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ABSTRACT
Enhancing the performance of technical movements aims both at improving opera-
tional results and at reducing biomechanical demands. Advances in human biome-
chanics and modeling tools allow to evaluate human performance with more and
more details. Finding the right modifications to improve the performance is, how-
ever, still addressed with extensive time consuming trial-and-error processes. This
paper presents a framework for easily assessing human movements and automatically
providing recommendations to improve their performances. An optimization-based
whole-body controller is used to dynamically replay human movements from motion
capture data, to evaluate existing movements. Automatic digital human simulations
are then run to estimate performance indicators when the movement is performed
in many different ways. Sensitivity indices are thereby computed to quantify the
influence of postural parameters on the performance. Based on the results of the
sensitivity analysis, recommendations for posture improvement are provided. The
method is successfully validated on a drilling activity.

KEYWORDS
Digital human simulation, Dynamic motion replay, Sensitivity analysis of human
motion, Ergonomics.

1. Introduction

Performance enhancement in technical postures or movements has always been of
great concern. In numerous applications the overall performance is twofold, consist-
ing of both the achievement of some operational goal and the minimization of the
biomechanical demands experienced by the person. Workstations designers now often
take into account the exposure to musculoskeletal disorders risk factors in addition to
workers’ productivity (Schneider and Irastorza 2010; NRC 2001). In sports, coaches
aim at finding the right movement to improve athletes’ results while preventing in-
juries (Fortenbaugh, Fleisig, and Andrews 2009; Robinson and ODonoghue 2008). In
rehabilitation, knowing which motion patterns alleviate the stress on a weakened body
part helps provide exercises or recommendations to prevent further injury (Sturnieks
et al. 2008).

The assessment and improvement of a movement are usually conducted under the
supervision of an expert (e.g. ergonomist, physiotherapist) who observes the person
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performing the activity and provides recommendations based on his/her knowledge
and experience. The availability of experts may however be limited. Besides, obser-
vational methods provide only qualitative measures of the biomechanical demands
experienced by the person. Digital human software (software in which human motions
are reproduced with a digital human model) have therefore been developed to as-
sist and supplement experts (e.g. OpenSim (Delp et al. 2007), AnyBody (Damsgaard
et al. 2006)). Such software enable easy access to detailed force and motion-related
biomechanical quantities, which otherwise can only be measured on real humans with
complex instrumentation, if at all (e.g. muscle or joint forces). However, the relia-
bility of these biomechanical measurements is questionable (Hicks et al. 2015). One
key factor is the mapping of the human motion onto the digital model: the resulting
motion should be dynamically consistent (i.e. respect the laws of physics) to enhance
the reliability of force-related quantities. Yet, existing software do not guarantee such
consistency (Hicks et al. 2015).

The other difficulty in improving technical movements lies in the identification of
suitable modifications which will enhance the performance (Fig. 1). Relations between
the macroscopic parameters of the movement (i.e. adjustable parameters defining the
way the movement is performed) and the resulting performances are often complex.
Therefore, despite advances in human biomechanics and modeling tools, successful
modifications generally still result from an intensive trial-and-error process. In (Demir-
can 2012), Demircan proposes a tool for analyzing the relation between novice and
expert athletes’ movements and the resulting performances. This tool reveals the fea-
tures differentiating an efficient movement from a non-efficient one, but cannot provide
explicit recommendations for an optimal execution. Besides, a single performance cri-
terion is considered (tool acceleration), whereas a detailed assessment of biomechanical
performances relies on several quantities which may be differently affected by a same
parameter of the movement (e.g. joint loads, joint positions, energy consumption).

This paper presents a framework to assess the performance of a technical movement
and easily identify how to improve it, while addressing the aforementioned concerns.
The proposed framework consists of two components:

• A method for replaying pre-recorded human motions while ensuring the dy-
namic consistency of the resulting motion. This dynamic replay relies on an
optimization-based controller which enables to track subjects’ motion in oper-
ational space, while imposing dynamic and biomechanical constraints. Existing
situations can thus be evaluated.
• A method for analyzing the dependence between parameters and performances

of the movement. A variety of situations are automatically created and evaluated
using an autonomous digital human model (no motion capture), and a sensitivity
analysis is conducted on the simulation results. The critical parameters of the
movement can thus be identified and tuned, using only little input data.

The paper is organized as follows. Section 2 presents the two components of the
framework, with an emphasis on the dynamic replay method. The sensitivity analysis
part has already been published in (Maurice et al. 2017) and is only briefly described
here. Section 3 describes the experimental set-up which is used as a proof of concept
of the proposed framework. The results are presented in section 4 and discussed in
section 5.
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2. Method

Human motion is often captured through optical motion capture techniques, in which
markers are positioned on the human body and cameras record the markers 3D posi-
tions. The recorded markers trajectories are then mapped onto a digital human model
(DHM) to estimate movement-related biomechanical quantities. Despite their exten-
sive use, the current mapping techniques still lack physical consistency, especially when
the motion is highly dynamic and/or involves significant interaction forces with the
environment. Note that the retargetting problem (i.e. mapping the motion of a subject
onto an avatar with a different morphology is not considered here. This work assumes
that the DHM morphology can be adapted to each subject, and that its kinematics is
very similar to the human body kinematics.

2.1. Dynamic replay of human motion: Related work

Recorded human motions are commonly mapped onto a DHM with inverse kinematics
techniques (IK), which convert markers operational (i.e. Cartesian) space trajectories
into joint space trajectories. With IK, kinematic quantities such as joint positions
and velocities can be measured. Conversely, the estimation of the driving forces (joint
torques or muscle forces) requires an additional inverse dynamics (ID) step, in which
forces are computed from the DHM dynamic model and the joint space trajectories
resulting from IK. Though widely used, the IK+ID process has several drawbacks.
First, the IK step can be time consuming. Second, the IK solution is not unique, so
the resulting motion may not be plausible. Many authors address this concern by
using a modified IK to match the resulting motion with a given set of constraints
(Lee and Shin 1999; Grochow et al. 2004). However, the dynamic properties of the
human body are not considered so the computed motion is not dynamically consistent
(such techniques are especially used in computer animation, where the visual realism is
the primary concern). This inconsistency prevents the force equilibrium in the ID step
when experimental external forces are added (e.g. ground reaction force). In OpenSim,
for instance, this inconsistency appears in residual forces (Hicks et al. 2015).

In order to improve the dynamic consistency of the replayed motion, some studies
include dynamic considerations in the motion computation. Multon et al. (Multon
et al. 2009) combine IK with dynamic corrections, modifying motion capture data to
respond to physical collision forces. Da Silva et al. (Da Silva, Abe, and Popović 2008)
and Muico et al. (Muico et al. 2009) directly use controller-based techniques including
dynamic constraints to animate a DHM, but they still require the joint trajectories
resulting from IK as an input.

To avoid the IK step, some authors work directly in the operational space. John and
Dariush (John and Dariush 2014) use a task space kinematic control method (closed-
loop inverse kinematics) and dynamic constraints to track the motion directly in task
space. Ott et al. (Ott, Lee, and Nakamura 2008) connect the markers to the DHM
body with virtual springs, and use the generated forces to compute the DHM motion
through the dynamic model equation. Demircan et al. (Demircan et al. 2010) use an
operational space approach based on null-space projection (Khatib 1987) to track the
Cartesian markers trajectories. However, these techniques cannot explicitly take into
account certain constraints of the movement. Specifically, inequality constraints such
as joint limits cannot be included in null-space projection techniques. Instead, authors
resort to suboptimal heuristics to account for inequality constraints through avoidance
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tasks (Sentis and Khatib 2006), or simply dismiss these constraints.

2.2. DHM controller

The dynamic replay method presented in this work is based on a direct control of
markers in the operational space through an optimization-based controller. Unlike
analytical techniques such as explicit null-space projection (Khatib 1987), numerical
optimization-based techniques enable to solve the human kinematic redundancy while
explicitly taking into account both equality and inequality constraints.

The DHM used here is a rigid body model which does not include muscles. Each joint
is controlled by a single ideal rotational actuator, so the actuation variables are the
joint torques. Though muscle-related quantities cannot be measured with such a model,
biomechanical demands can be estimated with quantities such as joint loads, joint dy-
namics, or mechanical energy. Besides, while musculoskeletal models have proved valid
and insightful in specific cases, no general criterion has been established yet to solve
the muscle recruitment problem. This is a concern for the reliability of muscle-related
measurements (Hicks et al. 2015; Thelen, Anderson, and Delp 2003; Damsgaard et al.
2006; Chaffin, Andersson, and Martin 2006). The questionable gain of information
and the significantly higher computational cost therefore reduces the interest of mus-
culoskeletal models in the current context.

The DHM motion is computed with the linear quadratic programming (LQP) con-
troller framework developed by Salini et al. (Salini, Padois, and Bidaud 2011). LQP
handles the optimization of a quadratic objective that depends on variables subjected
to linear equality and inequality constraints. The variables are the joint torques, but
also the contact forces. The ground reaction force (GRF) is therefore computed in
the optimization process, and does not need to be recorded beforehand to replay the
motion. The GRF estimation is a significant advantage over most of the other motion
replay techniques since it simplifies the experimental set-up. The control problem is
formulated as follows:

argmin
X

∑
i

ωiTi(X)

s.t.


M(q)ν̇ + C(q,ν) + g(q) = S τ −

∑
j

JT
cj (q)wcj

GX � h

(1)

where τ is the vector of joint torques, wcj
the contact wrench of the j-th contact

point, q the generalized coordinates of the system (i.e. joint angles), ν the generalized
velocity concatenating the free-floating base twist and the joint velocities q̇, and X =
(τT ,wc

T )T . The equality constraint is the equation of motion; M is the inertia matrix
of the system, C the vector of centrifugal and Coriolis forces, g the vector of gravity
forces, S the actuation selection matrix due to the free-floating base, and JT

c the
Jacobian of contacts. The inequality constraint includes the bounds on joint positions,
velocities, and torques formulated in τ , and the contact existence conditions for each
contact point according to the Coulomb friction model:

Ccjwcj
≤ 0 ∀j

Jcj (q)ν̇ + J̇cj (ν,q)ν = 0 ∀j
(2)
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where Ccj is the linearized friction cone of the j-th contact point.
The objective function is a weighted sum (weights ωi) of tasks Ti representing

the squared error between a desired acceleration or wrench and the system accelera-
tion/wrench. The solution is a compromise between the different tasks, based on their
relative weights (the proposed method could however easily be adapted to a strict
priority strategy such as hierarchical quadratic programming (Escande, Mansard, and
Wieber 2014)). Four categories of tasks are defined by the following errors:

• Operational space acceleration ‖Jiν̇ + J̇iν − Ẍ∗
i ‖2

• Joint space acceleration ‖q̈− q̈∗‖2

• Operational space wrench ‖wi −w∗
i ‖2

• Joint torque ‖τ − τ ∗‖2

where Ẍi is the Cartesian acceleration of body i, and wi the wrench associated with
body i. The superscript ∗ refers to the desired acceleration/wrench/torque. The desired
acceleration is defined by a proportional derivative control:

z̈∗ = z̈goal + Kv(żgoal − ż) + Kp(z
goal − z) (3)

where z stands for X or q, and Kp and Kv are the proportional and derivative gains.
The superscript goal indicates the position, velocity and acceleration wanted for the
body or joint (reference trajectory). Note that the acceleration variable ν̇ can be
expressed as a function of X using the equation of motion.

2.3. Tasks for motion replay

The recorded motion is mapped onto the DHM by creating an operational accelera-
tion task for each marker placed on the subject’s body, and using the recorded marker
trajectories as reference trajectories (Fig. 2). Due to unavoidable differences between
the human and DHM kinematics, the markers tracking tasks alone are often not suffi-
cient to maintain the DHM balance (the balance is in open-loop control and the DHM
falls). A center of mass (CoM) acceleration task is therefore added to control bal-
ance. The reference CoM acceleration is computed with a Zero Moment Point (ZMP)
preview control method (Kajita et al. 2003). Additionally, if the activity includes ex-
erting intentional force on the environment (e.g. pushing an object), an operational
space wrench task is created at the hand. The original ZMP preview control scheme is
modified to take into account these known external forces acting on the DHM. Unlike
the GRF, the intentional reference force must be given as an input to the controller
(e.g. from force sensor measurement or known object features). In order to obtain a
natural posture even when some body segments are not entirely constrained by the
markers tracking tasks, preferred joint angles are specified with joint acceleration tasks
(corresponding to a standing posture arms along the body). Eventually, joint torque
minimization tasks are added to prevent useless effort and ensure the uniqueness of
the solution to the optimization problem.

Given the high number of tasks in the controller and the differences between the hu-
man and DHM kinematics, not all tasks can be fully fulfilled. The weighting strategy of
the controller allows to deal with conflicting objectives, but tasks weights nevertheless
affect the resulting motion. The balance task, for instance, is required to prevent the
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Figure 1. Two different ways of pushing a heavy object, resulting in different biomechanical demands on the

human body (inspired from (Demircan 2012)).

Positions
Velocities
Accelerations
Forces
Torques

Physical consistency

Dynamic replay

Balance

Markers

Manipulation 
force

Posture - Effort

LQP controller

Operational space acceleration task
Operational space wrench task

Joint torque task
Joint space acceleration task

Figure 2. Joint space and operational space tasks used in the LQP controller for the dynamic replay of

human motion.
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DHM from falling, but alters the lower and mid-body markers tracking tasks. Approx-
imate values of tasks weights are first determined from common sense. In accordance
with Demircan et al. (Demircan et al. 2010), distal markers tasks are assigned larger
weights than proximal markers tasks to reduce the effect of cumulative errors in pre-
ceding joint positions. Joint space tasks (torque minimization and preferred posture)
have the lowest weights since they are background tasks. Weights are then manually
tuned by trial-and-error. Though time consuming in the first place, the tuning process
does not need to be repeated; the weights obtained are general enough to be used
for successfully replaying many different activities. The weights values are given in
Table 1.

2.4. Sensitivity analysis of human performances

The dynamic replay method allows easy measurement of operational and biomechani-
cal performances with a DHM. But these measurements alone do not give information
about the postural changes which would enhance the overall performance. Providing
postural recommendations requires to know the influence of the adjustable postural
parameters on the movement performance. Most of the time, however, no straightfor-
ward analytical relation between parameters and performances is available. This work
therefore proposes to establish parameter-performance influence through a statistical
sensitivity analysis. The sensitivity analysis method has already been published in
(Maurice et al. 2017) in the context of collaborative robots assessment. The method
is summarized below, with a focus on its application to movement improvement.

Statistical sensitivity analysis relies on numerical evaluation of the output (indi-
cators of performance) for numerous values of the input parameters (Saltelli, Chan,
and Scott 2000). Given the large number of trials required, movements are simulated
with an autonomous DHM so that many situations can rapidly be tested without the
need for any human subjects. Unlike motion capture and replay, the motion of an
autonomous DHM is automatically generated from high-level descriptions of the tasks
to execute. The whole process for analyzing the dependence between the postural pa-
rameters of a given movement and the resulting performance is summarized as follows
(Fig. 3):

(1) Define the adjustable parameters characterizing the way the movement is per-
formed (e.g. position/orientation with respect to the environment, initial pos-
ture), and select among all the possible combinations the values that should be
tested.

(2) Simulate the movement with an autonomous DHM for each selected combination
of parameters values, and measure the associated performance indicators.

(3) Compute sensitivity measures for the performance indicators, based on their
values in all the tested cases.

In step 1, the adjustable parameters and the numerical bounds within which these
parameters are allowed to vary depend on the movement that is considered. As such,
their choice is not addressed by the method described here. Instead the choice is left
to the user. Appropriate numerical values to test for each of the selected parameters
are determined according to the experimental design of the extended FAST method
(Fourier amplitude sensitivity testing) (Saltelli, Tarantola, and Chan 1999). The FAST
exploration method is a good compromise between the comprehensiveness of the space
exploration and the number of trials.

In step 2, the DHM is animated with an LQP controller similar to the one used
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Table 1. Numerical values of the
tasks weights used for dynamic re-

play.

Task Weight

balance 10

m
a
rk

er
s

back 1
head 2.5
shoulder 2.5
elbow 5
hand 20
knee 1
ankle 1

p
o
st

u
re

back 10−1

neck 10−2

scapula 10−1

shoulder 10−2

elbow 10−3

wrist 10−3

hip 10−2

knee 10−2

ankle 10−2

torque minimization 10−8

Task 
description

Parameters set #NParameters set #1

Human and task
parameters

Selection

...

Analysis

Relevant 
indicators

Influential 
parameters

Indicators set #1 Indicators set #N...

Dynamic simulation

Manikin 
controller

LQP

Figure 3. Flow chart of the method for analyzing the dependence between postural parameters of the task
and resulting operational/biomechanical performances.
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for motion replay, but the markers tracking tasks are replaced by hands and/or feet
operational acceleration tasks (depending on the goal of the movement). The reference
trajectory – or at least the start and end points – must still be given as an input to
the simulation.

A detailed assessment of biomechanical performances requires several indicators
to account for the different demands (e.g. posture, effort, energy). The number of
performance indicators should however be limited to facilitate the analysis, while suf-
ficiently accounting for the overall performance. Hence, step 3 aims at identifying both
the most relevant performance indicators and the most influential parameters (i.e. the
parameters that have the strongest effects on the relevant indicators). In the context
of performance improvement, the relevance of an indicator is not related to its value
but to its variations when the movement is performed in different ways; if the value
of an indicator remains unchanged whichever way the movement is performed, this
indicator is not useful to compare different situations. Therefore indicators are ranked
according to their variance, after they have been normalized to make the variances
comparable. The number of indicators that should be kept is then chosen according
to the Scree test (Jolliffe 2002).

Eventually, the influence of each parameter on the relevant performance indicators
is estimated by computing Sobol indices which measure the percentage of variance of
an indicator that is explained by the parameter (Hoeffding 1948; Sobol 1993). Sobol
first order indices Si and total indices STi

are used because they give information about
the ith parameter Xi independently from the influence of other parameters (Homma
and Saltelli 1996). A high Si means that Xi alone strongly affects the performance
indicator, while a small STi

means that Xi has very little influence, even through
interactions. This method allows to identify which parameters should mainly be tuned
to improve the overall performance. It should be noted that Sobol indices represent
relative contributions, i.e., they inform on the influence of a parameter compared to
all parameters within the tested set.

3. Experiment

This section presents an application of the method for guiding performance enhance-
ment presented in the previous sections. Human motions are recorded and replayed to
evaluate the dynamic replay method. The sensitivity analysis is then applied to the
considered movement, and the results are used to provide postural recommendations.
The improved situation is compared to the original one to ensure that the proposed
recommendations do enhance the performance. It should be noted that the application
presented here is a proof of concept of the method proposed in this paper.

3.1. Task description

An industrial manual task requiring significant effort is used as a test case. The tasks
consists in drilling six holes consecutively in a vertical slab of autoclaved aerated
concrete (dimensions: 30 × 60 cm) with a portable electric drill. The locations of the
holes are imposed and depicted on Fig. 4. The drill weighs 2.1 kg. The average force
needed to drill a hole in these conditions is around 40N (measured with a force sensor
embedded in the drill). The task duration is not constrained, but it takes about 1 min
to perform the whole activity (take the drill, drill the six holes, put the drill down).
Aside from the task correct execution (i.e. localization and depth of the holes), the
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main concern is the biomechanical performance: biomechanical demands should be
minimized in order to decrease the risk of disease or injury.

3.2. Motion capture set-up

3.2.1. Participants

Five right-handed healthy students (3 males and 2 females) aged 25 to 30 years take
part in the experiment (average size 1.72 ± 0.1m; average body mass index 22.6 ±
0.8 kg.m−2). All participants gave informed consent before starting the experiment.

Each participant performs the task ten times, with a resting period between each
trial. The drill is held with the right hand only. Participants choose their feet positions;
they are allowed to move their feet between each trial but not within a trial.

3.2.2. Instrumentation

Participants’ motions are recorded with a CodaMotion1 system at 100 Hz. Participants
are equipped with 25 markers spread all over their body (both legs, both arms, back
and head). They stand on an AMTI force plate2 while performing the task to measure
the GRF (for validation purpose only). A 6 axes ATI force sensor3 is embedded in
the drill handle to measure the drilling forces (Fig. 4). The recorded data are filtered
with a zero-phase 10 Hz low pass 4th order Butterworth filter. All recorded data are
available upon request.

3.2.3. Replay

The recorded motions are replayed with a DHM using the dynamic replay method
described in section 2.3. The drilling force measured with the force sensor is used as
an input to the simulation, whereas the GRF measured with the force plate is used
for validation purpose (in the simulation the GRF is automatically computed by the
DHM controller).

Simulations are run in the XDE dynamic simulation framework developed by CEA-
LIST (Merlhiot et al. 2012). The DHM consists of 21 rigid bodies linked together by
20 compound joints, for a total of 45 degrees of freedom (DoFs), plus 6 DoFs for
the free-floating base. Each DoF is a revolute joint controlled by a single actuator.
Given each participant’s size and mass, the DHM is automatically scaled according
to average anthropometric coefficients4. Each body segment can be further manually
modified to match the participant’s morphology when needed.

3.3. Sensitivity analysis set-up

3.3.1. Postural parameters

In manual tasks, postural parameters that can be adjusted are generally related to
participants’ position/orientation with respect to the environment. For the drilling

1www.codamotion.com
2http://www.amti.biz/
3http://www.ati-ia.com/products/ft/ft_models.aspx?id=Gamma
4segments lengths: http://www.openlab.psu.edu/tools/calculators/proportionalityConstant, segments

masses: http://biomech.ftvs.cuni.cz/pbpk/kompendium/biomechanika/geometrie_hmotnost_vypocet_en
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task, nine parameters are defined and listed in Table 2, along with their user-defined
limits. They include morphology-related parameters to check whether the formulated
recommendations should depend on the the person’s morphology or not. Note that the
parameters used in this work are specific to the task addressed. The proposed analysis
method is generic and can be applied to any movement, however the list of parameters
and their bounds are movement-specific.

The R software sensitivity toolbox5 is used to select, within the user-defined nu-
merical bounds, the parameters values that need to be tested for the extended FAST
analysis. The sample size and set of frequencies are chosen based on the number of
parameters, according to the recommendations of Saltelli et al. (Saltelli, Tarantola,
and Chan 1999). They result in a total of 11601 simulations. One simulation takes
approximately 2 min (real time: 75 s) on one core of a 2.4 GHz Intel R CoreTM i7
laptop. The simulations are parallelized on 8 cores.

3.3.2. Simulations

The drilling task is simulated in the XDE framework with the autonomous DHM.
Only the right hand trajectory and force are explicitly specified. The reference hand
trajectory and drilling force profile are estimated from the data recorded for the replay
step. The DHM feet do not move during a simulation, except if balance cannot be
maintained and the DHM falls. The correctness of the drilling task execution is ensured
by checking the hand actual trajectory and force in each simulation.

3.3.3. Performance indicators

25 indicators are measured to assess the biomechanical performance. They are chosen
to quantify as exhaustively as possible the effects of all kinds of physical demands,
including dynamic phenomena (see Maurice et al. for a detailed description of the
indicators (Maurice et al. 2014)). 20 indicators are local quantities which directly
estimate joint demands: joint position, velocity, acceleration, power and torque for the
right arm, left arm, back and legs respectively. 5 indicators are global quantities which
represent the ability of a person to comfortably perform certain actions. The force (
resp. velocity) transmission ratio of the right hand estimates the capacity to produce
force (resp. movement) in the drilling direction (Chiu 1987). The sum of the square
distances between the center of pressure (CoP) and the base of support boundaries
(balance stability margin) (Xiang et al. 2010), and the time before the CoP reaches the
base of support boundary (dynamic balance) estimate the balance quality. The kinetic
energy of the whole body estimates human power consumption due to movement.

In order to make the variances comparable, the indicators must be scaled because
they have non-homogeneous units and different orders of magnitude. Experimentally
obtained reference values are used for the scaling (see (Maurice et al. 2014) for more
details). To summarize each time-varying indicator in a single value, time-integral
values over a whole simulation are used.

It should be noted that these biomechanical indicators are independent from the
method presented in section 2. The method can be used with any indicators of human
performance that can be measured on a DHM.

5http://www.r-project.org
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Motion capture 

camera

Force plateMotion capture

markers

Embedded
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Z

Figure 4. Motion and force capture instrumentation for the drilling task. A commercial drill has been

modified to embed a force sensor. The red circles on the slab represent the drilling points.

Table 2. Parameters definition and limit values for the drilling task. The total horizontal distance between

the pelvis and the stab center is equal to the value of the corresponding parameter plus the arm length of
the DHM. The right foot is front when the inter-feet distance in the sagittal plane is positive. The influence

of the person’s morphology is taken into account both directly (with the DHM size and body mass index

parameters) and indirectly since some parameters are partly calculated based on the DHM size (inter-feet
distance in frontal plane, vertical distance between shoulder and stab center, horizontal distance between

pelvis and stab center).

Parameter Minimum Maximum

DHM size (m) 1.65 1.85
DHM body mass index (kg.m−2) 21.0 27.0
Preferred elbow flexion angle (◦) 10 135
Inter-feet distance in frontal plane (% of hip width) 100 200
Inter-feet distance in sagittal plane (m) -0.25 0.25
Orientation of drill handle w.r.t. vertical (◦) 0 90
Pelvis horizontal orientation w.r.t. normal to stab (◦) -30 30
Vertical distance between shoulder and stab center (m) -0.2 0.1
Horizontal distance between pelvis and stab center (m + DHM arm length) -0.3 0.0
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4. Results

This section presents the comparison between the recorded and replayed motions
(Fig. 5), the output of the sensitivity analysis, and the comparison of the initial and
improved situations.

4.1. Dynamic replay validation

4.1.1. Motion

The reliability of the replayed motion is assessed by comparing the 3D Cartesian posi-
tions of the experimental markers (recorded with the CodaMotion) with the simulated
ones (points on the DHM body).

The RMS errors between the experimental and simulated markers positions are
presented in Table 3. The tracking error is smaller than 3 cm for all markers except the
knee and right shoulder markers. The tracking error is smaller for the distal body parts,
in accordance with the tasks weights distribution in the controller (higher weights for
distal body parts). The tracking is better for the left arm than for the right arm
because the left arm remains almost still. The right hand tracking error is nevertheless
satisfactory (around 1 cm), given that the overall length of the hand trajectory is about
1 m. The results are consistent across participants.

4.1.2. Force

The reliability of the force data should be assessed by comparing the DHM joint
torques computed with the controller with the human joint torques estimated from
muscle forces. However, getting reliable human joint torques measurements is a practi-
cal issue. Conversely, the GRF is easily measured and provides an indirect estimation
of the joint torques through the equation of motion (equality constraint in Eq. 1). The
experimental GRF (measured with the force plate) and simulated GRF (computed
with the DHM controller) are therefore compared.

The Pearson’s linear correlation coefficient r between the experimental and simu-
lated GRF components is given in Table 4. A good correlation is observed for each
GRF component (four components with r ≥ 0.90, two components with r ≥ 0.70).
No significant permanent force/moment offset is observed (Fig. 6). FY (direction of
drilling) shows a better correlation than FX and FZ because the variations of FY have
a larger amplitude (Fig. 6). There are no significant differences across participants,
except for the vertical force Fz. The disparity of the Fz results might however be due
to the lower precision of the force plate in this direction, because of the higher load.

4.2. Sensitivity analysis

Out of 25 biomechanical indicators, 6 are identified as relevant for the drilling task
by the sensitivity analysis. These relevant indicators are given in Table 5. Together
they account for 80 % of the total variance information, so little information is lost by
not taking into account the other indicators. The presence of the upper-body torque
and position indicators among the relevant indicators is consistent with the physical
demands of the drilling task (exerting a significant force with the right hand while
covering an extended area). The absence of any velocity and acceleration indicators is
expected since the drilling task does not require fast motions.
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Figure 5. Motion capture (left) and dynamic replay with the LQP controller (right) of the drilling task. A

video of the recorded and replayed motions is available in the supplementary material.

Table 3. Average RMS error between the experimental and sim-

ulated 3D markers positions across the 10 trials, for the 5 partici-

pants (Si stands for subject i). Several markers are placed on each
body/joint, but only the largest RMS error of all markers placed on

a body/joint is given.

Position RMS error (cm)

S1 S2 S3 S4 S5 Mean SD

Ankle 1.5 1.0 0.9 1.1 1.3 1.2 0.2
Knee 4.6 4.9 3.7 3.8 4.8 4.4 0.5
Back 2.9 3.2 1.7 2.5 3.1 2.7 0.5
Head 1.6 1.6 0.6 1.5 1.0 1.3 0.4
Right Shoulder 7.8 6.9 2.0 6.8 7.0 6.1 2.1
Left Shoulder 3.9 2.7 1.9 2.2 3.5 2.8 0.8
Right Elbow 2.9 3.0 2.7 2.9 3.1 2.9 0.1
Left Elbow 0.8 0.5 0.3 0.8 0.7 0.6 0.2
Right Wrist/Hand 0.8 1.0 1.5 0.7 1.3 1.1 0.3
Left Wrist/Hand 0.5 0.4 0.2 0.3 0.2 0.3 0.1

Table 4. Average Pearson’s correlation coefficient be-

tween the simulated and experimental GRF components
across the 10 trials, for the 5 participants (Si stands for

subject i). X is the sagittal axis, Y the frontal axis (drilling
direction), and Z the vertical axis.

Force Moment

FX FY FZ MX MY MZ

S1 0.82 0.98 0.70 0.78 0.98 0.96
S2 0.82 0.98 0.62 0.95 0.98 0.95
S3 0.62 0.98 0.57 0.96 0.98 0.96
S4 0.78 0.98 0.91 0.96 0.98 0.98
S5 0.77 0.98 0.82 0.96 0.98 0.97
Average 0.76 0.98 0.72 0.92 0.98 0.97
SD 0.07 0.00 0.13 0.07 0.00 0.01
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A B

C D

E F
Figure 6. Time evolution of the experimental and simulated GRF components, for one trial of participant

No.5. A: Force FX . B: Force FY . C: Force FZ . D: Moment MX . E: Moment MY . F: Moment MZ . The force
and moment errors of this trial are representative of their average values across all participants and trials. The

moments are given at the center of the feet.
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Table 5 also gives the value of Sobol indices for the 6 relevant indicators. Some
parameter-indicator relations represented by these indices are expected and confirm
the consistency of the proposed analysis (e.g. strong influence of the inter-feet frontal
distance on the balance stability margin indicated by the high value of Sobol first
order index). Other relations are less straightforward and could not easily be guessed
without the sensitivity analysis, for instance the influence of the pelvis orientation
on the right arm torque indicator. Overall, Sobol first order indices indicate that the
pelvis orientation, the inter-feet sagittal distance, and the desired elbow flexion have
a significant influence on several of the relevant indicators. These parameters should
primarily be optimized to enhance the biomechanical performances. Conversely, low
values of Sobol total indices indicate that the influences of the stab height and the
pelvis-stab distance are small. The values of these parameters can be freely chosen
by the person performing the activity. Surprisingly at first, the DHM morphological
parameters are not identified as influent according to Sobol indices. This phenomenon
can however be explained by the fact that other parameters are scaled based on the
DHM size. Therefore, the set-up is adjusted depending on the DHM size, which likely
reduces the influence of the morphological parameters on the biomechanical demands.

4.3. Posture modification

Sobol indices provide quantitative information about the magnitude of the parame-
ters influence, but they do not inform on the detail of the indicators vs. parameters
evolution. Such evolution can be estimated with a metamodel (Box and Draper 1987),
but building a metamodel requires many more trials. As such, Sobol indices are not
useful to find the parameters optimal values. However, trend curves can be obtained
from the large number of trials performed for the sensitivity analysis, and used to
identify well-performing parameters values. For each parameter, the optimal value is
determined by considering only the associated relevant indicators. Recommendations
for the drilling task are provided in Table 6. Pure morphological parameters (DHM
size and body mass index) are excluded since they do not have a significant influence
on the performance according to Table 5.

The modified activity is compared to the initial one to validate the benefit resulting
from the proposed recommendations. As a first validation, both the initial and the
modified situations are evaluated with the autonomous DHM simulation (a complete
validation would require the recording and replay of the movement performed by a
human subject following the recommendations). The initial and recommended values of
the parameters are displayed in Table 6 and the corresponding situations are illustrated
in Fig. 7.

The values of the relevant indicators measured in both situations are presented in
Table 7. Out of the 6 relevant indicators, 5 are significantly improved by the proposed
modifications, while the last one is only slightly worsened. Biomechanical demands
associated with the right arm torque, legs position, right arm position, force transmis-
sion ratio and balance stability are reduced by 29, 42, 14, 16 and 35 % respectively,
whereas the back torque demand is increased by 9 %. Importantly, the significant re-
duction in biomechanical demand is achieved even though the range of variation of
the adjustable parameter is limited. This result advocates for the use of the proposed
method which can identify minor changes with a major impact.

The evolution of the shoulder flexion and rotation torques during the drilling move-
ment are plotted in Fig. 8 to illustrate the reduced physical demands on more detailed
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Table 5. Sobol indices for the 6 biomechanical indicators identified as relevant for the drilling task. For each parameter and

indicator, the upper value is the first order index, the lower value is the total index (Sobol indices can range from 0 to 1). The
biomechanical indicators are presented in decreasing order of importance (decreasing variance) from left to right. The percentages

below their names correspond to the percentage of the total variance they explain. FTR stands for force transmission ratio. Numbers

are colored from blue (minimum) to red (maximum), to facilitate the reading.

Relevant biomechanical indicators

Right Arm Legs Right Arm Back FTR drilling Balance stability
torque position position torque direction margin

23 % 20 % 15 % 9 % 7 % 6 %

P
a
r
a
m

e
te

r
s

DHM size
10−3 0.01 10−3 0.02 0.09 0.03
0.02 0.35 0.04 0.10 0.11 0.05

DHM bmi
10−4 10−3 10−4 0.01 0.26 10−4

0.03 0.31 0.10 0.10 0.30 0.03

Elbow flexion
0.22 0.11 0.03 10−3 0.02 10−3

0.26 0.67 0.08 0.09 0.06 0.03

Inter-feet sagittal 0.01 0.16 0.08 0.15 10−3 0.17
distance 0.03 0.66 0.15 0.30 0.02 0.23

Inter-feet frontal 10−4 10−3 10−5 0.01 10−4 0.53
distance 0.02 0.31 10−3 0.07 0.02 0.60

Drill 0.16 10−4 0.16 10−3 10−3 10−4

orientation 0.26 0.32 0.24 0.12 0.05 0.02

Pelvis orientation
0.32 0.02 0.45 0.43 0.45 0.10
0.37 0.50 0.59 0.63 0.52 0.19

Stab height
0.04 10−4 0.05 0.06 0.04 10−4

0.09 0.26 0.09 0.20 0.07 0.02

Pelvis distance
0.09 0.01 0.06 0.01 0.04 10−4

0.15 0.30 0.19 0.10 0.08 0.03

Table 6. Initial and recommended parameters values for the drilling task. The parameters which have the

largest influence on the performance are highlighted in bold. The values for the initial situation are measured
on participant No.5.

Parameter Initial Recommended

Preferred elbow flexion angle (◦) 100 135

Inter-feet distance in frontal plane (% of hip width) 120 200

Inter-feet distance in sagittal plane (m) 0 -0.1

Orientation of drill handle w.r.t. vertical (◦) 0 0

Pelvis horizontal orientation w.r.t. normal to stab (◦) 0 -15

Vertical distance between shoulder and stab center (m) 0 -0.1

Horizontal distance between pelvis and stab center (m + DHM arm length) 0 0.1

Table 7. Values of the relevant biomechanical indicators measured in the initial and modified

situations. FTR for Force Transmission Ratio. For each indicator, the value displayed is the
percentage of the indicator reference value used for the scaling.

Right Arm Legs Right Arm Back FTR drilling Balance stability
torque position position torque direction margin

Init. 138 69 126 76 128 106

Modif. 98 40 108 83 107 69
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biomechanical quantities. Both joint torques are reduced in the modified situation,
and the DHM simulation allows a quantitative estimation of this reduction.

5. Discussion

The results presented in the previous section demonstrate the usefulness of the pro-
posed method. On one hand, the dynamically replayed motion is very similar to the
original one, and the simulated GRF is consistent with the experimental one. On the
other hand, the situation modified according to the sensitivity analysis results exhibits
enhanced performances, confirming the benefit of the postural modifications. Never-
theless, the application of the proposed method should be considered carefully because
of some current limitations of the human model and control. Such limitations are dis-
cussed thereafter, along with leads on future research directions which may help lift
those limitations.

5.1. Accuracy of dynamic replay

The tracking error of the markers 3D trajectories obtained with the dynamic replay
method is similar to the tracking error reported for other replay methods including
dynamic considerations (Table 3). Demircan et al. report a tracking error between 0
and 4 cm depending on markers, when replaying a throwing motion (Demircan et al.
2010). John and Dariush report an RMS tracking error of 4 cm for the worst marker,
when tracking a set of 30 markers (John and Dariush 2014). This latter study however
addresses seated motions where balance is less of an issue.

Though good, the replayed motion is nonetheless not exact (non-zero tracking error).
In addition to soft tissue deformation and uncertainty on markers placement, the
tracking errors are mainly due to differences between the human and DHM kinematics.
For instance, the complexity of the human shoulder (De Sapio 2007) is not rendered
in the DHM kinematics, hence the right shoulder tracking error. The balance task
in the controller also alters the accuracy of the replayed motion. Due to differences
between the human and DHM kinematics and the lack of decision skills of the DHM
regarding how to recover balance, the ZMP preview control scheme in the balance task
is tuned to be conservative. Most unstable situations are thus avoided as long as the
original motion is not too unstable. However, the balance improvement is achieved at
the cost of a modified motion, hence a less accurate replay. This partly explains the
knee tracking error observed despite the small displacement of the knees during the
drilling movement.

The kinematic differences between the human and the DHM can be minimized with
more complex musculosketetal models, but they remain unavoidable and necessarily
affect the quality of the replayed motion and forces (Hicks et al. 2015). These differ-
ences are, however, not specific to the dynamic replay method, but affect any kind
of motion replay. Moreover, the replay method presented in this paper with a basic
human model could also be used with more accurate musculosketetal models – though
at a larger computational cost – to reduce model-induced errors.
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A B
Figure 7. Snapshots of the initial (A) and modified (B) drilling movement simulated with the autonomous

DHM.
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Figure 8. Time evolution of the shoulder flexion (A) and rotation (B) torques in the initial and modified

situations. The grey areas correspond to the drilling periods.
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5.2. Musculoskeletal model and motor control

Unlike the muscular actuation of the human body, the actuation of the DHM is de-
scribed at joint level only, with each DoF controlled by a single actuator. The biome-
chanical quantities measured with such a model are necessarily less detailed than what
could be measured with a musculoskeletal model. Moreover, the DHM joint torques
do not fully represent the physical effort exerted by a person. Due to the redun-
dancy of human actuation, different combinations of muscle forces can result in a same
joint torque. When simultaneously contracting antagonist muscles (co-contraction phe-
nomenon), a person can generate forces which do not produce any net joint torque.
These ”internal forces” do not have any equivalent in the DHM and are not accounted
for in the evaluation. Co-contraction of antagonist muscles aims at increasing joint
impedance to withstand perturbations arising from limb dynamics or external loads
(Gribble et al. 2003); though especially important in high accuracy motions, it is nev-
ertheless present in all motions. Not taking co-contraction forces into account therefore
leads to an under-estimation of the human effort.

Nevertheless, the motion replay method presented in this work is modular, in that
it decouples the rigid body dynamics from the actuation dynamics. The output of
the dynamic replay fully describes the evolution of the system dynamics in terms of

state
[
qT (t), q̇T (t)

]T
, joint torques τ (t) and applied external wrenches wc(t). Given

this evolution, the use of an inverse musculoskeletal model (MM) could give access
to the evolution of muscle activations um(t) = f−1(q(t), q̇(t), τ (t),wc(t),MM).
Muscle-related performance indicators could thus be estimated. However the question
of muscle recruitment in the MM – especially regarding co-contraction – remains an
open issue.

5.3. Autonomous motion generation

The sensitivity analysis being based on DHM simulations, the biomechanical reliabil-
ity of the results depends on the realism of the autonomous DHM motion. Simulating
highly realistic human motions requires a model of whole-body motor control which
accounts for the redundancy of the human musculoskeletal system and for the slow
dynamics of human muscle activation. The slow dynamics is particularly limiting as
it requires to consider the motor control problem from an optimal control perspective
rather than from a purely reactive perspective. The first consequence is a large increase
in the computational cost, which is not compatible with running thousands of simula-
tions in a reasonable amount of time. Moreover, solving this optimal control problem
requires to understand the psychophysical principles that voluntary movements obey.
Though many studies have been conducted to establish mathematical formulae of
such principles (e.g. Fitt’s law (Fitts 1954), minimum jerk principle (Flash and Hogan
1985), two-thirds power law (Viviani and Flash 1995)) and some have been success-
fully applied to DHM simulations (De Magistris et al. 2013), these formulations remain
largely limited to reaching motions. Indeed, driving principles are not yet known for
all kinds of whole-body motions, especially when significant external forces are at play.
Transposed to a DHM, determining the underlying principles of human motion comes
down to establishing which mathematical quantities are optimized when human-like
motions are performed. Optimality criteria can be investigated through inverse opti-
mization techniques – as proposed by Clever et al. (Clever, Hatz, and Mombaur 2014)
for human locomotion or by Berret et al. (Berret et al. 2011) for reaching motions –
but they remain an open research problem.
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Nevertheless, the sensitivity analysis method in itself is independent from the DHM
control. If an improved control law is available, it can be used to generate more realistic
motions, while the analysis method remains the same.

6. Conclusion

This paper presents a framework to easily assess and enhance the performance of
human postures and movements, based on dynamic DHM simulations. Existing situ-
ations are replayed from motion capture data with an LQP controller. This method
guarantees the dynamic consistency of the replayed motion and forces, unlike what is
currently achieved with most existing replay methods. The reliability of the biome-
chanical measurements taken on the DHM is thus increased, without requiring exper-
imental GRF measurement. Then a sensitivity analysis of the movement is conducted
with autonomous DHM simulations to identify the most influential parameters of the
movement, and thereby provide recommendations for improvement. Because the DHM
motion is automatically generated in this step, only little input data are needed to
carry out the analysis. In particular, there is no need for human participants to per-
form multiple repetitions of the motion. The proposed method is applied to a drilling
movement. Experiments carried out on 5 participants show that motions and forces
are reliably replayed. The sensitivity analysis allows to highlight and rank some non
trivial phenomena, which cannot be quantified a priori. Finally, the assessment of the
modified situation shows significant improvement in performances compared to the
initial situation, demonstrating the usefulness of the proposed method.

Futur work includes presenting the movement improvement tool to a human move-
ment expert (e.g., ergonomist) to receive his/her feedback and compare the optimal
movement obtained with the method proposed in this work to his/her own recommen-
dations. Future research will also be directed towards coupling the developed tool with
more detailed human models, such as musculo-skeletal models. Such a coupling will
allow to measure quantities that more accurately represent the physiological demands
during the movement. This will require investigating optimal coupling between the
fast rigid-body simulation presented here and computationnally expensive musculo-
skeletal models, in order to keep the simulation time compatible with the execution
of multiple simulation instances.

To conclude, though the application presented in this paper focuses on biomechan-
ical performance, the method is more general and can be applied to other domains,
such as rehabilitation.
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