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Abstract

Digital human modeling offers unique potential in educating providers to apply complex, titratable forms of medical care and 
assessing their cognitive competence in these domains. Mechanical ventilation uses a machine (a ventilator) to support patients 
who cannot breathe independently, and is a cornerstone of modern intensive and emergency medical care. This cognitively 
complex, titrated, and potentially harmful therapy saves hundreds of thousands of lives per year. Practical and ethical 
considerations limit the provision of extensive bedside training, and there are no current mechanisms for assessing operational 
competence. We constructed a comprehensive digital model of patients undergoing mechanical ventilation that was populated 
with “virtual patients,” as well as specific guidelines regarding clinical goals for each patient.  Individuals ranging from 
experienced clinicians to trainees were evaluated regarding their performance as they managed the virtual patient population.
The training experience was well received and required less than 2 hours. Nonetheless, exposure to the simulator improved 
provider efficiency, and was accompanied by clear changes in patterns of practice. The ability to test on rigorously standardized 
cases (entirely unfeasible in the clinical setting) facilitated assessment of competence and more sophisticated quantification of.
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1. Introduction

Mechanical ventilation (MV) is a cornerstone intervention in modern intensive and emergency care that is used to 
support hundreds of thousands of individuals each year while they cannot breathe independently. Unfortunately, this 
lifesaving intervention can cause harm: injudicious ventilator settings can promote lung injury, compromise 
circulatory stability, produce patient distress, stimulate an inflammatory response, and prolong the period of support 
required. Such adverse consequences of mechanical ventilation add to the burden of patient suffering, increase 
healthcare resource utilization, and compromise outcomes.

The physiologic and engineering foundations of mechanical ventilation are relatively well understood [1-12].  
Regrettably, the teaching of mechanical ventilation remains primarily a “bedside” exercise more akin to an 
apprenticeship than a systematic approach to mastery. New learners cannot practice extensively on actual patients, 
for ethical and practical reasons, and physiologically realistic alternatives (large animals or physical simulators) are 
expensive and suffer from limited access. Moreover, the exposure of the practitioner to the full spectrum of possible 
mechanical or physiologic derangements cannot be guaranteed.

Contemporary approaches to assessment of expertise in mechanical ventilation are ill-suited for defining clinician 
practice patterns or competence in the context of a potentially harmful intervention for which any patient problem 
may have many possible solutions, the prevailing physiology is highly dynamic, and the clinician is reasoning in the 
setting of uncertainty. However, there is recent evidence that model-based training can have an impact on the 
proficiency of clinicians [13-18].

We addressed these issues by refining and extending an existing simulation-based educational model of 
mechanical ventilation and coupling this software to a state of the art approach to characterizing practice patterns, 
one based on  symbolic dynamics [19, 20].  This ensemble included a computer based micro-simulation training tool 
and software and algorithms for constructing a database, characterizing provider practice patterns. We explored the 
evolution of the practice patterns adopted by individual providers as they progressed through a training exercise in 
which they confronted 100 virtual patients having common clinical derangements of respiratory mechanics. An 
updated version of the simulation tool freeware can be downloaded from: http://www.math.vanderbilt.edu/
~pscrooke/CANVENT/upload.html.

2. Methods

2.1. Simulation tool

The simulation tool comprises 5 distinct simulation based elements:
Element one: mathematical models that faithfully emulate airspace mechanics during mechanical ventilation.  

The mathematical models that underlie the simulator are based on general models of non-passive (patient active to 
varying degrees) mechanical ventilation under pressure controlled (PCV) or volume controlled (VCV) mechanical 
ventilation.  The primary model has been parameterized and tested in a large animal model of lung injury, and are 
based on a representation of the pulmonary pressure-volume curve (lung recruitment) originally proposed and 
validated in humans [21].  In this approach, lung compliance is represented as a trapezoidal (increasing, constant, 
and decreasing) function of lung volume [22, 23]. We studied this model in an oleic acid swine model, and found it 
to faithfully emulate the dynamic behaviors of this large animal model of very severe lung injury [24].

Element two: a model emulating gas exchange during mechanical ventilation. We developed a simple “two-
compartment” model of pulmonary gas exchange that captures relevant behaviors based on a “perfused, ventilated” 
compartment and a “perfused, unventilated” compartment. The “size” of the unventilated compartment is 
determined by the volumes predicted from the mechanics model above.

Element three: models emulating acid-base metabolism and the effects of elevated intrathoracic pressure 
We developed a simple model of CO2 clearance and systemic pH that captures relevant behaviors based on CO2 

production, minute ventilation, and anatomic deadspace . Similarly, we incorporated a simple model of interactions 
between elevations in intrathoracic pressure and decrements in cardiac output that is used to emulate mean arterial 
pressure responses to elevated intrathoracic pressure.
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Element four: a population of “virtual patients” that faithfully emulate the behaviors of patients managed in 
everyday clinical practice.  Manipulation of patient specific impedance parameters (such as inflection points, gain 
values, oxygen consumption, etc.) was undertaken to construct a population of virtual patients having physiologic 
characteristics mimicking common clinical derangements:

Chronic Obstructive Lung Disease (COLD)
Severe Acute Asthma (SAA)
Mean Airway Pressure Responsive Acute Lung Injury (rALI)
Mean Airway Pressure Unresponsive Hypoxemia (UH)
Restrictive Lung Disease (RLD).

Several iterations were performed in which experienced Critical Care clinicians confronted each simulated 
patient; those displaying grossly unrealistic behaviors, or that were deemed so easy to be uninformative, were 
replaced by alternate candidates. We sought virtual patients that were both ultimately “solvable,” and non-trivial in 
the manipulations required for solution. The simulator sequentially presented 100 patients, of which 80 (16 from 
each pathophysiologic class) were unique and an additional 5 of which (1 from each class) appeared 4 times (at the 
beginning of the simulation, and after 31, 67, and 95 patients). These “recurring patients” allowed evaluation of user 
responses to identical patients at different points in the educational experience.

Element five: a user friendly interface in which learners confront sequential patients, attempt to satisfy specified 
goals, and can terminate the simulation when they believe goals have been met.  Following (potentially multiple) 
iterations of ventilator adjustments, mode selections, and fluid management decisions, the user commits to the 
solution or determines that goals cannot be met. Immediate feedback is provided.

2.2. Assessment tool

For each ventilator adjustment imposed on each patient, the simulator archives the patient type and impedance 
and other characteristics, the current values of each physiologic variable, and requests for ancillary data. Similarly, 
the software archives the exact values for changes in ventilator settings made by the user. These data, collected for 
each learner, comprise the inputs of the assessment toolkit. This toolkit provides two broad classes of performance 
data, detailed below.

Analysis of provider solution speeds, success rates, and response patterns.  Gross outcomes, such as the number 
of attempts to solve each patient, number of successful solutions, and complication rates (unsatisfactory physiologic 
parameters within a trial) are calculated directly. 

In addition, the complexity of each intervention imposed by the learner is quantified in two ways: average 
complexity and weighted complexity. Average complexity is simply the number of ventilator settings that the 
practitioner changes at each attempt, divided by the number of relevant attempts. Weighted complexity “weights” 
each setting change by the number of outcome measures that parameter can affect—for example, changes in tidal 
volume can affect pH, plateau pressure, oxygenation, and blood pressure (weight = 4), whereas changes in inspired 
oxygen concentration typically only affect oxygenation (weight=1). These metrics were constructed to capture the 
tendency of more experienced practitioners to respond with patterns of interventions, rather than unitary changes.

Quantitative analysis of provider practice patterns.  For each point in each simulated management problem, the 
prevailing pattern of derangements of the patient (such as hypoxemia, low pH and high plateau pressure combined 
with a low blood pressure: the failure pattern) can be assigned a unique numerical symbol. Similarly, the provider 
responses (such as decreasing tidal volume, increasing PEEP, increasing respiratory frequency, administering a fluid 
bolus, or combinations thereof) can also be assigned a unique numerical symbol.  The simulation can thus be cast as 
a series of aligned symbols: “the provider saw this pattern of derangements, and responded with the following 
pattern of interventions.”
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Table 1. Attempt/failure patterns.

These data are used to construct provider- and population- specific frequency tables depicting the frequency with 
which a provider (or population of providers) responds to a specific derangement pattern with a specific pattern of 
interventions. 

Approaches promulgated by Tang and Daw [25, 26] can be used to construct difference matrices expressing the 
“distance” between practice patterns. Such difference matrices can provide quantitative measurements of the 
distance between a provider’s practice patterns and those of other providers or those of a consensus panel of 
providers. 

3. Results

We studied 29 subjects ranging from trainees to experienced faculty members. Each managed 100 virtual 
patients; completion of the training experience took each subject approximately 1.5 hours of interaction time (1.41 ± 
0.59 h).  User acceptance was good, with 97% of users agreeing that the virtual patients resembled those in their 
daily practice and 84% indicating that they would apply the knowledge gained in this experience to their daily 
practice. The resulting database contained 14,503 disorder: intervention dyads. Incomplete pairs resulting from 
keystroke errors accounted for 0.5% and were excluded, leaving 14,426 dyads for analysis. Two subjects had 
keystroke errors in the last of the standardized patient panels (96-100) rendering these standardized sets not 
evaluable. Accordingly, performance on the standardized sets was assessed using patients 1-5 and 68-72 and 
performance on previously unseen patients was conducted using patients 6-31 and 42-67. When the two individuals 
with incomplete terminal sets were excluded from the analyses and the remaining 27 individuals were evaluated 
using patients 1-5 and 96-100 (standard patient panels) and patients 6 through 27 and 73 through 95 (previously 
unseen patients), the results of the analyses were not substantively changed. All results are corrected for multiple 
comparisons within the study.

Simulation based training increases practitioner efficiency.  Following simulation based training practitioners 
solved a panel of standardized patients with fewer attempts on each patient. Rates of successful solution were 
similar (as planned- patients were “designed” to be solvable), suggesting increased efficiency (Figure 1). For the 27 
provider subset comparing performance on standardized patients 1-5 and 96-100 the corresponding corrected p 
value was 0.0003.

Fig. 1. Evolution of performance on standardized patient sets. Panel A: number of attempts required to solve standardized set before and after 
training; Panel B: success rates before and after training.

Attempt 1 2 3 4

Failure Pattern 14 18 9 17

Provider Pattern 904 83 172 811
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Fig. 2. Evolution of performance on novel patient sets. Panel A: number of attempts required to solve individual patients before and after training; 
Panel B: success rates before and after training.

The increased efficiency seen on standardized patient panels generalized to new patients.  Following simulation 
based training, practitioners solved panels of more difficult patients they had not previously encountered with fewer 
attempts and similar or increased success, suggesting that the increased efficiency seen in the standard panel 
generalized to “novel” encounters (Figure 2). For the 27 providers subset comparing performance on patients 6 
through 27 and 73 through 95 the corresponding corrected p value is 0.003.

Providers adopt more sophisticated practice patterns following simulation-based training.  Following simulation 
based training, practitioners implemented significantly more complex patterns of adjustment at each change in 
ventilator settings. “Complexity” is simply the average number of parameters changed at each step. “Weighted 
complexity” is the sum of setting changes at each intervention, with each setting change weighted by the number of 
outcome parameters that are affected by that setting. For example, frequency can affect minute ventilation, plateau 
pressure, oxygenation, minute ventilation, and mean arterial pressure; changes in FiO2 only affect oxygenation. 
Practitioners qualitatively changed their patterns of practice (Figure 3). For the 27 provider subset comparing 
performance on standardized patients 1-5 and 96-100 the corresponding corrected p-values are 0.04 and 0.12.

Fig. 3. Average complexity of interventions imposed by each user before and after training. Panel A: Average complexity; Panel B: Average
weighted complexity.
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Fig. 4. Similarity of individual practice patterns to the patterns adopted by high performing individuals. Panel A: similarity on standardized 
patient sets; Panel B: similarity on novel patients.

Simulation based training leads to providers adopting higher performance practice languages.  As previously 
demonstrated, practice patterns during management of mechanical ventilation display language-like characteristics 
[20]. Accordingly, we defined a consensus “practice language” based on the patterns of the 5 most effective 
subjects, and compared the remainder of the subjects to these patterns before and after simulation training. The 
“most effective” designation was determined as those subjects having the lowest values for:

.

Following simulation based training, the practice patterns of the remaining subjects converged toward those of 
highly efficient providers, whether on a standardized panel of patients or on panels of previously unseen patients, 
suggesting that practitioners were learning a more efficient “language” (Figure 4). For the 27 provider subset 
comparing practice patterns on standardized patients 1-5 vs 96-100 and 6-27 vs 73-95 the corresponding corrected 
p-values are 0.02 and 0.001.

Although not a primary outcome within the analysis, within the standard sets learners demonstrated a qualitative 
trend toward increased efficiency across each of the different patient classes. This finding was observed when both 
the full data and the 27 learner data were examined.

Table 2. Attempt/failure before and after training.

Class Average Attempts

(before training)

Average Attempts

(after training)

p-value

(corrected)

1 3.6 2.2 0.02

2 5.7 2.9 0.01

3 2.8 1.4 0.82

4 4.3 2.2 0.23

5 5.2 3.6 0.05

A similar analysis was not possible for the novel simulated patients, as the degree of difficulty of these patients 
was not constant (by design).  Accordingly, patients could not be “matched” for inherent difficulty for comparison 
before and after training.
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4. Discussion

Users of this micro-simulation based training tool for mechanical ventilation increased their solution efficiency, 
implemented more complex patterns of intervention, and converged toward a common “expert practice pattern” as 
they progressed through the simulations and were confronted with a rigorously standardized testing panel of 
simulated patients. These changes in performance and practice pattern were mirrored by similar changes as the users 
confronted “novel-“ not seen before – virtual patients. Of note, learners were exposed to a large volume of cases 
spanning a wide clinical range in a very short period- on average less than 2 hours.

This work highlights unique advantages of digital human models as training tools. First, the trainee can 
“practice” in an environment that poses no threat to patient safety. Second, an adequate, high volume exposure to 
the entire range of clinical problems can be assured. Our results suggest that, in the setting of mechanical 
ventilation, such exposure can be accomplished in a short time frame. The individual cases can be rigorously 
standardized, facilitating intra-and inter- individual comparisons. In addition, such standardization, combined with 
complete data capture, facilitates the definition of practice patterns and allows the implementation of practice pattern 
based assessment tools. As real world medical care requires the apprehension of multi element patterns of patient 
derangement and multicomponent provider interventions, such pattern based competency assessment is likely more 
appropriate than currently employed, univariate assessments.

Properly deployed digital human models are uniquely suited for training practitioners to manage patients with 
complex medical conditions requiring titrated care. In addition, such models allow characterization of “expert” 
practice patterns, facilitating assessment of competence along multiple simultaneous axes. More sophisticated 
training tools, such as those including user-tailored training (where the cases focus on the user’s weak points) are 
also readily implemented. The future is bright for such approaches. 
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