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Abstract

Better operator ergonomics in assembly plants reduce work related injuries, improve quality, productivity and reduce cost. In this paper we

investigate the importance of modeling dynamics when planning for manual assembly operations. We propose modeling the dynamical human

motion planning problem using the Discrete Mechanics and Optimal Control (DMOC) method, which makes it possible to optimize with respect to

very general objectives. First, two industrial cases are simulated using a quasi-static inverse kinematics solver, demonstrating problems where

this approach is sufficient. Then, the DMOC-method is used to solve for optimal trajectories of a lifting operation with dynamics. The resulting

trajectories are compared to a steady state solution along the same path, indicating the importance of using dynamics.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Although the degree of automation is increasing in manu-

facturing industries, many assembly operations are performed

manually. To avoid injuries and to reach sustainable production

of high quality, comfortable environments for the operators are

vital, see [1] and [2]. Poor station layouts, poor product de-

signs or badly chosen assembly sequences are common sources

leading to unfavorable poses and motions. To keep costs low,

preventive actions should be taken early in a project, raising the

need for feasibility and ergonomics studies in virtual environ-

ments long before physical prototypes are available.

Today, in the automotive industries, such studies are con-

ducted to some extent. The full potential, however, is far from

reached due to limited software support in terms of capability

for realistic pose prediction, motion generation and collision

avoidance. As a consequence, ergonomics studies are time con-

suming and are mostly done for static poses, not for full assembly

motions. Furthermore, these ergonomic studies, even though

performed by a small group of highly specialized simulation

engineers, show low reproducibility within the group [3].

To describe operations and facilitate motion generation, it is

common to equip the manikin with coordinate frames attached to

end-effectors like hands and feet. The inverse kinematic problem

is to find joint values such that the position and orientation of

hands and feet matches certain target frames. For the quasi-static

inverse kinematics this leads to an underdetermined system of

equations since the number of joints exceeds the end-effectors

constraints. Due to this redundancy there exist a set of solutions,

allowing us to consider ergonomics aspects, collision avoidance,

and maximizing comfort when choosing one solution.

The dynamic motion planning problem is stated as an optimal

control problem, which we discretize using discrete mechanics.

This results in an optimization problem, which can be solved

using standard nonlinear programming solvers. Furthermore,

this general problem formulation makes it fairly easy to include

very general constraints and objectives.

In this paper we show, using a couple of case studies, where

the quasi-static solver is sufficient, and where the DMOC solver

could improve the solution. The paper extends the work pre-

sented in [4] and [5], and is a part of Cromm (Creation of Muscle

Manikins) project [6].

2. Background

2.1. Manikin Model

In this section we present the manikin model and the inverse

kinematic problems, both quasi-static and with dynamics.
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2.2. Kinematics

The manikin model is a tree of rigid bodies connected by

joints. Each body has a fixed reference frame and we describe

its position relative to its parent body by a rigid transformation

T (q), where q is the coordinate of the joint. To position the

manikin in space, i.e. with respect to some global coordinate

system, it has an exterior root as the origin and a prismatic

joint and a rotation joint as exterior joints as opposed to the

interior links representing the manikin itself, see [4]. Together,

the exterior links mimic a rigid transformation that completely

specifies the position of the lower lumbar. In turn, the lower

lumbar represents an interior root, i.e. it is the ancestor of all

interior joints. Note that the choice of the lower lumbar is not

critical. In principal, any link could be the interior root, and

the point is that the same root can be used though a complete

simulation. No re-rooting or change of tree hierarchy will be

needed. Now, for a given configuration of each joint, collected

in the joint vector q = [qT
1 , . . . , q

T
n ]T , we can calculate all the

relative transformations T1, ,Tn, traverse the tree beginning at

the root and propagate the transformations to get the global

position of each body. We say that the manikin is placed in a

pose, and the mapping from a joint vector into a pose is called

forward kinematics. Furthermore, a continuous mapping q(t),
where t ∈ R, is called a motion, or a trajectory of the system.

2.3. Quasi Static Inverse Kinematics

In order to facilitate the generation of realistic poses that also

fulfill some desired rules we add a number of constraints on the

joint vector. These kinematic constraints can for example restrict

the position of certain links, either relative to other links or with

respect to the global coordinate system or ensure the manikin is

kept in balance, see section 2.3.2. All the kinematic constraints

can be defined by a vector valued function g such that

g(q) = 0 (1)

must be satisfied at any pose. Finding a solution to equation 1 is

generally referred to as inverse kinematics. Often, in practice,

the number of constraints is far less than the number of joints of

the manikin. Due to this redundancy there exist many solutions,

allowing us to consider ergonomics aspects and maximizing

comfort when choosing solution. To do so, we introduce a scalar

comfort function

h(q) (2)

capturing as many ergonomic aspects as desired. The purpose is

to be able to compare different poses in order to find solutions

that maximize comfort. The comfort function is a generic way to

give preference to certain poses while avoiding others. Typically

h considers joint limits, distance to surrounding geometry in

order to avoid collision, magnitude of contact forces, forces and

torques on joints, see section 2.3.3. Furthermore, by combining

equation 1 and 2 we can formulate the inverse kinematic problem

as

max
q

h(q) subject to g(q) = 0. (3)

2.3.1. Collision Avoidance
While some contact with the environment may be intended,

e.g. grasping of objects and leaning, and contribute to the force

and moment balance. Other contacts, for example, collisions,

are undesired. The comfort function offers a convenient way

to include a simple, yet powerful, method penalizing poses

close to collision. In robotics this method is generally known

as Repulsive Potential [7][8]. The underlying idea is to define

a barrier, say, around the obstacles increasing the discomfort

towards infinity near collision. This method does not address

the problem of escaping an already occurring collision. The

idea is merely that if the manikin starts in a collision-free pose,

then the repulsive potential prevents the manikin from entering

a colliding pose.

Note: It is common to think of the repulsive potential or

rather its gradient field as a force field pushing an object away

from obstacles. In this work, we do not want such artificial

forces to contribute to the force balance. To avoid confusion

with real contact forces we will not use that analogy.

2.3.2. Balance and Contact Forces
One important part of g is ensuring that the manikin is kept in

balance. For this, the weight of links and objects being carried,

as well as external forces and torques due to contact with the

floor or other objects, must be considered. The sum of all forces

and torques are

g f orce(q) = mg +
∑
j∈J

fi,

gtorque(q) = mc × mg +
∑
j∈J

pj × f j + τ j,

where m is the total body mass, g is the gravity vector, mc

is the center of mass, f j and τ j are external force and torque

vectors at point pj and J is the index set. Note that the quantities

may depend on the pose, but this has been omitted for clarity. In

general, external forces and torques due to contacts are unknown.

For example, when standing with both feet on the floor it is not

obvious how the contact forces are distributed between the feet.

In what follows we let f and t denote the unknown forces and

torques, and we stack them into the vector x = [qT f T τT ]T .

Then we can rephrase (3) as follows:

max
x

h(x) subject to g(x) = 0. (4)

2.3.3. Joint Torque
The joint loads are key ingredients when evaluating poses

from an ergonomic perspective [9]. Furthermore, research shows

that real humans tend to minimize the muscle strain, i.e. mini-

mize the proportion of load compared to the maximum possible

load [10], so by normalizing the load on each joint by the muscle

strength good results can be achieved. In this article we choose

the function

ht =

n∑
i=1

w2
i τ

2
i

where τi is the torque in joint i, and wi is the reciprocal of the

joint strength. Note that it is straightforward to propagate the

external forces and torques and the accumulated link masses

trough the manikin in order to calculate the load on each joint.
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2.4. Discrete mechanics and optimal control

2.4.1. The constrained discrete Euler-Lagrange equations

Consider the mechanical system specified by a configuration

manifold Q ⊆ R
nq and Lagrangian L : T Q → R, where T Q is

the tangent bundle of the configuration manifold. Furthermore,

suppose the motion of the system is constrained by the equation

φ(q) = 0 ∈ Rm to lie in the constraint manifold C = φ−1(0) ⊂ Q.

Let U ∈ Rnu be the set of admissible controls and F : T Q×U →
T ∗Q the external force acting on the system, where T ∗Q is the

cotangent bundle of the configuration manifold.

Introducing the multiplier λ(t) ∈ R
m the Lagrange-

d’Alembert principle states that trajectories of the system satisfy

δ

∫ t2

t1
L(q(t), q̇(t)) + φT (q(t))λ(t)dt

+

∫ t2

t1
F(q(t), q̇(t), u(t)) · δqdt = 0, (5)

where variations are taken with respect to q, fixed at the end-

points, and with respect to λ.

Integration by parts and the fundamental lemma of calculus

of variations give the following differential algebraic equations,

known as the constrained Euler Lagrange equations of motion:

∂L
∂q

(q(t), q̇(t)) − d
dt
∂L
∂q̇

(q(t), q̇(t))

+ F(q(t), q̇(t), u(t)) +ΦT (q(t))λ(t) = 0, (6a)

φ(q(t)) = 0, (6b)

where Φ denotes the Jacobian of the constraint function.

The key idea of variational integrators is to directly approx-

imate the variational principle (5) rather than the equations of

motion (6).

We now discretize q(t) in [t1, t2] using a fixed time step h =
(t2 − t1)/N so that q(k) is an approximation of q(t1 + kh) for

k = 0, . . . ,N. Furthermore, we discretize the control such that

u(k) is an approximation of u(t1 + (k + 1
2
)h) for k = 0, . . . ,N − 1.

We are now ready to replace the continuous state space, T Q,

with the discrete state space, Q × Q, and construct a discrete

Lagrangian Ld : Q × Q × R→ R such that

Ld(q(k), q(k+1), h) ≈
∫ t1+(k+1)h

t1+kh
L(q(t), q̇(t))dt.

Introducing left and right discrete forces, F+d and F−d , and

discrete multipliers, λ(k)
d for k = 0, . . . ,N, a discrete variational

principle corresponding to (5) can be formulated as

δ

N−1∑
k=0

(Ld(q(k), q(k+1), h)

+
1

2
φT (q(k))λ(k)

d +
1

2
φT (q(k+1))λ(k+1)

d )

+

N−1∑
k=0

(F−d (q(k), q(k+1), u(k), h) · δq(k)

+ F+d (q(k), q(k+1), u(k), h) · δq(k+1)) = 0 (7)

for all variations δλ(k)
d and δq(k) with δq(0) = δq(N) = 0.

This principle is equivalent to the discrete Euler-Lagrange

equations:

D2Ld(q(k−1), q(k), h) + D1Ld(q(k), q(k+1), h)

+ F+d (q(k−1), q(k), u(k−1), h) + F−d (q(k), q(k+1), u(k), h)

+ΦT (q(k))λ(k)
d = 0, (8a)

φ(q(k+1)) = 0, (8b)

where D1Ld and D2Ld are the slot derivatives with respect to

the first and second argument. These equations define the varia-

tional integrator by implicitly mapping (q(k−1), q(k), u(k−1), u(k))

to (q(k+1), λ(k)
d ). Please refer to [11] for a thorough introduction to

discrete mechanics and [12,13] for more on discrete mechanics

and optimal control of multibody systems.

A reasonable trade-off between accuracy and performance, is

to use the the midpoint rule to approximate the relevant integrals.

The discrete Lagrangian then becomes

Ld(q0, q1, h) = hL
( q0 + q1

2
,

q1 − q0

h

)
. (9)

Thus

D1Ld(q0, q1, h) =
h
2

∂L
∂q

( q0 + q1

2
,

q1 − q0

h

)

−∂L
∂q̇

( q0 + q1

2
,

q1 − q0

h

)

and

D2Ld(q0, q1, h) =
h
2

∂L
∂q

( q0 + q1

2
,

q1 − q0

h

)

+
∂L
∂q̇

( q0 + q1

2
,

q1 − q0

h

)
.

Furthermore, it is then natural to use the following discrete

forces:

F+d (q0, q1, u0, h) = F−d (q0, q1, u0, h) =

=
h
2

F
( q0 + q1

2
,

q1 − q0

h
, u0

)
. (10)

This discretization scheme results in a second order accurate

integrator.

2.5. Optimal control problem

We consider the following optimal control problem: Mini-

mize

J = χ(q(t f ), q̇(t f )) +

∫ t f

t0
L(q(t), q̇(t), u(t))dt (11a)

subject to

∂L
∂q

(q(t), q̇(t)) − d
dt
∂L
∂q̇

(q(t), q̇(t))

+ F(q(t), q̇(t), u(t)) +ΦT (q(t))λ(t) = 0, (11b)

φ(q(t)) = 0, (11c)

g(q(t), q̇(t), u(t)) ≥ 0, (11d)

ψ0(q(t0), q̇(t0)) = 0, (11e)

ψ f (q(t f ), q̇(t f )) = 0 (11f)
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for t ∈ [t0, t f ].

Thus, we want to minimize a performance index (11a), con-

sisting of the terminal cost, χ, and the integral of the control

Lagrangian, L, along the trajectory, while satisfying the dynam-

ics (11b)-(11c), path constraints (11d), and boundary conditions

(11e)-(11f).

It is well known that the discrete mechanics formulation of

the equations of motion show excellent conservation of quanti-

ties, such as momenta and energy, conserved by the continuous

system. This will enable us to take larger time steps and still

get physically meaningful results [14]. There is, however, yet

another computational advantage when used in optimal control.

Namely, since there are no explicit references to velocities in the

discrete equations of motion, the resulting optimization problem

can be formulated using fewer variables, compared to standard

discretizations of trajectories on T Q.

Approximating the objective using the midpoint rule and en-

forcing the path constraints at the midpoints we get the following

discrete optimal control problem: Minimize

Jd = χ(q(N), q̇(N))

+

N−1∑
i=0

hL
(

q(i) + q(i+1)

2
,

q(i+1) − q(i)

h
, u(i)
)

(12a)

subject to

D2L(q(0), q̇(0)) + D1Ld(q(0), q(1), h)

+ F−d (q(0), q(1), u(0), h) +
1

2
ΦT (q(0))λ(0)

d = 0, (12b)

D2Ld(q(k−1), q(k), h) + D1Ld(q(k), q(k+1), h)

+ F+d (q(k−1), q(k), u(k−1), h)

+ F−d (q(k), q(k+1), u(k), h) +ΦT (q(k))λ(k)
d = 0, (12c)

−D2L(q(N), q̇(N)) + D2Ld(q(N−1), q(N), h)

+ F+d (q(N−1), q(N), u(N−1), h) +
1

2
ΦT (q(N))λ(N)

d = 0,

(12d)

φ(q(k)) = 0, (12e)

g
(

q(k) + q(k+1)

2
,

q(k+1) − q(k)

h
, u(k)

)
≥ 0, (12f)

ψ0(q(0), q̇(0)) = 0, (12g)

ψ f (q(N), q̇(N)) = 0, (12h)

h =
t f − t0

N
, (12i)

h ≥ 0, (12j)

where q̇(0), q̇(N) are the initial and terminal velocities. The con-

tinuous optimal control problem (11) has now been transcribed

into a nonlinear programming (NLP) problem of the form: Find

the vector x minimizing the scalar objective function

f (x) (13a)

such that the constraints

cl ≤ c(x) ≤ cu (13b)

and simple bounds

xl ≤ x ≤ xu (13c)

(a) Start (b) Enter

(c) Finishing (d) End

Fig. 1: Automatic tunnel bracket assembly

are fulfilled.

An optimization problem of this form can be solved using

nonlinear programming. Here we use the interior point solver

IPOPT[15].

3. Quasi-static case studies

3.1. Tunnel bracket assembly

The first case is to install a tunnel bracket with the help of

an auxiliary tool. The tunnel bracket and the auxiliary tool is

connected by a rotation joint. The case is provided by Volvo

Cars. The manikin starts outside the car with the tool and tunnel

bracket already connected. The manikin grasps the tool with

the left hand on a bar where the direction of the grasp is free

and the right hand is connected with the fingertips to the tunnel

bracket. After the setup, the assembly is completely automatic

and guarantees that the motion is collision-free, except for the

grasping hands, and that the manikin is in balance for each time

step. The motion can be seen in figure 1. The simulation take

5.1 seconds to compute on a Intel i7 2600 computer. The forces

required to move the tunnel bracket is quite low and the precision

required for the final assembly step and thereby slow motion

makes this a good case for the quasi-static solver.

3.2. Washer placing

The second case is to place washers inside the trunk of a car,

this case is also provided by Volvo Cars. The case can be divided

into two steps: first place the washers, and then to mount the

bolts. Since both steps require the same reachability and force

we choose to simulate only the washer placing. The manikin

uses the left hand as support on the trunk floor to extend the

reach, and the hand is free to rotate on that surface. The case

is tried with 8 different manikins to cover the anthropometric

variables length and weight, and also both sexes.



24   Staffan Björkenstam et al.  /  Procedia CIRP   44  ( 2016 )  20 – 25 

(a) Start (b) Second washer

(c) Third washer (d) End

Fig. 2: Placing of multiple washers for the 90 percentile male manikin

Fig. 3: Top: The reachability for the shortest manikin is insufficient

Bottom: The end is in reach for the manikin

(a) (b)

Fig. 4: Weight positions: (a) start, (b) finish

In figure 2, we see the 90 percentile male manikin perform the

placing without any reachability issues. In figure 3, we see the

difference between 5 percentile lady versus 50 percentile male

where the lady can not reach all the way. This simulation takes

an average of 14.5 seconds for all eight manikins on a Intel i7

2600 computer. The washers only weigh a few grams each and

the precision in which they need to be assembled, and thereby

the slow motion, makes this a good case for the quasi-static

solver.

4. Dynamic case study

Here we compute trajectories for the manikin using the opti-

mal control approach described Section 2.4. We then compute

quasi-static solutions along the optimal paths, and compare the

results. To make the problem more computationally attractive,

we reduce the manikin model to a mechanical model of 40 de-

grees of freedom. This is done by removing joints, primarily in

the spine and hands. The example we study is a lifting operation

using both hands, moving a weight from one predefined position

to another, starting and ending at rest. We chose the height of the

initial position of the weight to be 0.5 m above the ground plane

and place the finish position at 1.8 m, while orientation and

horizontal positions are identical, the positions can be seen in

Figure 4. The weight is modeled as a rigid body, adding another

six degrees of freedom to the system. To model contact, rigid

constraints are added between the weight and the two hands,

and also between the feet and ground. The reaction forces from

the ground are, however, only allowed to push on the manikin,

and must also fulfill Coulomb friction conditions. The resulting

discrete optimal control problem has the structure of (12) with:

χ(q, q̇) = 0

L(q, q̇, u) = uT u
ψ0(q, q̇) = q̇
ψ f (q, q̇) = q̇

where the control signal, u, is chosen to be the normalized

actuator torque. The problem is then solved for both a 10 kg and
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Fig. 5: Control effort in weight lifting example: (a) 10 kg, (b) 20 kg

a 20 kg weight using techniques from [16]. This results in two

optimal trajectories for the system: the trajectory for the 10 kg

weight with a duration of 0.92 s, and the trajectory for the 20 kg

weight, which has a duration of 1.05 s. The quasi-static control

signal, {u(i)
s }Ni=1

, is then computed as the steady state solution

with minimum norm along the discrete trajectory, {q(i)}Ni=1
, i.e.

for each i = 1, . . . ,N: Minimize

(u(i)
s )T u(i)

s

subject to

∂L
∂q

(q(i), 0) + F(q(i), 0, u(i)
s ) +ΦT (q(i))λ(i)

s = 0,

where u(i)
s and λ(i)

s are decision variables.

In Figure 5, we compare the control signal magnitudes for

the dynamic and quasi-static solutions. As expected the dynamic

solutions, on average, require more control effort than the quasi-

static solutions. In particular in the beginning of the lift, where

a considerable effort is needed to accelerate both the weight and

the manikin itself. It is interesting to note that in the end of

the lift the dynamic solutions actually require less torque. This

is explained by the fact that the direction of the lift is upward,

hence the gravitational pull helps the deceleration.

5. Conclusions

In this paper we showed the importance of modeling dynam-

ics when planning for manual assembly operations. Two case

studies where performed on industrial cases, giving examples

of where the quasi-static solution is sufficient. To demonstrate

the dynamic effects, a third test case was studied, which indi-

cates the importance of modeling dynamics in lifting operations.

There is still work to be done before the dynamic solver reaches

the maturity of the quasi-static solver. In particular, the solver

needs to be equipped with collision avoidance and a comfort

function.
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