
Dombrowski, Q 2020 Preparing Non-English Texts 
for Computational Analysis. Modern Languages Open, 
2020(1): 45 pp. 1–9. DOI: https://doi.org/10.3828/mlo.
v0i0.294

ARTICLE – DIGITAL MODERN LANGUAGES

Preparing Non-English Texts for 
Computational Analysis
Quinn Dombrowski
Stanford University, US
qad@stanford.edu

Most methods for computational text analysis involve doing things with “words”: 
counting them, looking at their distribution within a text, or seeing how they are 
juxtaposed with other words. While there’s nothing about these methods that 
limits their use to English, they tend to be developed with certain assumptions 
about how “words” work – among them, that words are separated by a space, and 
that words are minimally inflected (i.e. that there aren’t a lot of different forms 
of a word). English fits both of these assumptions, but many languages do not. 
This tutorial covers major challenges for doing computational text analysis caused 
by the grammar or writing systems of various languages, and ways to overcome 
these issues.

Introduction
Most methods for computational text analysis involve doing things with ‘words’: counting 
them, looking at their distribution within a text or seeing how they are juxtaposed with other 
words. While there’s nothing about these methods that limits their use to English, they tend 
to be developed with certain assumptions about how ‘words’ work – among them, that words 
are separated by a space, and that words are minimally inflected (i.e. that there aren’t a lot 
of different forms of a word). English fits both of these assumptions, but many languages do 
not. Depending on the text analysis method, a sufficiently large corpus (on the scale of mul-
tiple millions of words) may sufficiently minimize issues caused by inflection, for instance at 
the level commonly found in Romance languages. But for many highly inflected Slavic and 
Finno-Ugric languages, Arabic, Quechua, as well as historical languages such as Latin and 
Sanskrit, repetitions of what you think of as a ‘word’ will be obscured to algorithms with no 
understanding of grammar, when that word appears in different forms, due to variation in 
the number, gender or case in which that word occurs. To make it possible for an algorithm 
to count those various word forms as the same ‘word’, you need to modify the text before run-
ning the analysis. Likewise, if you’re working with Japanese or Chinese, which don’t typically 
separate words with spaces, you need to artificially insert spaces between ‘words’ before you 
can get any meaningful result. For example, ‘I went to Kansai International Airport’ is writ-
ten in Japanese as 関西国際空港に行きました. The lack of spaces between words means 
that tools dependent on spaces to differentiate (and then count) words will treat this entire 
sentence as a single ‘word’. Segmentation – the process of adding spaces – is not always an 
obvious or straightforward process; on one hand, it’s easy to separate ‘to’ and ‘went’ from the 

https://doi.org/10.3828/mlo.v0i0.294
https://doi.org/10.3828/mlo.v0i0.294
mailto:qad@stanford.edu


Dombrowski: Preparing Non-English Texts for Computational AnalysisArt. 45, page 2 of 9

name of the airport (関西国際空港 ‘Kansai International Airport’ に ‘to’ 行きました ‘went’), 
but depending on what sorts of questions you are attempting to answer with the analysis, you 
may want to further split the proper name to separate the words ‘international’ and ‘airport’, 
so that they can be identified as part of a search, or contribute to instances of those words in 
the corpus: 関西 ‘Kansai’ 国際 ‘international’ 空港 ‘airport’ に ‘to’ 行きました ‘went’.

Goals
This tutorial covers major challenges to doing computational text analysis caused by the 
grammar or writing systems of various languages, and offers ways to overcome these issues. 
This often involves using a programming language or tool to modify the text – for instance 
by artificially inserting spaces between every word for languages such as Chinese that aren’t 
regularly written that way, or replacing all nouns and verbs with their dictionary form in 
highly inflected languages such as Finnish. In both of these situations, the result is a text 
that is less easy to parse for a human reader. Removing inflection may have the effect of 
making it impossible to decipher the meaning of the text: if a language has relatively flexible 
word order, removing cases renders it impossible to differentiate subjects and objects (e.g. 
who loved whom). But for some forms of computational text analysis, the ‘meaning’ of any 
given sentence (as readers understand it) is less important; instead, the goal is to arrive at 
a different kind of understanding of a text using some form of word frequency analysis. By 
modifying a text so that its ‘words’ are more clearly distinguishable using the same conven-
tions as found in English (spaces, minimal word inflection etc.), you can create a text deriva-
tive that is specifically intended for computation and will lead to much more interpretable 
computational results than if you give the algorithm a form of the text intended for human 
readers.

While this lesson provides pointers to code and tools for implementing changes to the text 
in order to adapt it for computation, the landscape of options is evolving quickly and you 
should not feel limited to those presented here.

Audience
Text analysis methods are most commonly used in research contexts, and frequently appear 
as part of ‘an introduction to digital humanities’ and similar courses and workshops. While 
these courses are taught worldwide, the example texts are, most often, in English, and the 
application of these text analysis methods may not be as straightforward for students work-
ing in other languages. This tutorial is intended for instructors of such workshops, to help 
them be better informed about the challenges and needs of students working in other lan-
guages and to provide them with pointers for how to troubleshoot issues that may arise.

For instructors of modern languages, text analysis methods can also have a place in inter-
mediate to advanced language courses (see Cro & Kearns). For instance, while many digital 
humanities researchers now use more nuanced methods than word clouds, they can still 
be employed in a language pedagogy context to provide a big-picture visualization of word 
frequency – starting with the generic and obvious (prepositions, articles, pronouns etc.) and 
becoming more and more related to the content of the text as students apply and refine a 
stopword list (a list of words that should be removed prior to doing the word counts and 
generating the visualization). Depending on the text, even a word cloud may make visible 
the impact of inflection, as it may contain multiple forms of a given ‘word’, which can spur 
discussion about what constitutes a ‘word’. Intuitively, we think of saber (‘to know’ in Spanish) 
as the ‘same word’ as sé ‘I know’, sabemos ‘we know’, sabía ‘knew’ and so on, but what do we 
gain and lose if we treat them as ‘different words’, the way a computer would by default?



Dombrowski: Preparing Non-English Texts for Computational Analysis Art. 45, page 3 of 9

Text encoding
Text encoding – or how the low-level information about how each letter/character is actually 
stored on a computer – is important when working with any text that involves characters 
beyond unaccented Latin letters, numerals and a small number of punctuation marks.1 It may 
be tempting to think languages that use the Latin alphabet are safe from a particular set of 
challenges faced by other writing systems when it comes to computational text analysis. In 
reality though, many writing systems that use the Latin alphabet include at least a few letters 
with diacritics (e.g. é, ñ, or ż), and these letters cause the same issues as a non-Latin alphabet, 
albeit on a smaller scale. While a text in French, Spanish or Polish may be decipherable even 
if all of these characters are mangled (e.g. ma□ana for mañana is unlikely to cause confusion, 
and even a less obvious case such as a□os for años is often distinguishable by context), issues 
with text encoding may cause bigger problems later in your analysis – including causing code 
to not run at all. For languages with a non-Latin alphabet, text encoding problems will render 
a text completely unreadable and must be resolved before doing anything at all with the text. 
Unicode (UTF-8) encoding is the best option when working with text in any language, but 
particularly non-English languages.

What is Unicode?
Unicode is the name of a computing industry standard for encoding and displaying text in 
all writing systems of the world. While there are scripts that are not yet part of Unicode as 
of 2020 (including Demotic and some Egyptian hieroglyphs), researchers affiliated with the 
Unicode consortium have done a tremendous amount of work starting in the late 1980s to 
differentiate characters (graphemes, the smallest units of a writing system) versus glyphs (var-
iant renderings of a character, which look a little different but have the same meaning) for the 
world’s writing systems, and assign unique code points to each character. With some writing 
systems – including Chinese and various medieval scripts – the decision of what constitutes a 
character as opposed to a glyph is at times controversial. Scholars who disagree with previous 
decisions or who feel that they have identified a character that is not represented in Unicode, 
can put forward proposals for additions to the standard. While the Unicode consortium that 
shapes the development of the standard is primarily made up of large tech companies, schol-
ars and researchers play a significant role in shaping decision-making at the language level 
(Anderson).

Why is Unicode important?
Before Unicode was widely adopted, there were many other standards that developed and 
were deployed in language-specific contexts. Windows-1251 is an encoding system that was 
widely used for Cyrillic and is still used on 11% of websites with .ru (Russian) domain names 
(W3Techs). A competing, but less common, Cyrillic encoding for Russian was KOI8-R, and a 
similar one, KOI8-U, was used for Ukrainian. For Japanese, you may still encounter websites 
using Shift JIS encoding. For Chinese, you can find two major families of encoding standards 
prior to Unicode, Guobiao and Big5. A major advantage of Unicode, compared to these other 
encoding standards, is that it makes it possible to seamlessly read text in multiple languages 
and alphabets. Previously, if you had a bilingual parallel edition of a text on a single webpage 
with languages that used two different writing systems, you would have to toggle between 

	 1	 Note that ‘encoding’ here refers to the comparatively low-level technical process of standardizing which bits 
represent which letters in various alphabets. This is a different use of the term than the ‘encoding’ in the Text 
Encoding Initiative (TEI), https://tei-c.org, which captures structural and/or semantic features of text in a poten-
tially machine-readable way.

https://tei-c.org


Dombrowski: Preparing Non-English Texts for Computational AnalysisArt. 45, page 4 of 9

multiple text encodings – reducing one side of the text, then the other, to gibberish as you 
switched between them.

If you work in a language with a non-Latin alphabet, odds are good that you’ll encounter 
text that doesn’t use Unicode encoding at some point in your work. Long-running digital 
text archives, in particular, are likely candidates for not having migrated to Unicode. If you 
try to open a text file using the wrong kind of encoding, you won’t see text in the alpha-
bet you’re expecting to see, but rather a kind of gibberish that will soon become familiar. 
(For instance, Windows-1251 Cyrillic looks like Latin characters with diacritics: “Äîñòîåâñêèé 
Ôåäîð Ìèõàéëîâè÷. Ïðåñòóïëåíèå è íàêàçàíèå” for “Достоевский Федор Михайлович. 
Преступление и наказание” – Dostoevsky Fyodor Mikhailovich. Crime and Punishment.)

Making sure your text uses Unicode encoding
Most computational text analysis tools and code assume that the input text(s) use UTF-8 
(Unicode) encoding. If the input text is not in UTF-8, you may get an error message, or the 
tool may provide an ‘analysis’ of the unreadable gibberish (Figure 1). 

It is not obvious what encoding a text file uses: that information isn’t included in the file 
properties available on Windows or Mac. There isn’t even an easy way to write Python code 
to reliably detect a file’s encoding. However, most plain text editors have some way to open a 
text file using various encodings until you find one that renders the text readable, as well as 
some way to save a text file with UTF-8 encoding. A plain text editor is software that natively 
reads and writes .txt files, without adding in its own additional formatting (which Notepad 
does in Windows). Atom is a cross-platform (Windows/Mac/Linux) plain text editor that you 
can install if you don’t already have a preferred editor.3 

There are numerous packages (add-ons) for Atom that provide additional functionality. 
One of these is called convert-file-encoding.4 Download and install this add-on following the 
instructions in the Atom documentation.5

Once you’ve installed the convert-file-encoding package, open your text file in Atom. By 
default, Atom tries to open everything as UTF-8. If everything displays correctly, your file 
already uses Unicode encoding. If the text is gibberish, go to Edit > Select encoding, and 

	 2	 Voyant Tools, https://voyant-tools.org/.
	 3	 Atom is available for download at https://atom.io/.
	 4	 The convert-file-encoding package is available at https://atom.io/packages/convert-file-encoding.
	 5	 Atom documentation is available at https://flight-manual.atom.io/using-atom/sections/atom-packages/.

Figure 1: Voyant ‘analysis’ of Windows-1251 encoded Russian text.2

https://voyant-tools.org/
https://atom.io/
https://atom.io/packages/convert-file-encoding
https://flight-manual.atom.io/using-atom/sections/atom-packages/


Dombrowski: Preparing Non-English Texts for Computational Analysis Art. 45, page 5 of 9

choose a possible candidate encoding. The encodings are listed in Atom by what languages 
they cover, so you can try different options for your language if you’re not sure.

Once your text appears normally, go to Packages > Convert to encoding and select UTF-8. 
Then save your file.

Segmentation
For Chinese and Japanese text, you need to segment your text, or artificially insert spaces 
between ‘words’, before you can use it for computational text analysis. For Chinese, some 
scholars treat every character as a ‘word’. This destroys compounds but is more predictable 
than using a segmenter. For both Chinese and Japanese, segmenters work best when the text 
does not contain a lot of jargon or highly specialized vocabulary, or non-standard orthogra-
phy (e.g. Japanese children’s writing, which often uses the hiragana syllabary where a fully 
literate adult would use kanji).

Stanford NLP (natural language processing) provides a Chinese segmenter6 with algorithms 
based on two different segmentation standards.7 

For Japanese, segmentation is available through the mecab software.8

Rakuten MA is a Javascript-based segmenter that supports Chinese and Japanese.9 There 
is also a Python implementation, Rakuten MA Python.10 If you have trouble with mecab but 
aren’t comfortable writing Python code yourself, there’s a Jupyter Notebook available for 
segmenting Japanese.11 See the Programming Historian tutorial ‘Introduction to Jupyter 
Notebooks’ (Dombrowski et al.) for a description of Jupyter Notebooks and how to use them.

Stopwords
Stopwords are words that are filtered out as the first step of text analysis. Many tools have 
a configuration option where you can define which words should be treated as stopwords.12 
Stopword removal is essential for some methods (including word clouds and topic model-
ling), to avoid having your results flooded with articles, copulas, prepositions and the like. 
Other methods, such as word vectors (which analyse words in their context as a way to explore 
semantic relationships within large corpora), rely on stopwords for important information 
about the semantic value of words, and stopwords should be retained in the text.

Stopwords are language specific, and more nuanced use of stopwords can involve text-
specific lists that also exclude things like character names (which are likely to occur with high 
frequency, but that frequency may or may not be meaningful depending on your research 
question). If you’re using a tool that supports the use of stopword lists, you should check to 
make sure that a default, almost certainly English, stopword list isn’t being applied to your 
non-English text.

Some tools provide reasonable built-in stopword lists for multiple languages. Voyant offers 
generally reasonable lists for thirty-four languages, along with a combined ‘multilingual’ set-
ting, and an option for defining your own list. These lists are not identical: the Russian list 

	 6	 The Stanford NLP segmenter can be downloaded at https://nlp.stanford.edu/software/segmenter.shtml.
	 7	 This Chinese part-of-speech tagger tutorial begins with a step-by-step guide to segmenting with the Stanford 

NLP segmenter: https://github.com/quinnanya/dlcl204/blob/master/chinese/pos_chinese.md.
	 8	 Mecab can be downloaded at https://taku910.github.io/mecab/.
	 9	 Rakuten MA is available at https://github.com/rakuten-nlp/rakutenma. 
	 10	 Raktuen MA Python is available at https://github.com/ikegami-yukino/rakutenma-python. 
	 11	 The Jupyter notebook for running Rakuten MA Python is available at https://github.com/quinnanya/japanese-

segmenter. 
	 12	 See the settings for the Topic Modeling Tool (https://senderle.github.io/topic-modeling-tool/documenta-

tion/2018/09/27/optional-settings.html) or general purpose text exploration environment Voyant (https://
voyant-tools.org/docs/#!/guide/stopwords).

https://nlp.stanford.edu/software/segmenter.shtml
https://github.com/quinnanya/dlcl204/blob/master/chinese/pos_chinese.md
https://taku910.github.io/mecab/
https://github.com/rakuten-nlp/rakutenma
https://github.com/ikegami-yukino/rakutenma-python
https://github.com/quinnanya/japanese-segmenter
https://github.com/quinnanya/japanese-segmenter
https://senderle.github.io/topic-modeling-tool/documentation/2018/09/27/optional-settings.html
https://senderle.github.io/topic-modeling-tool/documentation/2018/09/27/optional-settings.html
https://voyant-tools.org/docs/#!/guide/stopwords
https://voyant-tools.org/docs/#!/guide/stopwords


Dombrowski: Preparing Non-English Texts for Computational AnalysisArt. 45, page 6 of 9

includes the words for many numbers (including пятьдесят ‘fifty’), the Spanish list has no 
numbers but does include various forms of emplear ‘use’, and the Czech list includes no num-
bers whatsoever but does have a number of words related to news (e.g. články ‘articles’), hint-
ing at the domain and context of its origins. Is it the right thing to do to eliminate written-out 
numbers from a Russian text, or any references to ‘articles’ in a Czech text? It all depends on 
what you’re trying to learn from the text analysis. Students should examine – and, if neces-
sary, modify liberally – any stopword list before applying it to their text. If you’re a digital 
humanities instructor, be careful about uncritically recommending stopword lists for lan-
guages you can’t read yourself. As an initial vetting step, at least run any list you find through 
Google Translate first, and read through it. There are many resources online that aggregate 
stopword lists for any number of languages, without considering that many of those lists 
were developed for very particular use cases, and might, for instance, remove all words about 
computers, along with the more-expected prepositions.

Your stopword list should be influenced by other changes you make to your text. In gen-
eral, stopword lists are all lower case, due to the lower-casing that is typically part of the text 
analysis process. If you lemmatize your text (as described below), you won’t need to include 
every possible form of pronouns: just the lemma. If you don’t plan to lemmatize your text 
before the stopword list is applied, you’ll need to work through every number, gender and/or 
case of undesired pronouns, adjectives, verbs and so forth, to ensure they are all excluded. 
Remember, these methods are matching, character-for-character, what you put on the list, 
and including the dictionary form of a word does not by extension include all conjugations, 
declensions or other variant forms.

Lower-casing
Capital letters and lower-case letters, in bicameral writing systems (those that have the con-
cept of capitalization, unlike Japanese, Hebrew, Georgian or Korean), are different characters 
from the point of view of text analysis algorithms. Dad, dad and Sad are all treated as separate 
words, where the latter two are both parsed as having a different first letter from the first. To 
address this issue, texts are commonly ‘lower-cased’, or converted to all lower-case characters, 
before they are further processed with stopword removal or used for analysis. Most text analy-
sis tools (e.g. with graphical user interfaces, like Voyant and the Topic Modeling Tool) handle 
this automatically, even for non-Latin alphabets. If you’re writing analysis code yourself, don’t 
forget this step.

Punctuation removal
What we easily recognize as punctuation is just another character from the point of view of 
most algorithms. This leads to problems when the following are all treated as different ‘words’:

•	 cats
•	 “cats
•	 “cats,
•	 (cats)
•	 cats!
•	 cats!!
•	 cats?!
•	 cats.

Some tools automatically remove punctuation as part of pre-processing, some tools include 
punctuation on the stopwords list and others require you to remove it from the text yourself. 



Dombrowski: Preparing Non-English Texts for Computational Analysis Art. 45, page 7 of 9

For tools that remove punctuation automatically, you should check to make sure that all the 
punctuation present in your language is being removed successfully. Punctuation removal 
may be based on English, so punctuation not found in English (such as « » or 「 」, the 
Russian and Japanese quotation marks, respectively) may not be included. Running the text 
through a tokenizer algorithm (such as the one provided by the Stanford NLP library for 
Python, which currently supports fifty-three languages) can also separate punctuation from 
text, but may make other changes you haven’t anticipated. For instance, in English, a contrac-
tion like ‘she’s’ gets split into two ‘words’, she and ’s, which is a reasonable choice reflecting 
the word’s origins, but can lead to initial confusion when you discover the ‘word’ ’s in the 
results of your analysis.

Lemmatizing
If you’re working with a highly inflected language (i.e. if your language has multiple gram-
matical cases, or a complex verbal system where different persons and numbers have dif-
ferent forms), you may need to lemmatize your text to get meaningful results from any text 
analysis method. Lemmatization attempts to convert the word forms actually found in a text 
into their dictionary form. For languages with less inflection (including Romance languages), 
many scholars don’t feel the need to lemmatize because some methods, such as topic mod-
elling, end up successfully clustering together different forms of a word, even given a small 
amount of variation. It could be a worthwhile activity with students to compare text analysis 
results with and without lemmatization for these languages.

A lot of work goes into developing NLP code for lemmatizing text, and not all lemmatizers 
perform equally well on all kinds of text: the informal language of tweets and the formal lan-
guage of newspapers are different, to say nothing of literary and historical language. English 
is by far the best-resourced language, given the longstanding academic and commercial inter-
est in improving NLP tools for at least modern English. Many languages lack effective lem-
matizers, or any lemmatizers at all. If there’s no lemmatizer for the language that you want to 
work with, another possibility is to look for a stemmer. Stemmers are a shortcut to the same 
fundamental goal as lemmatizers: reducing variation within a text, in order to more effec-
tively group similar words. Rather than replacing the word forms in a text with the proper 
dictionary form, a stemmer looks for patterns of letters to chop off at the beginning and/or 
end of words, to get to something similar to (but often distinct from) the root of the word. 
Stemmers don’t effectively handle suppletive word forms (e.g. ‘children’ as a plural of ‘child’), 
or other word forms that diverge from the usual grammatical ‘rules’, but they may work well 
enough to reduce overall variation in the word forms present in a text, if no lemmatizer is 
available. The truncated forms produced by a stemmer may, however, be harder to recognize 
and connect back to the original form when you’re looking at the results of your analysis.

The current state-of-the-art (whatever state that may be) for lemmatizing most languages is 
usually not available through an easy-to-use tool: you should expect to use the command line 
and/or write code. As a few illustrative examples:

•	 For Russian, Yandex (the major Russian search engine) has released software called 
MyStem for lemmatizing Russian.13 A wrapper is available that makes this code usable in 
Python, PyMyStem.14

	 13	 MyStem is available at https://yandex.ru/dev/mystem/.
	 14	 PyMyStem is available at https://github.com/nlpub/pymystem3.

https://yandex.ru/dev/mystem/
https://github.com/nlpub/pymystem3


Dombrowski: Preparing Non-English Texts for Computational AnalysisArt. 45, page 8 of 9

•	 For Basque, eustagger-lite (Ezeiza, N. et al.) processes text using the following steps: 
tokenization, segmentation, identifying grammatical part-of-speech, treatment of mul-
tiword expressions and morphosyntactic disambiguation.15 

•	 While the concept of lemmatization doesn’t quite carry over to Korean grammar, the 
KoNLPy package can be used for some kinds of potentially helpful text pre-processing 
(Kim).16

•	 The Classical Languages Toolkit (cltk.org) provides lemmatization for Latin, Greek and 
Old French, with other languages under development.17 

•	 Lemmatization isn’t enough for agglutinative languages such as Turkish, where very 
long words can be constructed by stringing together morphemes. The resulting com-
plex words (e.g. Çekoslovakyalılaştıramadıklarımızdanmışsınız, ‘you are reportedly one of 
those that we could not make Czechoslovakian’) are rare, and therefore not ideal to use 
for word counts, but may consist of morphemes that are repeated with a frequency in the 
text that more closely resembles other languages’ concept of a ‘word’. Byte-pair encod-
ing (Mao) is one algorithm that has been used as a reasonably effective shortcut to ‘sub-
word encoding’ (similar to lemmatization, but for linguistic components smaller than 
a word, such as Turkish morphemes) without requiring tokenization or morphological 
analysis. Scholars have also worked on more nuanced, linguistically motivated segmenta-
tion using supervised morphological analysis as a way of addressing the challenges posed 
by agglutinative languages (Ataman et al.).

•	 Lemmatization isn’t applicable to Chinese.18

Conclusion
Text preparation is essential for computational text analysis but how, specifically, you need 
to modify the text – and how best to go about doing that – will vary based on the research 
question, the method and the language. To even begin making sense of the output of com-
putational text analysis, it is important to understand how the input text was processed, and 
to take precautions to ensure that default settings derived from English were not applied to 
languages with very different grammar or orthography.

Fortunately, there is a growing community of scholars working on computational text anal-
ysis, and other digital humanities methods, as applied to languages other than English. For 
scholars working with digital humanities methods, a community has begun to form around 
the mailing list and resources posted on the Multilingual DH website (https://www.multilin-
gualdh.org), which is applying to become a special interest group of the Alliance of Digital 
Humanities Organizations. These resources, and their applications to digital humanities 
research as well as language pedagogy, continue to be refined, and self-identified ‘newcom-
ers’ are welcome and encouraged to join the conversation.

Author Information
Quinn Dombrowski supports digitally-facilitated research in the Division of Literatures, 
Cultures & Languages at Stanford University in the USA. In addition to working on digital 
humanities projects for a wide variety of non-English languages, Quinn serves on the Global 

	 15	 Eustagger-lite is available at http://ixa2.si.ehu.es/eustagger/.
	 16	 KoNLPy is available at http://konlpy.org/en/latest/, along with a tutorial for how to use it for text pre-process-

ing at https://lovit.github.io/nlp/2019/01/22/trained_kor_lemmatizer/.
	 17	 The Classical Languages Toolkit is available at http://cltk.org/.
	 18	 At the same time, see this discussion about attempts to decompose characters into radicals as if the radicals were 

lemmas: https://www.quora.com/Does-the-Chinese-language-have-concepts-of-lemmatization-and-stemming-
just-as-English-has.

http://cltk.org
https://www.multilingualdh.org
https://www.multilingualdh.org
http://ixa2.si.ehu.es/eustagger/
http://konlpy.org/en/latest/
https://lovit.github.io/nlp/2019/01/22/trained_kor_lemmatizer/
http://cltk.org/
https://www.quora.com/Does-the-Chinese-language-have-concepts-of-lemmatization-and-stemming-just-as-English-has
https://www.quora.com/Does-the-Chinese-language-have-concepts-of-lemmatization-and-stemming-just-as-English-has


Dombrowski: Preparing Non-English Texts for Computational Analysis Art. 45, page 9 of 9

Outlook::DH executive board and leads Stanford’s Textile Makerspace. Quinn’s publications 
include “What Ever Happened to Project Bamboo?” about the failure of a digital humanities 
cyberinfrastructure initiative, “Drupal for Humanists”, and “Crescat Graffiti, Vita Excolatur: 
Confessions of the University of Chicago” about library graffiti.

References
Anderson, Deborah. The Script Encoding Initiative, the Unicode Consortium, and the Character 

Encoding Process. Signa nr. 6 April 2004. https://www.signographie.de/cms/upload/pdf/
SIGNA_Anderson_SEI_1.0.pdf. Accessed 30 January 2020.

Ataman, Duygu, Matteo Negri, Marco Turchi and Marcello Federico. ‘Linguistically Motivated 
Vocabulary Reduction for Neural Machine Translation from Turkish to English’. Prague 
Bulletin of Mathematical Linguistics, vol. 108, no. 1, 2017, pp. 331–42. DOI: https://doi.
org/10.1515/pralin-2017-0031

Cro, Melinda A. and Sarah K. Kearns. ‘Developing a Process-Oriented, Inclusive Pedagogy: At 
the Intersection of Digital Humanities, Second Language Acquisition, and New Litera-
cies’. Digital Humanities Quarterly, vol. 14, no. 1, 2020. http://www.digitalhumanities.
org/dhq/vol/14/1/000443/000443.html. Accessed 30 April 2020. DOI: https://doi.
org/10.46430/phen0087

Dombrowski, Quinn, Tassie Gniady and David Kloster. Introduction to Jupyter Notebooks. The 
Programming Historian. 12 December 2019. https://programminghistorian.org/en/les-
sons/jupyter-notebooks. Accessed 30 January 2020.

Ezeiza, Nerea, Iñaki Alegria, Jose Maria Arriola, Ruben Urizar and Itziar Aduriz. ‘Combining 
Stochastic and Rule-Based Methods for Disambiguation in Agglutinative Languages’. Pro-
ceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 
17th International Conference on Computational Linguistics, vol. 1, 1998, pp. 380–4. DOI: 
https://doi.org/10.3115/980845.980909

Kim, Hyunjoong. 말뭉치를 이용한 한국어 용언 분석기 (Korean Lemmatizer), 22 January 
2019. https://lovit.github.io/nlp/2019/01/22/trained_kor_lemmatizer/. Accessed 30 
January 2020.

Mao, Lei. ‘Byte Pair Encoding’. Lei Mao’s Log Book, 2019. https://leimao.github.io/blog/Byte-
Pair-Encoding/. Accessed 30 January 2020.

W3Techs. Distribution of character encodings among websites that use .ru. Updated 30 
January 2020. https://w3techs.com/technologies/segmentation/tld-ru-/character_
encoding. Accessed 30 January 2020.

How to cite this article: Dombrowski, Q 2020 Preparing Non-English Texts for Computational 
Analysis. Modern Languages Open, 2020(1): 45 pp. 1–9. DOI: https://doi.org/10.3828/mlo.v0i0.294

Published: 28 August 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the 
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 
See http://creativecommons.org/licenses/by/4.0/.
 

            	     OPEN ACCESS Modern Languages Open is a peer-reviewed open access journal 
published by Liverpool University Press.

https://www.signographie.de/cms/upload/pdf/SIGNA_Anderson_SEI_1.0.pdf
https://www.signographie.de/cms/upload/pdf/SIGNA_Anderson_SEI_1.0.pdf

	Introduction 
	Goals 
	Audience 
	Text encoding 
	What is Unicode? 
	Why is Unicode important? 
	Making sure your text uses Unicode encoding 

	Segmentation 
	Stopwords 
	Lower-casing 
	Punctuation removal 
	Lemmatizing 
	Conclusion 
	Author Information
	References 
	Figure 1

