DESY 16-153 CP violation in multibody decays of beauty baryons Gauthier Durieux DESY, Notkestrasse 85, D-22607 Hamburg, Germany Abstract: Beauty baryons are being observed in large number in the LHCb detector. The rich kinematics of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-1/2 baryons using the Jacob– Wick helicity formalism. The asymmetries that provide access to small differences of CP- odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states al- lows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the Λb → Λ ϕ → pπ K+K− decay are expected to vanish identically. ar X iv :1 60 8. 03 28 8v 1 [ he p- ph ] 1 0 A ug 2 01 6 1 Introduction Despite of production rates somewhat smaller than that of mesons, beauty baryons are now being observed in significant number in the LHCb detector. They have therefore started to offer complementary means to test the standard model. The search for new sources of CP violation is an especially relevant direction in which they could provide new opportunities. Incidentally, a first hint of CP violation could just have been observed in the Λb → pπ−π+π− channel [1]. Using angular momentum conservation through the Jacob– Wick helicity formalism, we aim at determining what angular asymmetries can be expected in specific beauty baryon decays as well as how they relate to the underlying dynamics and its discrete symmetry properties. By discussing the case of spin-1/2 baryon decays, this paper extends Ref. [2] that focused on the case of spin-0 particles. Most of our results also apply to the decay of any spin-1/2 state. A violation of CP, sourced in the standard model or beyond, manifests itself through relative CP-odd phases—also called weak phases—between decay amplitudes. They can be accessed through interferences in which CP-even—or strong—phases originating from the absorptive parts of amplitudes can also appear. The most common interferences take the following form: Re{A∗1A2} = |A ∗ 1A2| Re { ei∆δ12+i∆ϕ12 } = |A∗1A2| ( cos ∆δ12 cos ∆ϕ12 − sin ∆δ12 sin ∆ϕ12 ) , where ∆ϕ and ∆δ respectively denote CP-odd and CP-even phase differences. The second CP-odd term can be extracted by combining CP-conjugate processes, through rate asym- metries notably. It provides sensitivity to small differences of weak phases, a sensitivity which is however conditioned on the presence of relative strong phases. Some other inter- ferences take the Im{A∗1A2} = |A ∗ 1A2| ( sin ∆δ12 cos ∆ϕ12 + cos ∆δ12 sin ∆ϕ12 ) form. The second CP-odd term extracted by combining CP-conjugate processes is again sensitive to small weak phase differences, but does not vanish in the absence of relative strong phases. Studying this second type of interferences is therefore particularly relevant in cases where small strong phases are expected. Measuring both types of interferences can also lead to a better understanding of strong phases which are difficult to compute when they result from nonperturbative dynamics. Beside rate asymmetries already mentioned, differential distributions can serve to ac- cess various interference terms. Exploiting the distributions of decay products instead of decay rates can also be advantageous when the production cross sections of CP-conjugate particles differ—as they generally do in pp collisions—and production rate asymmetries are not precisely known. It is useful to define motion reversal T̂ (often called naive time reversal), a transformation that reverts momentum and spin three-vectors. Indeed, the motion reversal properties of differential distributions determine which type of amplitude interferences they give access to: T̂-even observables provide access to the Re{A∗iAj} in- – 2 – terferences, T̂-odd observables to the Im{A∗iAj} ones. Let us focus somewhat on the T̂- odd observables which thus yield sensitivity to small differences of CP-odd phases between amplitudes having small or vanishing relative CP-even phases. In a Lorentz-invariant form, T̂-odd variables only appear proportional to a completely antisymmetric �µνρσ contraction of four independent four-vectors. In processes involving only spinless external states, they can thus only be constructed when at least five external particles are involved, like in four- body decays. In processes involving spinning particles, T̂-odd variables can in principle also be constructed through the antisymmetric contraction of both momentum and spin four-vectors. They constitute qualitatively different observables. Unlike momenta, the spin vectors of stable particles are however practically unmeasurable in the context we are inter- ested in. So we will refrain from considering as observables the �µνρσ contractions in which they appear (that give rise to triple products like s · (pi × pj) in a specific frame). Only angular distributions that derive from measured final-state momenta will be awarded that status. Final-state spins will be altogether disregarded and summed over. The polarisation of the decaying particle can however be considered as resulting from the production process since it is determined by production amplitudes. In the decay of spinning particles, the angular distributions of decay products can then be viewed a providing access to combin- ations of production and decay amplitudes. This is to be contrasted with the decays of spinless particles where they provide direct access to decay amplitudes. From this more practical point of view, here is how spinning particles offer new oppor- tunities to search for small differences of CP-odd phases between decay amplitudes that have identical—potentially vanishing—CP-even phases. As a matter of fact, T̂-even angu- lar distributions still provide access to small CP-odd phase differences only in the presence of relative CP-even phases. The latter can however appear in the production amplitudes, as angular distributions now give access to an entwined combination of production and decay amplitudes. Such strong phases in production amplitudes would manifest themselves as a nonvanishing T̂-odd polarisation component, which we will denote Pz. As a result, certain imaginary parts of decay amplitude interferences become accessible through T̂-even angular distributions, in terms proportional to this T̂-odd polarisation component of the decaying particle. In particular, there are not enough independent external-particle four-momenta in three-body decays to form an antisymmetric �µνρσ contraction. One must necessarily rely on at least one spin four-vector to form a T̂-odd variable. As will be illustrated below with final-state spins summed over, the imaginary parts of decay amplitude interferences then only appear in terms proportional to the decaying particle polarisation. A positive signal of CP violation in one of the corresponding asymmetries could thus be sourced either in decay amplitudes or in production ones, leading, in the latter case, to a mismatch between the polarisation of the initial particle and minus the polarisation of its antiparticle. Such an effect is not expected to be sizeable when the strong interaction which conserves CP dominates the production process. Without assuming it is altogether absent, one would have to rely on a comparison between the expected and measured patterns of asymmetries to discriminate between these two possibilities. The patterns expected for decays through specific resonant intermediate states are presented below. On the other hand, all the T̂-odd angular distributions can no longer serve to isolate – 3 – b1 a1/2,3/2 01/2 41/2 31/2 20 11/2 b1 a1/2,3/2 01/2 40 30 20 11/2 a1/2,3/2 01/2 b1 20 11/2 a1/2,3/2 01/2 b0 20 11/2 Figure 1. The eight three- and four-body decays considered in this paper. The superscripts to particles’ labels specify their spins. small differences of CP-odd phases between decay amplitudes of identical CP-even phases. The T̂-odd angular distributions that appear proportional to Pz no longer give access to imaginary parts of decay amplitude interferences. Sensitivity to hypothetical CP-odd phase differences through these terms then actually relies on the presence of nonvanishing CP-even phase differences between the corresponding decay amplitudes. A systematic and blind construction of T̂-odd–CP-odd asymmetries, as performed in Ref. [2] for the decay of spinless particles, is still possible. We stress this procedure can still be utilized experimentally to cover the unexpected or in situations where complicated patterns of interferences are not described precisely enough. One would however need to rely on specific results such as the ones presented here for selected resonance structures to establish whether a given T̂-odd angular asymmetry yields sensitivity to CP-odd phase differences between production or decay amplitudes. Aside from CP violation, one can in principle measure all prescribed independent con- tributions to the angular distributions and thereby gain further understanding about the process under scrutiny. Our tables establish the necessary link between kinematic distri- butions and the dynamics encoded in amplitudes. The precision achieved will obviously depend on the collected statistics, but note the determination of each asymmetry or mo- ment exploits the statistical power of the full data sample. This is to be contrasted with a fit in which additional free parameters worsen the precision to which all of them can be determined (see e.g. Ref. [3]). 2 Angular distributions The following four- and three-body decays (depicted in Fig. 1) will be considered: 01/2 −→ a1/2,3/2 b1 −→ 11/2 20 31/2 41/2, −→ 11/2 20 30 40, 01/2 −→ a1/2,3/2 b1 −→ 11/2 20 b1, −→ a1/2,3/2 b0 −→ 11/2 20 b0, where the superscripts of particle labels specify their spins. Examples of such processes include the Λb → Λ J/ψ → pπ µ+µ−, Λb → Λ ϕ → pπ K+K−, Λb → N∗Ks → pπKs – 4 – z x yθ φ θa 1 2 θb 3 4 xa zayaxb zb yb b a0 Figure 2. Reference frames defined according to the Jackson convention [4] where axes in the two daughter restframes are (anti)aligned. The azimuthal angles φa,b that are not apparent are defined in the usual way: measured from the xa,b axes such that the ya,b axes have φa,b = +π/2. Note the a,b particles’ momenta are pictured in the 0 particle restframe, while the 1, 2 and 3, 4 ones in the a and b restframes, respectively. decays which were studied by the LHCb collaboration in the recent Refs. [5–7], or the Λb → Λ(X)γ → pK/π γ processes discussed in Refs. [8–12]. The helicity formalism of Jakob and Wick [13] will be employed, following the so-called Jackson convention [4] for the definition of the various reference frames (see Fig. 2). The spins of final-state particles will be summed over. On the other hand, a nonvanishing polar- isation of the initial spin-1/2 baryon will be considered. Although experimental datasets never isolate perfectly one single resonant intermediate state, the interferences between them lie beyond the scope of this work. Neither will topologies like be considered. A first (x, y, z) system of axes is defined in the restframe of the initial—mother— particle 0. When the production of the latter preserves parity, its polarisation vector is orthogonal to the production plane (see Sec. V of Ref. [13]). To take advantage of this fea- ture, the z axis is taken parallel to the normal of the production plane. So is a transversity frame obtained.1 Particles a and b are respectively produced at polar angles θ and π − θ from that z axis. With the spin vector of particle 0 pointing exactly in the z direction, no dependence on the azimuthal angle φ of particle a is generated. The direction of the x axis is therefore chosen arbitrarily in the plane perpendicular to the z axis. Two other systems of axes are defined in the restframes of the a and b daughters, as so-called helicity frames. The second one will only be relevant for four-body decays. The (xa, ya, za) system is obtained by a R(φ,θ, 0)T Euler rotation2 of the initial (x, y, z) one, 1Alternatively, a helicity frame could have been obtained with z aligned to particle 0 momentum in the laboratory frame (see Refs. [14–16] for some results obtained in such a frame). 2A R(φ,θ,χ) transformation is the succession of three elementary rotations around the z, y, and z axes: Rz (φ)Ry (θ)Rz (χ). In the so-called Jacob–Wick convention, the (xa, ya, za) frame is obtained by a R(φ,θ, −φ)T rotation of the (x, y, z) one. – 5 – followed by a suitable boost in the za direction (parallel to particle a’s momentum in the mother restframe). A R(φ + π,π −θ, 0)T rotation followed by a boost in the zb direction is required to obtain the (xb, yb, zb) system. Its axes are parallel or antiparallel to the (xa, ya, za) ones. The following assumptions will be made in the main text and released in Appendix A: • The production of particle 0 preserves parity, so that its polarisation (if any) is aligned with the z axis. One therefore has Px = 0 = Py in the density matrix for particle 01/2: ρ(m0,m′0) = 1 2 ( +1/2 −1/2 +1/2 1 + Pz Px − iPy −1/2 Px + iPy 1 −Pz ) where m(′)0 is the component of particle 0’s spin along the z axis. • When appearing as a final-state particle, in the three-body decays we consider, the b1 vector is taken massless so that it has no λb = 0 zero helicity state (and the A± amplitudes defined below are absent). • The b1 → 31/241/2 decay preserves parity, so that its helicity amplitudes satisfy |Mb(−λ3,−λ4)|2 = |Mb(+λ3, +λ4)|2. • The 31/2 and 41/2 particles arising from the b1 vector decay are massless and therefore have opposite helicities: λ3 = −λ4. In each four-body process considered here, for the b1 decay, there is therefore one single independent combination of squared helicity amplitudes: either |Mb(1/2,−1/2)|2 + |Mb(−1/2, 1/2)|2, or |Mb(0, 0)|2. They will be absorbed into the definition of the M0 helicity amplitudes for the parent 0 → ab decay. We will also absorb in the M0’s the |Ma(+1/2, 0)|2 + |Ma(−1/2, 0)|2 combination of a1/2,3/2 → 11/2 20 amplitudes and define the αa ≡ |Ma(+1/2, 0)|2 −|Ma(−1/2, 0)|2 |Ma(+1/2, 0)|2 + |Ma(−1/2, 0)|2 asymmetry parameter which violates parity P. It is therefore expected to vanish if the corresponding decay proceeds through the strong interaction, like in the Λ(1520) → pK example of a3/2 → 11/220 decay. The helicity combinations allowed for the a,b system are (λa,λb) = (±1/2, 0), and (±1/2,±1) for a spin-1/2 particle a1/2, as well as (±3/2,±1) for a spin-3/2 particle a3/2. We will denote the corresponding amplitudes as A± ≡ M0(±1/2, 0), B± ≡ M0(±1/2,±1), C± ≡ M0(±3/2,±1). As opposed to the rates of the four-body decays featuring b1 as an intermediate particle, the three-body ones in which it appears in the final state will only contain interferences between – 6 – amplitudes of identical λb. Note also that a massless b1 vector produced onshell can only have λb = ±1. The A± amplitudes therefore vanish in that case. As already mentioned, this will be assumed in the main text for the three-body 01/2 → a1/2,3/2 b1 → 11/2 20 b1 decays. Finally, beyond the narrow width approximation for particles a and b, the A±,B±,C± as well as αa amplitudes have a non-trivial dependence on the (12) and (34) invariant masses which we will respectively denote ma and mb. The various contributions to the dΓ/dΩ angular distributions of the final-state particles for the processes depicted in Fig. 1 are given in Table 1–8. The overall normalisation is chosen such that the∫ dΩ ≡ +1∫ −1 d cos θ 2 +1∫ −1 d cos θa 2 +1∫ −1 d cos θb 2 +π∫ −π dφ 2π +π∫ −π dφa 2π +π∫ −π dφb 2π angular integration simply yields the sum of the allowed amplitudes squared. In case all the six of them are present, one would then get∫ dΩ dΓ dΩ = |A+|2 + |A−|2 + |B+|2 + |B−|2 + |C+|2 + |C−|2. Here, again, the dependence on the ma,b invariant masses is kept implicit. Some of the angular distributions given here have already been presented elsewhere, sometimes partially only. Table 1 agrees with the Table 1 of Ref. [17]. Table 5 agrees with Eq. (7) of Ref. [11]. The terms in Table 6 that are not proportional to αa only match Eq. (15) of Ref. [11], provided w5 and w6 defined there are respectively multiplied by factors of ±Pz. The relative sign between these B+C+ and B−C− interferences can be understood given the dj−µ,−λ(θ) = (−1) λ−µd j µ,λ(θ) symmetry relations between Wigner matrices (see Eq. (A1) of Ref. [13]). Note also a relative complex conjugation of the amplitudes defined here and there, as well as the use of the Jacob–Wick convention there which leads to expressions identical to the ones we obtain with the Jackson convention for the terms compared when φΛ is set to 0 there. Both Table 7 and the A± dependence of Table 3 agree with Eq. (16) and (21) of Ref. [18], obtained with Pz = +1. 3 Discrete symmetry properties To establish the parity P and motion reversal T̂ transformation properties of the various contributions to the differential distributions displayed in Table 1–8, let us define our kinematic variables and axes in terms of physical momenta. In the restframe of particle 0, let us assume that the production plane is defined by the momenta pA and pB of two of the particles involved. One can then construct the (x, y, z) frame as x = pA |pA| , z = pA × pB |pA × pB| , y = z × x. The z axis is thus a P-even–T̂-even pseudovector, while x and y are both P-odd–T̂-odd vectors. The (xa, ya, za) system is then obtained as za = p1 + p2 |p1 + p2| , ya = z × za |z × za| , xa = ya × za |ya × za| , – 7 – +3/2 |A+|2 + |A−|2 sin2 θb +3/4 |B+|2 + |B−|2 1 + cos2 θb +3/2 |A+|2 −|A−|2 αa cos θa sin2 θb +3/4 |B+|2 −|B−|2 αa cos θa 1 + cos2 θb −3 / 2 √ 2 Re { A∗+B− } − Re { A∗−B+ } αa sin θa sin 2θb cos(φa + φb) +3/2 |A+|2 −|A−|2 Pz cos θ sin2 θb −3/4 |B+|2 −|B−|2 Pz cos θ 1 + cos2 θb −3 / 2 √ 2 Re { A∗+B+ } − Re { A∗−B− } Pz sin θ sin 2θb cos φb +3/2 |A+|2 + |A−|2 αa Pz cos θ cos θa sin2 θb −3/4 |B+|2 + |B−|2 αa Pz cos θ cos θa 1 + cos2 θb −3 / 2 √ 2 Re { A∗+B− } + Re { A∗−B+ } αa Pz cos θ sin θa sin 2θb cos(φa + φb) −3 / 2 √ 2 Re { A∗+B+ } + Re { A∗−B− } αa Pz sin θ cos θa sin 2θb cos φb −3 Re { A∗+A− } αa Pz sin θ sin θa sin2 θb cos φa −3/2 Re { B∗+B− } αa Pz sin θ sin θa sin2 θb cos(φa + 2φb) +3 / 2 √ 2 Im { A∗+B+ } + Im { A∗−B− } Pz sin θ sin 2θb sin φb −3 / 2 √ 2 Im { A∗+B− } − Im { A∗−B+ } αa Pz cos θ sin θa sin 2θb sin(φa + φb) +3 / 2 √ 2 Im { A∗+B+ } − Im { A∗−B− } αa Pz sin θ cos θa sin 2θb sin φb −3 Im { A∗+A− } αa Pz sin θ sin θa sin2 θb sin φa −3/2 Im { B∗+B− } αa Pz sin θ sin θa sin2 θb sin(φa + 2φb) −3 / 2 √ 2 Im { A∗+B− } + Im { A∗−B+ } αa sin θa sin 2θb sin(φa + φb) Table 1. Various contributions to the angular distribution of the 01/2 → a1/2b1 → 11/2 20 31/2 41/2 process, with conventions and assumptions specified in the text. Each line corresponds to a term of different angular dependence (most of them being independent). The separation in columns is only meant to ease the comparison between the various factors appearing in each term. The four blocks distinguish terms whose combinations of angular and polarisation dependence have different parity and motion reversal transformation properties. They are respectively P-even–T̂-even, P-odd–T̂- even, P-even–T̂-odd, and P-odd–T̂-odd. where p1 and p2 are the momenta of particles 1 and 2 in particle 0’s restframe. It follows that both za and ya are P-odd–T̂-odd vectors while xa is a P-even–T̂-even pseudovector. Similar conclusions hold for (xb, yb, zb) = (−xa, ya,−za). The polar θ and azimuthal φ angles can be obtained from the equalities: cos θ = z ·za, sin θ = + √ 1 − cos2 θ, cos φ = (z ×za) ·y, sin φ = −(z ×za) ·x, which establish that cos θ is a P-odd–T̂-odd kinematic variable, while sin θ, cos φ, and sin φ are P-even–T̂-even. Moreover, defining the P-even–T̂-even pseudovectors na = p1 × p2 |p1 × p2| , nb = p3 × p4 |p3 × p4| , – 8 – +3/8 |B+|2 + |B−|2 + 3 |C+|2 + 3 |C−|2 1 + cos2 θb −3 √ 2/3 / 4 Re { A∗+C+ } + Re { A∗−C− } sin 2θa sin 2θb cos(φa + φb) +3/4 |A+|2 + |A−|2 (1 + 3 cos2 θa) sin2 θb −3 √ 3 / 4 Re { B∗+C− } + Re { B∗−C+ } sin2 θa sin2 θb cos(2φa + 2φb) +9/8 |B+|2 + |B−|2 −|C+|2 −|C−|2 cos2 θa 1 + cos2 θb −3/8 5 |B+|2 − 5 |B−|2 − 3 |C+|2 + 3 |C−|2 αa cos θa 1 + cos2 θb −3/4 |A+|2 −|A−|2 αa (5 − 9 cos2 θa) cos θa sin2 θb +3 √ 2/3 / 4 Re { A∗+C+ } − Re { A∗−C− } αa (1 − 3 cos2 θa) sin θa sin 2θb cos(φa + φb) +3 / 4 √ 2 Re { A∗+B− } − Re { A∗−B+ } αa (1 − 9 cos2 θa) sin θa sin 2θb cos(φa + φb) +9 √ 3 / 4 Re { B∗+C− } − Re { B∗−C+ } αa sin2 θa cos θa sin2 θb cos(2φa + 2φb) +9/8 3 |B+|2 − 3 |B−|2 −|C+|2 + |C−|2 αa cos3 θa 1 + cos2 θb −3/8 |B+|2 −|B−|2 − 3 |C+|2 + 3 |C−|2 Pz cos θ 1 + cos2 θb −3 √ 2/3 / 4 Re { A∗+C+ } − Re { A∗−C− } Pz cos θ sin 2θa sin 2θb cos(φa + φb) +3/4 |A+|2 −|A−|2 Pz cos θ (1 + 3 cos2 θa) sin2 θb +3 √ 3 / 4 Re { B∗+C− } − Re { B∗−C+ } Pz cos θ sin2 θa sin2 θb cos(2φa + 2φb) −9/8 |B+|2 −|B−|2 + |C+|2 −|C−|2 Pz cos θ cos2 θa 1 + cos2 θb +3 √ 3 / 4 Re { B∗+C+ } − Re { B∗−C− } Pz sin θ sin 2θa 1 + cos2 θb cos φa −3 / 4 √ 2 Re { A∗+B+ } − Re { A∗−B− } Pz sin θ (1 + 3 cos2 θa) sin 2θb cos φb −3 √ 2/3 / 4 Re { A∗+C− } − Re { A∗−C+ } Pz sin θ sin2 θa sin 2θb cos(2φa + φb) +3/8 5 |B+|2 + 5 |B−|2 + 3 |C+|2 + 3 |C−|2 αa Pz cos θ cos θa 1 + cos2 θb −3/4 |A+|2 + |A−|2 αa Pz cos θ (5 − 9 cos2 θa) cos θa sin2 θb +3 √ 2/3 / 4 Re { A∗+C+ } + Re { A∗−C− } αa Pz cos θ (1 − 3 cos2 θa) sin θa sin 2θb cos(φa + φb) +3 / 4 √ 2 Re { A∗+B− } + Re { A∗−B+ } αa Pz cos θ (1 − 9 cos2 θa) sin θa sin 2θb cos(φa + φb) −9 √ 3 / 4 Re { B∗+C− } + Re { B∗−C+ } αa Pz cos θ sin2 θa cos θa sin2 θb cos(2φa + 2φb) −9/8 3 |B+|2 + 3 |B−|2 + |C+|2 + |C−|2 αa Pz cos θ cos3 θa 1 + cos2 θb +3 / 4 √ 2 Re { A∗+B+ } + Re { A∗−B− } αa Pz sin θ (5 − 9 cos2 θa) cos θa sin 2θb cos φb −3 √ 3 / 4 Re { B∗+C+ } + Re { B∗−C− } αa Pz sin θ (1 − 3 cos2 θa) sin θa 1 + cos2 θb cos φa +3/2 Re { A∗+A− } αa Pz sin θ (1 − 9 cos2 θa) sin θa sin2 θb cos φa +3/4 Re { B∗+B− } αa Pz sin θ (1 − 9 cos2 θa) sin θa sin2 θb cos(φa + 2φb) +9/4 Re { C∗+C− } αa Pz sin θ sin3 θa sin2 θb cos(3φa + 2φb) +9 √ 2/3 / 4 Re { A∗+C− } + Re { A∗−C+ } αa Pz sin θ sin2 θa cos θa sin 2θb cos(2φa + φb) +3 √ 2/3 / 4 Im { A∗+C+ } + Im { A∗−C− } Pz cos θ sin 2θa sin 2θb sin(φa + φb) +3 √ 3 / 4 Im { B∗+C− } + Im { B∗−C+ } Pz cos θ sin2 θa sin2 θb sin(2φa + 2φb) −3 √ 3 / 4 Im { B∗+C+ } + Im { B∗−C− } Pz sin θ sin 2θa 1 + cos2 θb sin φa +3 / 4 √ 2 Im { A∗+B+ } + Im { A∗−B− } Pz sin θ (1 + 3 cos2 θa) sin 2θb sin φb −3 √ 2/3 / 4 Im { A∗+C− } + Im { A∗−C+ } Pz sin θ sin2 θa sin 2θb sin(2φa + φb) −3 √ 2/3 / 4 Im { A∗+C+ } − Im { A∗−C− } αa Pz cos θ (1 − 3 cos2 θa) sin θa sin 2θb sin(φa + φb) +3 / 4 √ 2 Im { A∗+B− } − Im { A∗−B+ } αa Pz cos θ (1 − 9 cos2 θa) sin θa sin 2θb sin(φa + φb) −9 √ 3 / 4 Im { B∗+C− } − Im { B∗−C+ } αa Pz cos θ sin2 θa cos θa sin2 θb sin(2φa + 2φb) −3 / 4 √ 2 Im { A∗+B+ } − Im { A∗−B− } αa Pz sin θ (5 − 9 cos2 θa) cos θa sin 2θb sin φb +3 √ 3 / 4 Im { B∗+C+ } − Im { B∗−C− } αa Pz sin θ (1 − 3 cos2 θa) sin θa 1 + cos2 θb sin φa +3/2 Im { A∗+A− } αa Pz sin θ (1 − 9 cos2 θa) sin θa sin2 θb sin φa +3/4 Im { B∗+B− } αa Pz sin θ (1 − 9 cos2 θa) sin θa sin2 θb sin(φa + 2φb) +9/4 Im { C∗+C− } αa Pz sin θ sin3 θa sin2 θb sin(3φa + 2φb) +9 √ 2/3 / 4 Im { A∗+C− } − Im { A∗−C+ } αa Pz sin θ sin2 θa cos θa sin 2θb sin(2φa + φb) +3 √ 2/3 / 4 Im { A∗+C+ } − Im { A∗−C− } sin 2θa sin 2θb sin(φa + φb) −3 √ 3 / 4 Im { B∗+C− } − Im { B∗−C+ } sin2 θa sin2 θb sin(2φa + 2φb) −3 √ 2/3 / 4 Im { A∗+C+ } + Im { A∗−C− } αa (1 − 3 cos2 θa) sin θa sin 2θb sin(φa + φb) +3 / 4 √ 2 Im { A∗+B− } + Im { A∗−B+ } αa (1 − 9 cos2 θa) sin θa sin 2θb sin(φa + φb) +9 √ 3 / 4 Im { B∗+C− } + Im { B∗−C+ } αa sin2 θa cos θa sin2 θb sin(2φa + 2φb) Table 2. Same as Table 1, for the 01/2 → a3/2b1 → 11/2 20 31/2 41/2 process where particle a has spin 3/2 instead of 1/2. – 9 – +3 |A+|2 + |A−|2 cos2 θb +3/2 |B+|2 + |B−|2 sin2 θb +3 |A+|2 −|A−|2 αa cos θa cos2 θb +3/2 |B+|2 −|B−|2 αa cos θa sin2 θb +3/ √ 2 Re { A∗+B− } − Re { A∗−B+ } αa sin θa sin 2θb cos(φa + φb) +3 |A+|2 −|A−|2 Pz cos θ cos2 θb −3/2 |B+|2 −|B−|2 Pz cos θ sin2 θb +3/ √ 2 Re { A∗+B+ } − Re { A∗−B− } Pz sin θ sin 2θb cos φb +3 |A+|2 + |A−|2 αa Pz cos θ cos θa cos2 θb −3/2 |B+|2 + |B−|2 αa Pz cos θ cos θa sin2 θb +3/ √ 2 Re { A∗+B− } + Re { A∗−B+ } αa Pz cos θ sin θa sin 2θb cos(φa + φb) +3/ √ 2 Re { A∗+B+ } + Re { A∗−B− } αa Pz sin θ cos θa sin 2θb cos φb −6 Re { A∗+A− } αa Pz sin θ sin θa cos2 θb cos φa +3 Re { B∗+B− } αa Pz sin θ sin θa sin2 θb cos(φa + 2φb) −3/ √ 2 Im { A∗+B+ } + Im { A∗−B− } Pz sin θ sin 2θb sin φb +3/ √ 2 Im { A∗+B− } − Im { A∗−B+ } αa Pz cos θ sin θa sin 2θb sin(φa + φb) −3/ √ 2 Im { A∗+B+ } − Im { A∗−B− } αa Pz sin θ cos θa sin 2θb sin φb −6 Im { A∗+A− } αa Pz sin θ sin θa cos2 θb sin φa +3 Im { B∗+B− } αa Pz sin θ sin θa sin2 θb sin(φa + 2φb) +3/ √ 2 Im { A∗+B− } + Im { A∗−B+ } αa sin θa sin 2θb sin(φa + φb) Table 3. Various contributions to the angular distribution of the 01/2 → a1/2b1 → 11/2 20 30 40 process, with conventions and assumptions specified in the text. Each line corresponds to a term of different angular dependence (most of them being independent). The separation in columns is only meant to ease the comparison between the various factors appearing in each term. The four blocks distinguish terms whose combinations of angular and polarisation dependence have different parity and motion reversal transformation properties. They are respectively P-even–T̂-even, P-odd–T̂- even, P-even–T̂-odd, and P-odd–T̂-odd. where p3 and p4 are the momenta of particles 3 and 4 in particle 0’s restframe, one can further write (0 = na · za, ) cos φa = −na · ya, sin φa = na · xa, and similarly for a ↔ b. This shows that cos φa and cos φb are P-odd–T̂-odd variables, while sin φa and sin φb are P-even–T̂-even. With p̃1 and p̃3, the momenta of particle 1 and 3, respectively measured in the particle a and b restframes, one can finally define cos θa = za · p̃1 |p̃1| , sin θa = + √ 1 − cos2 θa, and similarly for a ↔ b and 1 ↔ 3, demonstrating that both cos θa,b and sin θa,b are P- even–T̂-even variables. Finally, the P-odd–T̂-odd character of the vector z implies that – 10 – +3/4 |B+|2 + |B−|2 + 3 |C+|2 + 3 |C−|2 sin2 θb +3 √ 2/3 / 2 Re { A∗+C+ } + Re { A∗−C− } sin 2θa sin 2θb cos(φa + φb) +3/2 |A+|2 + |A−|2 (1 + 3 cos2 θa) cos2 θb +3 √ 3 / 2 Re { B∗+C− } + Re { B∗−C+ } sin2 θa sin2 θb cos(2φa + 2φb) +9/4 |B+|2 + |B−|2 −|C+|2 −|C−|2 cos2 θa sin2 θb −3/4 5 |B+|2 − 5 |B−|2 − 3 |C+|2 + 3 |C−|2 αa cos θa sin2 θb −3/2 |A+|2 −|A−|2 αa (5 − 9 cos2 θa) cos θa cos2 θb −3 √ 2/3 / 2 Re { A∗+C+ } − Re { A∗−C− } αa (1 − 3 cos2 θa) sin θa sin 2θb cos(φa + φb) −3 / 2 √ 2 Re { A∗+B− } − Re { A∗−B+ } αa (1 − 9 cos2 θa) sin θa sin 2θb cos(φa + φb) −9 √ 3 / 2 Re { B∗+C− } − Re { B∗−C+ } αa sin2 θa cos θa sin2 θb cos(2φa + 2φb) +9/4 3 |B+|2 − 3 |B−|2 −|C+|2 + |C−|2 αa cos3 θa sin2 θb −3/4 |B+|2 −|B−|2 − 3 |C+|2 + 3 |C−|2 Pz cos θ sin2 θb +3 √ 2/3 / 2 Re { A∗+C+ } − Re { A∗−C− } Pz cos θ sin 2θa sin 2θb cos(φa + φb) +3/2 |A+|2 −|A−|2 Pz cos θ (1 + 3 cos2 θa) cos2 θb −3 √ 3 / 2 Re { B∗+C− } − Re { B∗−C+ } Pz cos θ sin2 θa sin2 θb cos(2φa + 2φb) −9/4 |B+|2 −|B−|2 + |C+|2 −|C−|2 Pz cos θ cos2 θa sin2 θb +3 √ 3 / 2 Re { B∗+C+ } − Re { B∗−C− } Pz sin θ sin 2θa sin2 θb cos φa +3 / 2 √ 2 Re { A∗+B+ } − Re { A∗−B− } Pz sin θ (1 + 3 cos2 θa) sin 2θb cos φb +3 √ 2/3 / 2 Re { A∗+C− } − Re { A∗−C+ } Pz sin θ sin2 θa sin 2θb cos(2φa + φb) +3/4 5 |B+|2 + 5 |B−|2 + 3 |C+|2 + 3 |C−|2 αa Pz cos θ cos θa sin2 θb −3/2 |A+|2 + |A−|2 αa Pz cos θ (5 − 9 cos2 θa) cos θa cos2 θb −3 √ 2/3 / 2 Re { A∗+C+ } + Re { A∗−C− } αa Pz cos θ (1 − 3 cos2 θa) sin θa sin 2θb cos(φa + φb) −3 / 2 √ 2 Re { A∗+B− } + Re { A∗−B+ } αa Pz cos θ (1 − 9 cos2 θa) sin θa sin 2θb cos(φa + φb) +9 √ 3 / 2 Re { B∗+C− } + Re { B∗−C+ } αa Pz cos θ sin2 θa cos θa sin2 θb cos(2φa + 2φb) −9/4 3 |B+|2 + 3 |B−|2 + |C+|2 + |C−|2 αa Pz cos θ cos3 θa sin2 θb −3 / 2 √ 2 Re { A∗+B+ } + Re { A∗−B− } αa Pz sin θ (5 − 9 cos2 θa) cos θa sin 2θb cos φb −3 √ 3 / 2 Re { B∗+C+ } + Re { B∗−C− } αa Pz sin θ (1 − 3 cos2 θa) sin θa sin2 θb cos φa +3 Re { A∗+A− } αa Pz sin θ (1 − 9 cos2 θa) sin θa cos2 θb cos φa −3/2 Re { B∗+B− } αa Pz sin θ (1 − 9 cos2 θa) sin θa sin2 θb cos(φa + 2φb) −9/2 Re { C∗+C− } αa Pz sin θ sin3 θa sin2 θb cos(3φa + 2φb) −9 √ 2/3 / 2 Re { A∗+C− } + Re { A∗−C+ } αa Pz sin θ sin2 θa cos θa sin 2θb cos(2φa + φb) −3 √ 2/3 / 2 Im { A∗+C+ } + Im { A∗−C− } Pz cos θ sin 2θa sin 2θb sin(φa + φb) −3 √ 3 / 2 Im { B∗+C− } + Im { B∗−C+ } Pz cos θ sin2 θa sin2 θb sin(2φa + 2φb) −3 √ 3 / 2 Im { B∗+C+ } + Im { B∗−C− } Pz sin θ sin 2θa sin2 θb sin φa −3 / 2 √ 2 Im { A∗+B+ } + Im { A∗−B− } Pz sin θ (1 + 3 cos2 θa) sin 2θb sin φb +3 √ 2/3 / 2 Im { A∗+C− } + Im { A∗−C+ } Pz sin θ sin2 θa sin 2θb sin(2φa + φb) +3 √ 2/3 / 2 Im { A∗+C+ } − Im { A∗−C− } αa Pz cos θ (1 − 3 cos2 θa) sin θa sin 2θb sin(φa + φb) −3 / 2 √ 2 Im { A∗+B− } − Im { A∗−B+ } αa Pz cos θ (1 − 9 cos2 θa) sin θa sin 2θb sin(φa + φb) +9 √ 3 / 2 Im { B∗+C− } − Im { B∗−C+ } αa Pz cos θ sin2 θa cos θa sin2 θb sin(2φa + 2φb) +3 / 2 √ 2 Im { A∗+B+ } − Im { A∗−B− } αa Pz sin θ (5 − 9 cos2 θa) cos θa sin 2θb sin φb +3 √ 3 / 2 Im { B∗+C+ } − Im { B∗−C− } αa Pz sin θ (1 − 3 cos2 θa) sin θa sin2 θb sin φa +3 Im { A∗+A− } αa Pz sin θ (1 − 9 cos2 θa) sin θa cos2 θb sin φa −3/2 Im { B∗+B− } αa Pz sin θ (1 − 9 cos2 θa) sin θa sin2 θb sin(φa + 2φb) −9/2 Im { C∗+C− } αa Pz sin θ sin3 θa sin2 θb sin(3φa + 2φb) −9 √ 2/3 / 2 Im { A∗+C− } − Im { A∗−C+ } αa Pz sin θ sin2 θa cos θa sin 2θb sin(2φa + φb) −3 √ 2/3 / 2 Im { A∗+C+ } − Im { A∗−C− } sin 2θa sin 2θb sin(φa + φb) +3 √ 3 / 2 Im { B∗+C− } − Im { B∗−C+ } sin2 θa sin2 θb sin(2φa + 2φb) +3 √ 2/3 / 2 Im { A∗+C+ } + Im { A∗−C− } αa (1 − 3 cos2 θa) sin θa sin 2θb sin(φa + φb) −3 / 2 √ 2 Im { A∗+B− } + Im { A∗−B+ } αa (1 − 9 cos2 θa) sin θa sin 2θb sin(φa + φb) −9 √ 3 / 2 Im { B∗+C− } + Im { B∗−C+ } αa sin2 θa cos θa sin2 θb sin(2φa + 2φb) Table 4. Same as Table 3, for the 01/2 → a3/2b1 → 11/2 20 30 40 process, where particle a has spin 3/2 instead of 1/2. – 11 – + |B+|2 + |B−|2 + |B+|2 −|B−|2 αa cos θa − |B+|2 −|B−|2 Pz cos θ − |B+|2 + |B−|2 αa Pz cos θ cos θa Table 5. Contributions to the angular distribution of the three-body 01/2 → a1/2b1 → 11/2 20 b1 decay, under the conventions and assumptions specified in the text. The four blocks distinguish terms whose combinations of angular and polarisation dependence are respectively P-even–T̂-even and P-odd–T̂-even. A third block, which receives no contributions here, includes P-even–T̂-odd decay terms in the subsequent tables of this series. +1/2 |B+|2 + |B−|2 (1 + 3 cos2 θa) +3/2 |C+|2 + |C−|2 sin2 θa −1/2 |B+|2 −|B−|2 αa (5 − 9 cos2 θa) cos θa +3/4 |C+|2 −|C−|2 αa sin θa sin 2θa + √ 3 Re { B∗+C+ } − Re { B∗−C− } Pz sin θ sin 2θa cos φa −1/2 |B+|2 −|B−|2 Pz cos θ (1 + 3 cos2 θa) +3/2 |C+|2 −|C−|2 Pz cos θ sin2 θa − √ 3 Re { B∗+C+ } + Re { B∗−C− } αa Pz sin θ (1 − 3 cos2 θa) sin θa cos φa +1/2 |B+|2 + |B−|2 αa Pz cos θ (5 − 9 cos2 θa) cos θa +3/4 |C+|2 + |C−|2 αa Pz cos θ sin θa sin 2θa − √ 3 Im { B∗+C+ } + Im { B∗−C− } Pz sin θ sin 2θa sin φa + √ 3 Im { B∗+C+ } − Im { B∗−C− } αa Pz sin θ (1 − 3 cos2 θa) sin θa sin φa Table 6. Same as Table 5, for the 01/2 → a3/2b1 → 11/2 20 b1 process, where particle a has spin 3/2 instead of 1/2. + |A+|2 + |A−|2 + |A+|2 −|A−|2 αa cos θa + |A+|2 −|A−|2 Pz cos θ −2 Re { A∗+A− } αa Pz sin θ sin θa cos φa + |A+|2 + |A−|2 αa Pz cos θ cos θa −2 Im { A∗+A− } αa Pz sin θ sin θa sin φa Table 7. Same as Table 5, for the 01/2 → a1/2b0 → 11/2 20 b0 process, where particle b has spin 0 instead of 1. – 12 – +1/2 |A+|2 + |A−|2 (1 + 3 cos2 θa) −1/2 |A+|2 −|A−|2 αa (5 − 9 cos2 θa) cos θa +1/2 |A+|2 −|A−|2 Pz cos θ (1 + 3 cos2 θa) + Re { A∗+A− } αa Pz sin θ (1 − 9 cos2 θa) sin θa cos φa −1/2 |A+|2 + |A−|2 αa Pz cos θ (5 − 9 cos2 θa) cos θa + Im { A∗+A− } αa Pz sin θ (1 − 9 cos2 θa) sin θa sin φa Table 8. Same as Table 7, for the 01/2 → a3/2b0 → 11/2 20 b0 process, where particle a has spin 3/2 instead of 1/2. among the polarisations components Px = 〈s · x〉, Py = 〈s · y〉, Pz = 〈s · z〉, Px and Py are P-odd–T̂-even, while Pz is P-even–T̂-odd. Their values are fixed by particle 0’s production amplitudes and, in general, depend on the production kinematics which is disregarded here. To summarize, for our definition of frames, we have thus identified three P-odd–T̂-odd kinematic variables: cos θ, cos φa, and cos φb, while sin θ, cos φ, sin φ, cos θa,b, sin θa,b, as well as ma,b which are necessary to fully specify the final-state kinematics, are all P-even–T̂-even. The contributions to the angular distri- butions we displayed in Table 1–8 have been grouped according to their P and T̂ transform- ation properties. In Table 1–4 relating to four-body decays, the angular distributions of the contributions in the first and third blocks are P-even–T̂-even while that of the second and fourth ones are P-odd–T̂-odd. The second and third blocks moreover include contributions proportional to the P-even–T̂-odd polarisation Pz. As a result, the four blocks distinguish contributions whose combinations of angular and polarisation dependence are respectively P-even–T̂-even, P-odd–T̂-even, P-even–T̂-odd, and P-odd–T̂-odd. In three-body decays, there are not enough independent four-momenta to form T̂-odd �µνρσ p µ 1 p ν 2 p ρ 3 p σ 4 contrac- tions. One must necessarily involve a spin four-vector. In Table 5–8, all terms proportional to imaginary parts of decay amplitude interferences therefore come proportional to Pz. They thus appear in P-even–T̂-odd blocks, and there are no fourth P-odd–T̂-odd ones. The 01/2 → a1/2b1 → 11/2 20 b1 decay relating to Table 5 does moreover not contain any term proportional to the imaginary part of decay amplitude interferences when b1 is mass- less (an assumption relaxed in Appendix A). 4 Asymmetries As mentioned in the introduction, due to the presence of a T̂-odd polarisation component Pz, both T̂-odd and T̂-even angular asymmetries can potentially serve to access imaginary parts of decay amplitude interferences. – 13 – 4.1 T̂-odd angular asymmetries In the spirit of Ref. [2], T̂-odd–CP-odd angular asymmetries could be constructed system- atically as Ajklmno ≡ ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign { fj(cos θ) fk(cos θa) fl(cos θb) sin ( mφa + nφb + o π 2 )} for f0(x) = 1, f1(x) = x, f2(x) = 3x2 − 1, etc. which could be chosen as Legendre poly- nomials and various j,k, l,m,n,o combinations of integers satisfying j + m + n + o ∈ 2Z with o ∈{0, 1}. Contributions not explicitly listed in the various tables of this paper could appear in the interferences of amplitudes featuring a and b intermediate states of various spins or different topologies. It was also noted in Ref. [2] that distinguishing regions in the ma,b invariant mass integration could be useful when resonances are identified, and that pairings of final-state particles different from the a = (12), b = (34) ones could increase the sensitivity to phase differences between amplitudes of different resonance structures. Un- derstanding the origin of the various angular distribution components is however required to determine whether a symmetry violation observed arises from the decay or production, given the lack of decoupling between the two parts of the process. This understanding we gained in the previous section allows us to be more specific. In both four-body processes featuring a spin-1/2 intermediate resonance a, under the assump- tions stated, there is actually one single T̂-odd angular distribution that provides access to CP-odd phase differences between decay amplitudes, without requiring CP-even phase between neither decay nor production amplitudes. The corresponding term is displayed in the fourth blocks of Tables 1 and 3. By relying on the 1 Γ ∫ dΩ dΓ dΩ sign{cos θb sin(φa + φb)} asymmetry, or on the analogue moment, one gets access to the (Im { A∗+B− } +Im { A∗−B+ } )αa combination of decay amplitudes. Then combining the CP-conjugate 0 → 1 2 3 4 and 0̄ → 1̄ 2̄ 3̄ 4̄ processes to form A001110 yields sensitivity to small differences in the CP-odd phases between the A+B− or A−B+ amplitudes. It is maximal when they have identical CP-even phases. In both four-body processes featuring a spin 3/2 intermediate resonance a, one could moreover employ on the A011110 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{cos θa cos θb sin(φa + φb)} A000220 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{sin(2φa + 2φb)} A021110 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{(3 cos2 θa − 1) cos θb sin(φa + φb)} A010220 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{cos θa sin(2φa + 2φb)} – 14 – asymmetries (see Tables 2 and 4). Note the latter two as well as A001110 come propor- tional to the asymmetry parameter αa which vanishes if the a3/2 → 11/220 decay preserves parity, as Λ(1520) → pK does, being mediated by the strong interaction. A sign{(1 − 9 cos2 θa) cos θb sin(φa+φb)} asymmetry which is not independent of the sign{cos θb sin(φa+ φb)} and sign{(3 cos2 θa − 1) cos θb sin(φa + φb)} ones has not been listed. Let us also comment on the classical A000110 asymmetry, based on sign{sin(φa + φb)}, which changes sign where the antisymmetry contraction of the four independent external particle momenta �µνρσ p µ 1 p ν 2 p ρ 3 p σ 4 does. Its use for studying CP violation in the decay of Λb and Ξb baryons was advocated in Ref. [19]. We however stress that contrarily to the four-body decay of spinless particles where it can play a significant role, it vanishes in the four four-body decays considered here, under the assumptions stated. Examining Table 9– 12 where these assumptions are relaxed, one realises such an asymmetry only appears proportional to the αb asymmetry parameters in the 01/2 → a1/2,3/2 b1 → 11/2 20 31/2 41/2 decays. Even in such processes, its presence is therefore seen to require parity violation in the b1 → 31/2 41/2 daughter decay (which would for instance be absent in electromagnetic J/ψ → `+`− decays). Following Refs. [14–16], the LHCb collaboration measured the four 1 Γ ∫ dΩ dΓ dΩ sign{ cos Φa,b , sin Φa,b } asymmetries in the Λb → Λ ϕ → pπ K+K− decay [6]. The original definitions of those so-called special angles are easily seen to be equivalent to: cos Φa = na · x√ 1 − (na · z)2 , sin Φa = na · y√ 1 − (na · z)2 , and similarly for a ↔ b. Using (x, y, z)T = R(φ,θ, 0)(xa, ya, za)T , xy z   =  cos θ cos φ −sin φ sin θ cos φcos θ sin φ cos φ sin θ sin φ −sin θ 0 cos θ    xaya za   , as well as (x, y, z)T = R(π + φ,π −θ, 0)(xb, yb, zb)T , one derives cos Φa = cos θ cos φ sin φa + sin φ cos φa√ 1 − sin2 φa sin2 θ , sin Φa = cos θ sin φ sin φa − cos φ cos φa√ 1 − sin2 φa sin2 θ , cos Φb = cos θ cos φ sin φb − sin φ cos φb√ 1 − sin2 φb sin2 θ , sin Φb = cos θ sin φ sin φa + cos φ cos φb√ 1 − sin2 φb sin2 θ . Such angular dependences do not appear in Table 3. We therefore stress that these four asymmetries vanish identically in the 01/2 → a1/2b1 → 11/2 20 31/2 41/2 process, when Λb is produced by the strong interaction which preserves parity. Referring to Table 1, we note the same conclusion would also hold in 01/2 → a1/2b1 → 11/2 20 31/2 41/2 processes like Λb → Λ J/ψ → pπ µ+µ−. Relaxing the assumptions of our main text, Tables 9 and 11 in Appendix A inform us that, in both processes, asymmetries or moments based on cos Φa – 15 – and sin Φa are respectively sensitive to the Im { A∗+A− } αaPx and Im { A∗+A− } αaPy combin- ations of production and decay amplitudes. In the 01/2 → a1/2b1 → 11/2 20 31/2 41/2 decay, cos Φb and sin Φb asymmetries respectively provide access to ( Im { A∗+B+ } − Im { A∗−B− }) αbPx and ( Im { A∗+B+ } − Im { A∗−B− }) αbPy. They however vanish identically in the 01/2 → a1/2b1 → 11/2 20 30 40 case. 4.2 T̂-even angular asymmetries With a nonvanishing T̂-odd polarisation component Pz produced by absorptive parts in the production amplitudes, one could also search for CP-odd phase differences between decay amplitudes that have identical or vanishing strong phases through T̂-even angular asymmetries. In the four-body processes featuring an intermediate resonance a of spin 1/2, this is for instance possible with the A001010 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{cos θb sin(φb)}, A101110 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{cos θ cos θb sin(φa + φb)}, A011010 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{cos θa cos θb sin(φb)}, A000100 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{sin(φa)}, A000120 = ∫ dΩ ( 1 Γ dΓ dΩ − 1 Γ̄ dΓ̄ dΩ ) sign{sin(φa + 2φb)}, asymmetries (see Tables 1 and 3). Only the first of these is not proportional to the asym- metry parameter αa, on top of Pz. Many more of such asymmetries can be constructed in the case a is of spin 3/2 and we refer the reader to the third blocks of Tables 2 and 4. The third blocks of Tables 6 to 8 are relevant for three-body processes (Table 5 has no such block). It is worth stressing here that the polarisation of the Λb’s observed to decay to a J/ψΛ final state in the LHCb detector has been constrained to be smaller than 20% at the 2.7σ level [5]. In principle, the above asymmetries could also be nonvanishing in the presence of CP violation in the production process, combined with strong phase differences between decay amplitudes. This is not expected to happen when the production process is dominated by the strong interaction but could also be checked experimentally by measuring various asymmetries. Since CP violation in production would cause |Pz| to take slightly different values in the two conjugated processes, all the above asymmetries could potentially be non- vanishing. Moreover, the T̂-odd angular asymmetries giving access to terms proportional to Pz (in the second blocks of our tables) would then be nonvanishing even in the absence of CP-even phase differences between decay amplitudes. In this sense, our tables would allow to interpret the patterns observed in the measurement of various asymmetries. – 16 – 5 Summary We have studied the angular distributions of some three- and four-body decays of spin-1/2 states, focusing on the discrete symmetry transformation properties of the different contri- butions. Some CP-odd asymmetries discussed in the literature have been shown to vanish identically in the decay chains considered. Special attention has been devoted to the two types of angular asymmetries that could serve to access small differences of CP-odd phases between decay amplitudes of identical CP-even phases. The first ones are T̂-odd angular asymmetries that are not proportional to a T̂-odd initial-state polarisation component Pz. The second ones are T̂-even angular asymmetries proportional to Pz. The latter do obvi- ously not appear in the decay of spinless particles and are, on the other hand, the only way to access imaginary parts of decay amplitude interferences in the three-body decays of spin- ning particles (with unmeasured final-state spins). Conversely, it was stressed that some T̂-odd angular asymmetries only give access to imaginary parts of production amplitude interferences, not to decay ones. The T̂-odd angular asymmetries sensitive to imaginary parts of production amplitude interferences could serve to verify the assumption of CP conservation in production, without relying on nonvanishing differences of CP-even phases between either production or decay amplitudes. So eventually, comparing the measured patterns of asymmetries with the expectations provided here for specific resonant interme- diate states could allow to decrypt the dynamical nature of the process scrutinized. Acknowledgements I am grateful to Yuval Grossman and Maurizio Martinelli for discussions on the topic treated here. Together with Christophe Grojean they also provided much valued comments on the manuscript of this paper. A Appendix We present below the distributions obtained by relaxing the hypotheses made in the main text. When parity is violated in the production of particle 0, its Px and Py polarisation components can be nonvanishing. In three-body decays with a massive vector b1 appearing in the final state, the A± amplitudes for which λb = 0 can also be nonvanishing. Moreover, in the b1 → 31/2 41/2 decay, parity violation and massive 3, 4 fermions respectively produces terms proportional to: αb ≡ |Mb(+1/2,−1/2)|2 −|Mb(−1/2, +1/2)|2 |Mb(+1/2,−1/2)|2 + |Mb(−1/2, +1/2)|2 , and µb ≡ |Mb(+1/2, +1/2)|2 + |Mb(−1/2,−1/2)|2 |Mb(+1/2,−1/2)|2 + |Mb(−1/2, +1/2)|2 . Tables 9 to 16 respectively extend Tables 1 to 8 with these additional contributions to the kinematic distributions. There, we used the (P̃x, P̃y, P̃z) ≡ R(φ,θ, 0)T (Px,Py,Pz) polarisa- – 17 – tions along the xa, ya, and za directions: P̃xP̃y P̃z   =  cos θ cos φ cos θ sin φ −sin θ−sin φ cos φ 0 sin θ cos φ sin θ sin φ cos θ    PxPy Pz   . Referring to Section 3 where the discrete symmetry properties of the different quantities above were derived, one sees that P̃x is P-even–T̂-odd while P̃y and P̃z are both P-odd–T̂- even. References [1] M. Vieites Díaz, Charmless two-body b-meson decays at LHCb, Presentation at the ICHEP conference on August 4, 2016, in Chicago . [2] G. Durieux and Y. Grossman, Probing CP violation systematically in differential distributions, Phys. Rev. D92 (2015) 076013, [1508.03054]. [3] F. Beaujean, M. Chrząszcz, N. Serra and D. van Dyk, Extracting Angular Observables without a Likelihood and Applications to Rare Decays, Phys. Rev. D91 (2015) 114012, [1503.04100]. [4] J. D. Jackson, Particle and polarization angular distribution for two and three-body decays, in Lectures delivered at the Les Houches summer school of theoretical physics (C. DeWitt and M. Jacob, eds.), pp. 325–366, Gordon and Breach, New York, 1965. [5] LHCb collaboration, R. Aaij et al., Measurements of the Λ0b → J/ψΛ decay amplitudes and the Λ0b polarisation in pp collisions at √ s = 7 TeV, Phys. Lett. B724 (2013) 27–35, [1302.5578]. [6] LHCb collaboration, R. Aaij et al., Observation of the Λ0b → Λφ decay, Phys. Lett. B759 (2016) 282–292, [1603.02870]. [7] LHCb collaboration, R. Aaij et al., Searches for Λ0b and Ξ 0 b decays to K 0 Spπ − and K0SpK − final states with first observation of the Λ0b → K 0 Spπ − decay, JHEP 04 (2014) 087, [1402.0770]. [8] M. Gremm, F. Kruger and L. M. Sehgal, Angular distribution and polarization of photons in the inclusive decay Λb → Xsγ, Phys. Lett. B355 (1995) 579–583, [hep-ph/9505354]. [9] T. Mannel and S. Recksiegel, Flavor changing neutral current decays of heavy baryons: The Case Λb → Λγ, J. Phys. G24 (1998) 979–990, [hep-ph/9701399]. [10] G. Hiller and A. Kagan, Probing for new physics in polarized Λb decays at the Z, Phys. Rev. D65 (2002) 074038, [hep-ph/0108074]. [11] F. Legger and T. Schietinger, Photon helicity in Λb → pKγ decays, Phys. Lett. B645 (2007) 204–212, [hep-ph/0605245]. [12] G. Hiller, M. Knecht, F. Legger and T. Schietinger, Photon polarization from helicity suppression in radiative decays of polarized Lambda(b) to spin-3/2 baryons, Phys. Lett. B649 (2007) 152–158, [hep-ph/0702191]. [13] M. Jacob and G. C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7 (1959) 404–428. [14] E. Conte, Recherche de la violation des symétries CP et T dans les réactions Λ0b → Λ 0 + un méson vecteur, PhD thesis (Clermont-Ferrand U., 2008) . 18 http://indico.cern.ch/event/432527/contributions/1072191 http://indico.cern.ch/event/432527/contributions/1072191 http://dx.doi.org/10.1103/PhysRevD.92.076013 http://arxiv.org/abs/1508.03054 http://dx.doi.org/10.1103/PhysRevD.91.114012 http://arxiv.org/abs/1503.04100 http://dx.doi.org/10.1016/j.physletb.2013.05.041 http://arxiv.org/abs/1302.5578 http://dx.doi.org/10.1016/j.physletb.2016.05.077 http://dx.doi.org/10.1016/j.physletb.2016.05.077 http://arxiv.org/abs/1603.02870 http://dx.doi.org/10.1007/JHEP04(2014)087 http://arxiv.org/abs/1402.0770 http://dx.doi.org/10.1016/0370-2693(95)00722-W http://arxiv.org/abs/hep-ph/9505354 http://dx.doi.org/10.1088/0954-3899/24/5/006 http://arxiv.org/abs/hep-ph/9701399 http://dx.doi.org/10.1103/PhysRevD.65.074038 http://dx.doi.org/10.1103/PhysRevD.65.074038 http://arxiv.org/abs/hep-ph/0108074 http://dx.doi.org/10.1016/j.physletb.2006.12.011, 10.1016/j.physletb.2007.02.044 http://dx.doi.org/10.1016/j.physletb.2006.12.011, 10.1016/j.physletb.2007.02.044 http://arxiv.org/abs/hep-ph/0605245 http://dx.doi.org/10.1016/j.physletb.2007.03.056 http://dx.doi.org/10.1016/j.physletb.2007.03.056 http://arxiv.org/abs/hep-ph/0702191 http://dx.doi.org/10.1016/0003-4916(59)90051-X http://dx.doi.org/10.1016/0003-4916(59)90051-X http://cds.cern.ch/record/1094575 [15] O. Leitner, Z. J. Ajaltouni and E. Conte, Testing fundamental symmetries with Λb → Λ-Vector decays, hep-ph/0602043. [16] O. Leitner and Z. J. Ajaltouni, Testing CP and Time Reversal Symmetries with Λb → ΛV (1−) Decays, Nucl. Phys. Proc. Suppl. 174 (2007) 169–172, [hep-ph/0610189]. [17] J. Hrivnac, R. Lednicky and M. Smizanska, Feasibility of beauty baryon polarization measurement in Λ0J/ψ decay channel by ATLAS LHC, J. Phys. G21 (1995) 629–638, [hep-ph/9405231]. [18] X.-W. Kang, H.-B. Li, G.-R. Lu and A. Datta, Study of CP violation in Λ+c decay, Int. J. Mod. Phys. A26 (2011) 2523–2535, [1003.5494]. [19] M. Gronau and J. L. Rosner, Triple product asymmmetries in Λb and Ξb decays, Phys. Lett. B749 (2015) 104–107, [1506.01346]. 19 http://arxiv.org/abs/hep-ph/0602043 http://dx.doi.org/10.1016/j.nuclphysbps.2007.08.117 http://arxiv.org/abs/hep-ph/0610189 http://dx.doi.org/10.1088/0954-3899/21/5/007 http://arxiv.org/abs/hep-ph/9405231 http://dx.doi.org/10.1142/S0217751X11053432 http://dx.doi.org/10.1142/S0217751X11053432 http://arxiv.org/abs/1003.5494 http://dx.doi.org/10.1016/j.physletb.2015.07.060 http://dx.doi.org/10.1016/j.physletb.2015.07.060 http://arxiv.org/abs/1506.01346 +3/2 ( |A+|2 −|A−|2 ) + ( |A+|2 + |A−|2 ) P̃z ( sin2 θb + 2 cos2 θbµb ) cos θaαa +3/2 ( |A+|2 −|A−|2 ) P̃z + ( |A+|2 + |A−|2 ) ( sin2 θb + 2 cos2 θbµb ) −3/4 ( |B+|2 −|B−|2 ) P̃z − ( |B+|2 + |B−|2 ) 2 cos θa cos θbαaαb + ( 1 + 2 sin2 θbµb + cos2 θb ) +3/4 ( |B+|2 −|B−|2 ) − ( |B+|2 + |B−|2 ) P̃z 2 cos θbαb + ( 1 + 2 sin2 θbµb + cos2 θb ) cos θaαa +3 Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa ( sin2 θb + 2 cos2 θbµb ) sin θaαa +3 / 2 √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃x − ( Im { A∗+B+ } + Im { A∗−B− }) P̃y cos φb 2 cos θa sin θbαaαb + ( 1 − 2µb ) sin 2θb +3 / 2 √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃x − ( Im { A∗+B+ } − Im { A∗−B− }) P̃y cos φb 2 sin θbαb + ( 1 − 2µb ) cos θa sin 2θbαa +3/2 Re { B∗+B− } P̃x + Im { B∗+B− } P̃y cos ( φa + 2φb ) ( 1 − 2µb ) sin θa sin2 θbαa −3 / 2 √ 2 ( Re { A∗+B− } − Re { A∗−B+ }) + ( Re { A∗+B− } + Re { A∗−B+ }) P̃z cos ( φa + φb ) ( 1 − 2µb ) sin θa sin 2θbαa +3/ √ 2 ( Re { A∗+B− } − Re { A∗−B+ }) P̃z + ( Re { A∗+B− } + Re { A∗−B+ }) cos ( φa + φb ) sin θa sin θbαaαb +3 Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa ( sin2 θb + 2 cos2 θbµb ) sin θaαa −3 / 2 √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃y + ( Im { A∗+B+ } + Im { A∗−B− }) P̃x sin φb 2 cos θa sin θbαaαb + ( 1 − 2µb ) sin 2θb −3 / 2 √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃y + ( Im { A∗+B+ } − Im { A∗−B− }) P̃x sin φb 2 sin θbαb + ( 1 − 2µb ) cos θa sin 2θbαa −3/2 Re { B∗+B− } P̃y − Im { B∗+B− } P̃x sin ( φa + 2φb ) ( 1 − 2µb ) sin θa sin2 θbαa −3 / 2 √ 2 ( Im { A∗+B− } − Im { A∗−B+ }) P̃z + ( Im { A∗+B− } + Im { A∗−B+ }) sin ( φa + φb ) ( 1 − 2µb ) sin θa sin 2θbαa +3/ √ 2 ( Im { A∗+B− } − Im { A∗−B+ }) + ( Im { A∗+B− } + Im { A∗−B+ }) P̃z sin ( φa + φb ) sin θa sin θbαaαb Table 9. All contributions to 01/2 → a1/2b1 → 11/2 20 31/2 41/2 angular distribution which appear when the assumptions leading to Table 1 are relaxed, so that Px, Py, αb or µb defined in the text are nonvanishing. We have defined (P̃x, P̃y, P̃z ) ≡ R(φ,θ, 0)T (Px,Py,Pz ). 20 −3/4 ( |A+|2 −|A−|2 ) + ( |A+|2 + |A−|2 ) P̃z ( sin2 θb + 2 cos2 θbµb )( 5 − 9 cos2 θa ) cos θaαa +3/4 ( |A+|2 −|A−|2 ) P̃z + ( |A+|2 + |A−|2 ) ( sin2 θb + 2 cos2 θbµb )( 1 + 3 cos2 θa ) +9/8 ( 3 |B+|2 − 3 |B−|2 −|C+|2 + |C−|2 ) − ( 3 |B+|2 + 3 |B−|2 + |C+|2 + |C−|2 ) P̃z ( 1 + 2 sin2 θbµb + cos2 θb ) cos3 θaαa −9/8 ( |B+|2 −|B−|2 + |C+|2 −|C−|2 ) P̃z − ( |B+|2 + |B−|2 −|C+|2 −|C−|2 ) ( 1 + 2 sin2 θbµb + cos2 θb ) cos2 θa −3/8 ( 5 |B+|2 − 5 |B−|2 − 3 |C+|2 + 3 |C−|2 ) − ( 5 |B+|2 + 5 |B−|2 + 3 |C+|2 + 3 |C−|2 ) P̃z ( 1 + 2 sin2 θbµb + cos2 θb ) cos θaαa −3/8 ( |B+|2 −|B−|2 − 3 |C+|2 + 3 |C−|2 ) P̃z − ( |B+|2 + |B−|2 + 3 |C+|2 + 3 |C−|2 ) ( 1 + 2 sin2 θbµb + cos2 θb ) −9/4 ( 3 |B+|2 − 3 |B−|2 + |C+|2 −|C−|2 ) P̃z − ( 3 |B+|2 + 3 |B−|2 −|C+|2 −|C−|2 ) cos3 θa cos θbαaαb +9/4 ( |B+|2 −|B−|2 −|C+|2 + |C−|2 ) − ( |B+|2 + |B−|2 + |C+|2 + |C−|2 ) P̃z cos2 θa cos θbαb +3/4 ( 5 |B+|2 − 5 |B−|2 + 3 |C+|2 − 3 |C−|2 ) P̃z − ( 5 |B+|2 + 5 |B−|2 − 3 |C+|2 − 3 |C−|2 ) cos θa cos θbαaαb +3/4 ( |B+|2 −|B−|2 + 3 |C+|2 − 3 |C−|2 ) − ( |B+|2 + |B−|2 − 3 |C+|2 − 3 |C−|2 ) P̃z cos θbαb −3/2 Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa ( sin2 θb + 2 cos2 θbµb )( 1 − 9 cos2 θa ) sin θaαa −3 √ 3 / 4 ( Re { B∗+C+ } − Re { B∗−C− }) P̃x + ( Im { B∗+C+ } + Im { B∗−C− }) P̃y cos φa ( 1 + 2 sin2 θbµb + cos2 θb ) sin 2θa − 2 ( 1 − 3 cos2 θa ) sin θa cos θbαaαb −3 √ 3 / 4 ( Re { B∗+C+ } + Re { B∗−C− }) P̃x + ( Im { B∗+C+ } − Im { B∗−C− }) P̃y cos φa 2 sin 2θa cos θbαb − ( 1 + 2 sin2 θbµb + cos2 θb )( 1 − 3 cos2 θa ) sin θaαa −3 / 4 √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃x − ( Im { A∗+B+ } − Im { A∗−B− }) P̃y cos φb ( 1 − 2µb )( 5 − 9 cos2 θa ) cos θa sin 2θbαa − 2 ( 1 + 3 cos2 θa ) sin θbαb +3 / 4 √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃x − ( Im { A∗+B+ } + Im { A∗−B− }) P̃y cos φb ( 1 − 2µb )( 1 + 3 cos2 θa ) sin 2θb − 2 ( 5 − 9 cos2 θa ) cos θa sin θbαaαb −9/4 Re { C∗+C− } P̃x − Im { C∗+C− } P̃y cos ( 3φa + 2φb ) ( 1 − 2µb ) sin θ3a sin2 θbαa +9 √ 3 / 4 ( Re { B∗+C− } − Re { B∗−C+ }) − ( Re { B∗+C− } + Re { B∗−C+ }) P̃z cos ( 2φa + 2φb ) ( 1 − 2µb ) sin θ2a cos θa sin2 θbαa +3 √ 3 / 4 ( Re { B∗+C− } − Re { B∗−C+ }) P̃z − ( Re { B∗+C− } + Re { B∗−C+ }) cos ( 2φa + 2φb ) ( 1 − 2µb ) sin θ2a sin2 θb +3 √ 2/3 / 4 ( Re { A∗+C− } − Re { A∗−C+ }) P̃x − ( Im { A∗+C− } + Im { A∗−C+ }) P̃y cos ( 2φa + φb ) 6 sin θ2a cos θa sin θbαaαb + ( 1 − 2µb ) sin θ2a sin 2θb −3 √ 2/3 / 4 ( Re { A∗+C− } + Re { A∗−C+ }) P̃x − ( Im { A∗+C− } − Im { A∗−C+ }) P̃y cos ( 2φa + φb ) 2 sin θ2a sin θbαb + 3 ( 1 − 2µb ) sin θ2a cos θa sin 2θbαa −3/4 Re { B∗+B− } P̃x + Im { B∗+B− } P̃y cos ( φa + 2φb ) ( 1 − 2µb )( 1 − 9 cos2 θa ) sin θa sin2 θbαa −3 / 2 √ 2 ( Re { A∗+B− } − Re { A∗−B+ }) P̃z + ( Re { A∗+B− } + Re { A∗−B+ }) cos ( φa + φb ) ( 1 − 9 cos2 θa ) sin θa sin θbαaαb +3 / 4 √ 2 ( Re { A∗+B− } − Re { A∗−B+ }) + ( Re { A∗+B− } + Re { A∗−B+ }) P̃z cos ( φa + φb ) ( 1 − 2µb )( 1 − 9 cos2 θa ) sin θa sin 2θbαa −3 √ 2/3 / 4 ( Re { A∗+C+ } − Re { A∗−C− }) P̃z + ( Re { A∗+C+ } + Re { A∗−C− }) cos ( φa + φb ) ( 1 − 2µb ) sin 2θa sin 2θb − 2 ( 1 − 3 cos2 θa ) sin θa sin θbαaαb −3 √ 2/3 / 4 ( Re { A∗+C+ } − Re { A∗−C− }) + ( Re { A∗+C+ } + Re { A∗−C− }) P̃z cos ( φa + φb ) 2 sin 2θa sin θbαb − ( 1 − 2µb )( 1 − 3 cos2 θa ) sin θa sin 2θbαa −3/2 Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa ( sin2 θb + 2 cos2 θbµb )( 1 − 9 cos2 θa ) sin θaαa −3 √ 3 / 4 ( Re { B∗+C+ } − Re { B∗−C− }) P̃y − ( Im { B∗+C+ } + Im { B∗−C− }) P̃x sin φa ( 1 + 2 sin2 θbµb + cos2 θb ) sin 2θa − 2 ( 1 − 3 cos2 θa ) sin θa cos θbαaαb −3 √ 3 / 4 ( Re { B∗+C+ } + Re { B∗−C− }) P̃y − ( Im { B∗+C+ } − Im { B∗−C− }) P̃x sin φa 2 sin 2θa cos θbαb − ( 1 + 2 sin2 θbµb + cos2 θb )( 1 − 3 cos2 θa ) sin θaαa +3 / 4 √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃y + ( Im { A∗+B+ } − Im { A∗−B− }) P̃x sin φb ( 1 − 2µb )( 5 − 9 cos2 θa ) cos θa sin 2θbαa − 2 ( 1 + 3 cos2 θa ) sin θbαb −3 / 4 √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃y + ( Im { A∗+B+ } + Im { A∗−B− }) P̃x sin φb ( 1 − 2µb )( 1 + 3 cos2 θa ) sin 2θb − 2 ( 5 − 9 cos2 θa ) cos θa sin θbαaαb −9/4 Re { C∗+C− } P̃y + Im { C∗+C− } P̃x sin ( 3φa + 2φb ) ( 1 − 2µb ) sin θ3a sin2 θbαa −9 √ 3 / 4 ( Im { B∗+C− } − Im { B∗−C+ }) P̃z − ( Im { B∗+C− } + Im { B∗−C+ }) sin ( 2φa + 2φb ) ( 1 − 2µb ) sin θ2a cos θa sin2 θbαa −3 √ 3 / 4 ( Im { B∗+C− } − Im { B∗−C+ }) − ( Im { B∗+C− } + Im { B∗−C+ }) P̃z sin ( 2φa + 2φb ) ( 1 − 2µb ) sin θ2a sin2 θb +3 √ 2/3 / 4 ( Re { A∗+C− } − Re { A∗−C+ }) P̃y + ( Im { A∗+C− } + Im { A∗−C+ }) P̃x sin ( 2φa + φb ) 6 sin θ2a cos θa sin θbαaαb + ( 1 − 2µb ) sin θ2a sin 2θb −3 √ 2/3 / 4 ( Re { A∗+C− } + Re { A∗−C+ }) P̃y + ( Im { A∗+C− } − Im { A∗−C+ }) P̃x sin ( 2φa + φb ) 2 sin θ2a sin θbαb + 3 ( 1 − 2µb ) sin θ2a cos θa sin 2θbαa +3/4 Re { B∗+B− } P̃y − Im { B∗+B− } P̃x sin ( φa + 2φb ) ( 1 − 2µb )( 1 − 9 cos2 θa ) sin θa sin2 θbαa −3 / 2 √ 2 ( Im { A∗+B− } − Im { A∗−B+ }) + ( Im { A∗+B− } + Im { A∗−B+ }) P̃z sin ( φa + φb ) ( 1 − 9 cos2 θa ) sin θa sin θbαaαb +3 / 4 √ 2 ( Im { A∗+B− } − Im { A∗−B+ }) P̃z + ( Im { A∗+B− } + Im { A∗−B+ }) sin ( φa + φb ) ( 1 − 2µb )( 1 − 9 cos2 θa ) sin θa sin 2θbαa +3 √ 2/3 / 4 ( Im { A∗+C+ } − Im { A∗−C− }) + ( Im { A∗+C+ } + Im { A∗−C− }) P̃z sin ( φa + φb ) ( 1 − 2µb ) sin 2θa sin 2θb − 2 ( 1 − 3 cos2 θa ) sin θa sin θbαaαb +3 √ 2/3 / 4 ( Im { A∗+C+ } − Im { A∗−C− }) P̃z + ( Im { A∗+C+ } + Im { A∗−C− }) sin ( φa + φb ) 2 sin 2θa sin θbαb − ( 1 − 2µb )( 1 − 3 cos2 θa ) sin θa sin 2θbαa Table 10. Same as Table 9, for the 01/2 → a3/2b1 → 11/2 20 31/2 41/2 process in which particle a has spin 3/2 instead of 1/2. This table generalises Table 2. 21 +3 ( |A+|2 −|A−|2 ) + ( |A+|2 + |A−|2 ) P̃z cos θa cos2 θbαa +3/2 ( |B+|2 −|B−|2 ) − ( |B+|2 + |B−|2 ) P̃z cos θa sin2 θbαa +3 ( |A+|2 −|A−|2 ) P̃z + ( |A+|2 + |A−|2 ) cos2 θb −3/2 ( |B+|2 −|B−|2 ) P̃z − ( |B+|2 + |B−|2 ) sin2 θb +6 Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa sin θa cos2 θbαa −3/ √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃x − ( Im { A∗+B+ } + Im { A∗−B− }) P̃y cos φb sin 2θb −3/ √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃x − ( Im { A∗+B+ } − Im { A∗−B− }) P̃y cos φb cos θa sin 2θbαa −3 Re { B∗+B− } P̃x + Im { B∗+B− } P̃y cos ( φa + 2φb ) sin θa sin2 θbαa +3/ √ 2 ( Re { A∗+B− } − Re { A∗−B+ }) + ( Re { A∗+B− } + Re { A∗−B+ }) P̃z cos ( φa + φb ) sin θa sin 2θbαa +6 Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa sin θa cos2 θbαa +3/ √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃y + ( Im { A∗+B+ } + Im { A∗−B− }) P̃x sin φb sin 2θb +3/ √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃y + ( Im { A∗+B+ } − Im { A∗−B− }) P̃x sin φb cos θa sin 2θbαa +3 Re { B∗+B− } P̃y − Im { B∗+B− } P̃x sin ( φa + 2φb ) sin θa sin2 θbαa +3/ √ 2 ( Im { A∗+B− } − Im { A∗−B+ }) P̃z + ( Im { A∗+B− } + Im { A∗−B+ }) sin ( φa + φb ) sin θa sin 2θbαa Table 11. All contributions to 01/2 → a1/2b1 → 11/2 20 30 40 angular distribution which appear with the assumptions leading to Table 3 are relaxed, so that Px and Py are nonvanishing. We have defined (P̃x, P̃y, P̃z ) ≡ R(φ,θ, 0)T (Px,Py,Pz ). 22 −3/2 ( |A+|2 −|A−|2 ) + ( |A+|2 + |A−|2 ) P̃z ( 5 − 9 cos2 θa ) cos θa cos2 θbαa +3/2 ( |A+|2 −|A−|2 ) P̃z + ( |A+|2 + |A−|2 ) ( 1 + 3 cos2 θa ) cos2 θb +9/4 ( 3 |B+|2 − 3 |B−|2 −|C+|2 + |C−|2 ) − ( 3 |B+|2 + 3 |B−|2 + |C+|2 + |C−|2 ) P̃z cos3 θa sin2 θbαa −9/4 ( |B+|2 −|B−|2 + |C+|2 −|C−|2 ) P̃z − ( |B+|2 + |B−|2 −|C+|2 −|C−|2 ) cos2 θa sin2 θb −3/4 ( 5 |B+|2 − 5 |B−|2 − 3 |C+|2 + 3 |C−|2 ) − ( 5 |B+|2 + 5 |B−|2 + 3 |C+|2 + 3 |C−|2 ) P̃z cos θa sin2 θbαa −3/4 ( |B+|2 −|B−|2 − 3 |C+|2 + 3 |C−|2 ) P̃z − ( |B+|2 + |B−|2 + 3 |C+|2 + 3 |C−|2 ) sin2 θb +3 √ 3 / 2 ( Re { B∗+C+ } + Re { B∗−C− }) P̃x + ( Im { B∗+C+ } − Im { B∗−C− }) P̃y cos φa ( 1 − 3 cos2 θa ) sin θa sin2 θbαa −3 Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa ( 1 − 9 cos2 θa ) sin θa cos2 θbαa −3 √ 3 / 2 ( Re { B∗+C+ } − Re { B∗−C− }) P̃x + ( Im { B∗+C+ } + Im { B∗−C− }) P̃y cos φa sin 2θa sin2 θb +3 / 2 √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃x − ( Im { A∗+B+ } − Im { A∗−B− }) P̃y cos φb ( 5 − 9 cos2 θa ) cos θa sin 2θbαa −3 / 2 √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃x − ( Im { A∗+B+ } + Im { A∗−B− }) P̃y cos φb ( 1 + 3 cos2 θa ) sin 2θb +9/2 Re { C∗+C− } P̃x − Im { C∗+C− } P̃y cos ( 3φa + 2φb ) sin θ3a sin2 θbαa −9 √ 3 / 2 ( Re { B∗+C− } − Re { B∗−C+ }) − ( Re { B∗+C− } + Re { B∗−C+ }) P̃z cos ( 2φa + 2φb ) sin θ2a cos θa sin2 θbαa −3 √ 3 / 2 ( Re { B∗+C− } − Re { B∗−C+ }) P̃z − ( Re { B∗+C− } + Re { B∗−C+ }) cos ( 2φa + 2φb ) sin θ2a sin2 θb +9 √ 2/3 / 2 ( Re { A∗+C− } + Re { A∗−C+ }) P̃x − ( Im { A∗+C− } − Im { A∗−C+ }) P̃y cos ( 2φa + φb ) sin θ2a cos θa sin 2θbαa −3 √ 2/3 / 2 ( Re { A∗+C− } − Re { A∗−C+ }) P̃x − ( Im { A∗+C− } + Im { A∗−C+ }) P̃y cos ( 2φa + φb ) sin θ2a sin 2θb +3/2 Re { B∗+B− } P̃x + Im { B∗+B− } P̃y cos ( φa + 2φb ) ( 1 − 9 cos2 θa ) sin θa sin2 θbαa −3 √ 2/3 / 2 ( Re { A∗+C+ } − Re { A∗−C− }) + ( Re { A∗+C+ } + Re { A∗−C− }) P̃z cos ( φa + φb ) ( 1 − 3 cos2 θa ) sin θa sin 2θbαa −3 / 2 √ 2 ( Re { A∗+B− } − Re { A∗−B+ }) + ( Re { A∗+B− } + Re { A∗−B+ }) P̃z cos ( φa + φb ) ( 1 − 9 cos2 θa ) sin θa sin 2θbαa +3 √ 2/3 / 2 ( Re { A∗+C+ } − Re { A∗−C− }) P̃z + ( Re { A∗+C+ } + Re { A∗−C− }) cos ( φa + φb ) sin 2θa sin 2θb +3 √ 3 / 2 ( Re { B∗+C+ } + Re { B∗−C− }) P̃y − ( Im { B∗+C+ } − Im { B∗−C− }) P̃x sin φa ( 1 − 3 cos2 θa ) sin θa sin2 θbαa −3 Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa ( 1 − 9 cos2 θa ) sin θa cos2 θbαa −3 √ 3 / 2 ( Re { B∗+C+ } − Re { B∗−C− }) P̃y − ( Im { B∗+C+ } + Im { B∗−C− }) P̃x sin φa sin 2θa sin2 θb −3 / 2 √ 2 ( Re { A∗+B+ } + Re { A∗−B− }) P̃y + ( Im { A∗+B+ } − Im { A∗−B− }) P̃x sin φb ( 5 − 9 cos2 θa ) cos θa sin 2θbαa +3 / 2 √ 2 ( Re { A∗+B+ } − Re { A∗−B− }) P̃y + ( Im { A∗+B+ } + Im { A∗−B− }) P̃x sin φb ( 1 + 3 cos2 θa ) sin 2θb +9/2 Re { C∗+C− } P̃y + Im { C∗+C− } P̃x sin ( 3φa + 2φb ) sin θ3a sin2 θbαa +9 √ 3 / 2 ( Im { B∗+C− } − Im { B∗−C+ }) P̃z − ( Im { B∗+C− } + Im { B∗−C+ }) sin ( 2φa + 2φb ) sin θ2a cos θa sin2 θbαa +3 √ 3 / 2 ( Im { B∗+C− } − Im { B∗−C+ }) − ( Im { B∗+C− } + Im { B∗−C+ }) P̃z sin ( 2φa + 2φb ) sin θ2a sin2 θb +9 √ 2/3 / 2 ( Re { A∗+C− } + Re { A∗−C+ }) P̃y + ( Im { A∗+C− } − Im { A∗−C+ }) P̃x sin ( 2φa + φb ) sin θ2a cos θa sin 2θbαa −3 √ 2/3 / 2 ( Re { A∗+C− } − Re { A∗−C+ }) P̃y + ( Im { A∗+C− } + Im { A∗−C+ }) P̃x sin ( 2φa + φb ) sin θ2a sin 2θb −3/2 Re { B∗+B− } P̃y − Im { B∗+B− } P̃x sin ( φa + 2φb ) ( 1 − 9 cos2 θa ) sin θa sin2 θbαa +3 √ 2/3 / 2 ( Im { A∗+C+ } − Im { A∗−C− }) P̃z + ( Im { A∗+C+ } + Im { A∗−C− }) sin ( φa + φb ) ( 1 − 3 cos2 θa ) sin θa sin 2θbαa −3 / 2 √ 2 ( Im { A∗+B− } − Im { A∗−B+ }) P̃z + ( Im { A∗+B− } + Im { A∗−B+ }) sin ( φa + φb ) ( 1 − 9 cos2 θa ) sin θa sin 2θbαa −3 √ 2/3 / 2 ( Im { A∗+C+ } − Im { A∗−C− }) + ( Im { A∗+C+ } + Im { A∗−C− }) P̃z sin ( φa + φb ) sin 2θa sin 2θb Table 12. Same as Table 11, for the 01/2 → a3/2b1 → 11/2 20 30 40 process, in which particle a has spin 3/2 instead of 1/2. This table generalises Table 4. 23 + ( |A+|2 −|A−|2 −|B+|2 + |B−|2 ) P̃z + ( |A+|2 + |A−|2 + |B+|2 + |B−|2 ) + ( |A+|2 −|A−|2 + |B+|2 −|B−|2 ) + ( |A+|2 + |A−|2 −|B+|2 −|B−|2 ) P̃z cos θaαa +2 Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa sin θaαa +2 Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa sin θaαa Table 13. All contributions to 01/2 → a1/2b1 → 11/2 20 b1 angular distribution which appear when the assumptions leading to Table 5 are relaxed, so that A±, Px, Py defined in the text are nonvanishing. +1/2 ( |A+|2 −|A−|2 −|B+|2 + |B−|2 + 3 |C+|2 − 3 |C−|2 ) P̃z + ( |A+|2 + |A−|2 + |B+|2 + |B−|2 + 3 |C+|2 + 3 |C−|2 ) +3/2 ( 3 |A+|2 − 3 |A−|2 + 3 |B+|2 − 3 |B−|2 −|C+|2 + |C−|2 ) + ( 3 |A+|2 + 3 |A−|2 − 3 |B+|2 − 3 |B−|2 −|C+|2 −|C−|2 ) P̃z cos3 θaαa +3/2 ( |A+|2 −|A−|2 −|B+|2 + |B−|2 −|C+|2 + |C−|2 ) P̃z + ( |A+|2 + |A−|2 + |B+|2 + |B−|2 −|C+|2 −|C−|2 ) cos2 θa −1/2 ( 5 |A+|2 − 5 |A−|2 + 5 |B+|2 − 5 |B−|2 − 3 |C+|2 + 3 |C−|2 ) + ( 5 |A+|2 + 5 |A−|2 − 5 |B+|2 − 5 |B−|2 − 3 |C+|2 − 3 |C−|2 ) P̃z cos θaαa + √ 3 ( Re { B∗+C+ } + Re { B∗−C− }) P̃x + ( Im { B∗+C+ } − Im { B∗−C− }) P̃y cos φa ( 1 − 3 cos2 θa ) sin θaαa − Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa ( 1 − 9 cos2 θa ) sin θaαa −2 √ 3 ( Re { B∗+C+ } − Re { B∗−C− }) P̃x + ( Im { B∗+C+ } + Im { B∗−C− }) P̃y cos φa cos θa sin θa + √ 3 ( Re { B∗+C+ } + Re { B∗−C− }) P̃y − ( Im { B∗+C+ } − Im { B∗−C− }) P̃x sin φa ( 1 − 3 cos2 θa ) sin θaαa − Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa ( 1 − 9 cos2 θa ) sin θaαa −2 √ 3 ( Re { B∗+C+ } − Re { B∗−C− }) P̃y − ( Im { B∗+C+ } + Im { B∗−C− }) P̃x sin φa cos θa sin θa Table 14. Same as Table 13, for the 01/2 → a3/2b1 → 11/2 20 b1 process, in which particle a has spin 3/2 instead of 1/2. This table generalises Table 6. + ( |A+|2 −|A−|2 ) P̃z + ( |A+|2 + |A−|2 ) + ( |A+|2 −|A−|2 ) + ( |A+|2 + |A−|2 ) P̃z cos θaαa +2 Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa sin θaαa +2 Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa sin θaαa Table 15. All contributions to 01/2 → a1/2b0 → 11/2 20 b0 angular distribution which appear when the assumptions leading to Table 7 are relaxed, so that Px, Py defined in the text are nonvanishing. 24 −1/2 ( |A+|2 −|A−|2 ) + ( |A+|2 + |A−|2 ) P̃z ( 5 − 9 cos2 θa ) cos θaαa +1/2 ( |A+|2 −|A−|2 ) P̃z + ( |A+|2 + |A−|2 ) ( 1 + 3 cos2 θa ) − Re { A∗+A− } P̃x − Im { A∗+A− } P̃y cos φa ( 1 − 9 cos2 θa ) sin θaαa − Re { A∗+A− } P̃y + Im { A∗+A− } P̃x sin φa ( 1 − 9 cos2 θa ) sin θaαa Table 16. Same as Table 15 for the 01/2 → a3/2b0 → 11/2 20 b0 process, in which particle a has spin 3/2 instead of 1/2. This table generalises Table 8. 25 1 Introduction 2 Angular distributions 3 Discrete symmetry properties 4 Asymmetries 4.1 -odd angular asymmetries 4.2 -even angular asymmetries 5 Summary A Appendix