resultant forms contrasts 
with the simplicity of the generating formula. Running TA at high speeds on a computer lets 
observers actually see the process of growth. 

TA portraits contain a beauty and complexity which corresponds to behavior which mathemati- 
cians were not able to fully appreciate before the age of computer graphics. This complexity makes 
it difficult to objectively characterize structures such as these, and, therefore, it is useful to develop 
graphics systems which allow the maps to be followed in a qualitative and quantitative way. The 
TA graphics program allows the researcher to display patterns for a specified length of time and 
for different rule systems. 

Some of these figures contain what is known as nonstandard scaling symmetry, also called 
dilation symmetry, i.e. invariance under changes of scale (for a classification of the various forms 
of self-similarity symmetries, see the second reference in Ref [12]). For example, if we look at any 
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Fig. 9(b). Propagation for TA Type 4B in a two-phase system (n --200). 

one of the geometric motifs we notice that the same basic shape is found at another place in another 
size. Dilation symmetry is sometimes expressed by the formula (r ~ at). Thus, an expanded piece 
of some TA can be moved in such a way as to make it coincide with the entire TA, and this 
operation can be performed in an infinite number of ways. Other more trivial symmetries in the 
figures include the bilaterial symmetries and the various rotation axes and other mirror planes in 
the TA. Note the dilation symmetry has been discovered and applied in different kinds of 
phenomenon in condensed matter physics, diffusion, polymer growth and percolation clusters. One 
example given by Kadanoff  [13] is petroleum-bearing rock layers. These typically contain fluid-filled 
pores of many sizes, which, as Kadanoff  points out, might be effectively understood as 2-D fractal 
networks known as gaskets [13], and I would add that TA may also serve as visual and physical 
models for these types of structures. 

These figures may also have a practical importance in that they can provide models for materials 
scientists to build entirely new structures with entirely new properties [14]. For example, Gordon 
et al. [14] have created wire networks on the micron size scale similar to some of these figures with 
repeating triangles. The area of their smallest triangle was 1.38 +_ 0.01 #m 2, and they have 
investigated many unusual properties of their superconducting network in a magnetic field (see their 
paper for details). 

From an artistic standpoint, TA provide a vast and deep reservoir from which artists can draw. 
The computer is a machine which, when guided by an artist, can render images of captivating power 
and beauty. New "recipes", such as those outlined here, interact with such traditional elements as 
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Fig. 10(a). Evolution of  a two-state background defined by 
the lattices in equations (7) and (8). Two adjacent defects 
have been placed in the top layer, and the result for two 

generations (n = 2) is shown. 

.l•r•,•.•.•'•l:.•:l,•.-"• -- ~ . . .  

I IIII 

Fig. 10(b). Figure after 8 generations (n = 8). 

?i ?i 

Fig. 10(c). n = 20. Fig. 10(d). n = 40. 

Fig. 10(e). n = 80. Note that the patterns, previously well ordered, appears to be on the route to "chaos". 
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form, shading and color to produce futuristic images and effects. The recipes function as the artist's 
helper, quickly taking care of much of the repetitive and sometimes tedious detail. By creating an 
environment of advanced computer graphics, artists with access to computers will gradually change 
our perception of art. 

Also from a purely artistic standpoint, some of the figures in this paper are reminiscent of Persian 
carpet designs [15], ceramic tile mosaics [15], Peruvian striped fabrics [15], brick patterns from 
certain Mosques [16], and the symmetry in Moorish ornamental patterns [17]: 

A v _ ~ & A w . . ~ & A v . . v A A ~ . . v A A t _ v & & ~ A &  " 
~AYA A kv/~ A & v A  A- A v A , •  k v A  A ,A ~kAA 
r ~ A v v v ,  ,%T.VAV.v~ 
v &  A v  v,,, A v  . T A & v . . v &  & v . . v & & ~ m v  & A v  v~ 
t',~ k--AV,,'A--AV,: • ~ V ~  ,t ~ w r  • i , v ~  ~ ,-AV~ 
fk~ • v , .v  • yAv. v .rAy - v yAv_v_v, Av...~V,A$ ~ •  . v ~ v . v , r  k v  " .v~ ~,v. y,~ A*..*A A*_vA ,," 

~..•~v. vyAv.  • .v~v. • .v•v. • .v~v. • • . •  • ~  

k,~vA~_v_ vAv,,,~ .vAv..,v..V'Av V...g,.VAV_.V_VAV. 
~k,Y..,vA Av..y.,dkA v,,dP'A Av,  dP'& A Y  lvA~wLVAk~I  

Scheme 1 

The  idea  o f  invest igat ing the o rnamen t s  and  decora t ions  o f  var ious  cul tures  by  cons ide ra t ion  
o f  their  symmet ry  g roups  appea r s  to have or ig ina ted  with Po lya  [15, 18]. This  ar t is t ic  resem- 
blance  is due  to the compl i ca t ed  symmetr ies  p roduced  by the a lgor i thm,  and  it is suggested 
tha t  the reader  explore  the var ious  pa rame te r s  to achieve art is t ic  con t ro l  o f  the visual  effect mos t  
desired.  

In summary ,  all the T A  shown here have an infinite var ie ty  o f  shapes,  and  a l though  the equa t ions  
seem to d i sp lay  wha t  might  be cal led " b i z a r r e "  behavior ,  there  nevertheless seems to be a l imited 
r epe r to ry  o f  recurrent  pa t terns .  A repor t  such as this can only  be viewed as in t roduc to ry .  However ,  
it is h o p e d  tha t  the techniques,  equat ions ,  and  systems will p rov ide  a useful tool  and  s t imula te  
fu ture  studies in the graphic  charac te r i za t ion  o f  the morpho log ica l ly  rich s t ructures  p r o d u c e d  by 
relat ively s imple genera t ing  formula .  

Acknowledgement--I owe a special debt of gratitude to Charles Bennett for introducing me to TA Type 4B. 
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A P P E N D I X  

Recipe for Picture Computation 

In order to encourage reader involvement, the following pseudocode is given. Typical parameter constants are given 
within the code. Readers are encouraged to modify the equations to create a variety of patterns of their own design. Initially, 
the C array is 0 for all its elements, except fora value of I placed in its center. For the program below, a temporary array, 
Ctemp, is used to save the new results of each generation. The routine below would be called n = 200 times in a typical 
simulation. 

ALGORITHM: TA GENERATION (TYPE 2A) 
INPUT: I DEFECT, Centered in the C array 
OUTPUT: TA PATTERN 
TYPICAL PARAMETER VALUES: 

Size = 400 
N is the generation counter - goes from I to 200 

do i = 2 to size-l; (* X - direction *) 
do j = 2 to size-l; (. Y - direction .) 

if C(i,j) = 0 then do; (. Test for vacancy .) 
if mod(n,21 = 0 then (. Test for even number .) 

sum = C(i,j+1)+C1i,j-1)+C(i+1,j)+C(i-l,j); 
else 
sum = C(i,j+1)+C(i,j-1)+C(i+1,j)+C(i-l,j) + 
C(I+I,j+I) + C(i-l,j-1}+ C(I-I,j+I)+C(i+I,j-I); 

if sum = I then Ctemp(i,j) = 1; 
end; (* End j loop .) 

end; {* End i loop ") 

Program 1 


