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Although automatic techniques have been employed in manufacturing industries to 

increase productivity and efficiency, there are still lots of manual handling jobs, 

especially for assembly and maintenance jobs. In these jobs, musculoskeletal disorders 

(MSDs) are one of the major health problems due to overload and cumulative physical 

fatigue. With combination of conventional posture analysis techniques, digital human 

modelling and simulation (DHM) techniques have been developed and commercialized 

to evaluate the potential physical exposures. However, those ergonomics analysis tools 

are mainly based on posture analysis techniques, and until now there is still no fatigue 

index available in the commercial software to evaluate the physical fatigue easily and 

quickly. In this paper, a new muscle fatigue and recovery model is proposed and 

extended to evaluate joint fatigue level in manual handling jobs. A special application 

case is described and analyzed by digital human simulation technique.  

 
Key words: digital human modelling, human simulation, muscle fatigue and recovery 

model, physical fatigue evaluation, objective work evaluation, ergonomics analysis 

 

1 Introduction 

Automation in industry has been increased in recent years and more and more efforts 

have been made to achieve efficient and flexible manufacturing. However, manual 

work is still very important due to increase of customized products and human’s 

capability of learning and adapting [FM1]. Musculoskeletal disorder (MSD) is the 

injuries and disorders to muscles, nerves, tendons, ligaments, joints, cartilage and 

spinal discs [MR1]. From the report of Health, Safety and Executive [H1] and the 

report of Washington State Department of Labor and Industries [S1], over 50% of 

workers in industry have suffered from musculoskeletal disorders, especially for 

manual handling jobs. According to the analysis in Occupational Biomechanics 
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[CA1], “Overexertion of muscle force or frequent high muscle load is the main reason 

for muscle fatigue, and furthermore, it results in acute muscle fatigue, pain in muscles 

and severe functional disability in muscles and other tissues of the human body”. 

Hence, it is very important for ergonomists to find an efficient method to assess the 

extent of various physical exposures on muscles and to predict muscle fatigue in the 

work design stage. 

In order to assess physical risks to MSDs, there are several posture based 

ergonomics tools for posture analysis, such as Posturegram, Ovako Working Posture 

Analyzing System (OWAS), Posture Targeting and Quick Exposure Check for work-

related musculoskeletal risks (QEC). In spite of these general posture analysis tools, 

some special tools are designed for specific parts of the human body. Rapid Upper 

Limb Assessment (RULA) is designed for assessing the severity of postural loading 

for the upper extremity. The similar systems include HAMA (Hand-Arm-Movement 

Analysis), PLIBEL (method for the identification of musculoskeletal stress factors 

that may have injurious effects) [SH1]. Similar to these methods for posture analysis, 

there is one tool available for fatigue analysis and that is muscle fatigue analysis 

(MFA). This technique was developed to characterize the discomfort described by 

workers on automobile assembly lines and fabrication tasks [R1]. In this method, each 

body part is scaled into four effort levels according to its working position, duration 

of the effort, and frequency. The combination of the three factors' levels can 

determine a “priority to change” score. The task with a high priority score needs to be 

analyzed and redesigned to reduce the MSD risks [SH1, R2].  

After listing these available methods, physical exposure to MSD can be 

evaluated with respect to its intensity (or magnitude), repetitiveness, and duration 

[LB1]. However, there are still several limitations with the traditional methods. First, 
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the evaluation techniques lack precision and their reliability of the system is a 

problem for assessing the physical exposures due to their intermittent recording 

procedures [B1]. Second, most of the traditional methods have to be carried out on 

site. Therefore, there is no immediate result from the observation. It is also time 

consuming for later analysis. Furthermore, subjective variability can influence the 

evaluation results when using the same observation methods for the same task [DH1].  

In order to evaluate the human work condition objectively and quickly, digital 

human techniques have been developed to facilitate the ergonomic evaluation, such as 

Jack [BP1], ErgoMan [SL1], 3DSSPP [C1], Santos [V1]. These techniques have been 

used in the fields of automotive, military, and aerospace. These human modelling and 

simulation tools provide mainly visualization information about body posture; 

accessibility and field of view [DH1]. Combining Digital Mock-Up (DMU) with 

digital human models (DHM), the simulated human associated with graphics could 

supply visualization of the work design, and it could decrease the design time and 

enhance the number and quality of design options that could be rapidly evaluated by 

the design analysts [C2]. Traditional posture analysis tools have been integrated into 

these simulation tools for computerization. For example, in 3DSSPP, in CATIA, and 

in other simulation tools, RULA, OWAS and some other posture analysis tools have 

been integrated as a module to evaluate the postures in design stage. In these digital 

human simulation tools, it is possible to generate the motion for certain task, and the 

load of each key joint and even each muscle can be determined and simulated. In 

[JJ1], a method to link virtual environment (Jack) and a quantitative ergonomic 

analysis tool (RULA) for occupational ergonomics studies was developed. This 

framework verified the conception of evaluating ergonomics study in real time 

manner by obtaining human motion from motion capture system.  
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However, even today, there is still no effective method in these digital human 

modelling and simulation tools to predict human motion with consideration of muscle 

fatigue, and there is still no fatigue evaluation tool integrated in these human 

simulation tools. Therefore, it is necessary to develop the muscle fatigue model and 

then integrate it into the virtual human software to evaluate muscle fatigue and 

specifically analyse the physical work, and even predict the human motion by 

minimizing the fatigue. 

Several muscle fatigue models and fatigue indices have been proposed in the 

literature. In a series of publications [WD1, DW1, DW2, and DW3], a new muscle 

fatigue model based on Ca
2+

 cross-bridge mechanism was verified by stimulation 

experiments. This model based on the physiological mechanism seems too complex 

for ergonomic application due to its large number of variables. Another muscle 

fatigue model [GM1] based on force-pH relationship was obtained by curve fitting of 

the pH level with time in the course of stimulation and recovery. Komura et al. [KS1, 

KS2] have used this model in computer graphics to visualize the muscle capacity. 

However, in this pH muscle fatigue model, all the influences on fatigue from physical 

aspects are not considered. Rodriguez proposed a half-joint fatigue index in the 

literature [RB1, RB2, and RB3] based on mechanical properties of muscle groups. 

This fatigue model was used to calculate the fatigue at joint level, and the fatigue 

level is expressed as the actual holding time normalized by maximum holding time of 

the half-joint. The maximum holding time equation of this model was from static 

posture analysis and it is mainly suitable for evaluating static postures. Because of 

these limitations in current existing fatigue models, a new simple model is necessary 

to evaluate the fatigue. 
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In this paper, we are going to present a new framework to evaluate the manual 

handling jobs objectively and quickly in a virtual environment. In this framework, a 

new muscle fatigue and recovery model is integrated to evaluate the fatigue and 

decide the work-rest schedule. A simplified geometrical and biomechanical model of 

arm is constructed to calculate the load of each joint using inverse dynamics. A 

special case in EADS is used to evaluate the fatigue of the manual handling job. 

2 Framework for the fatigue analysis 

In order to evaluate manual handling work objectively and effectively, a framework 

based on virtual reality technique is graphically presented in Figure 1. 

 

Figure 1: Framework for objective work evaluation system 

 

The overall function of the framework is to field-independently evaluate the 

difficulty of human mechanical work including fatigue, comfort and other aspects. 

The framework consists of three main modules: virtual environment module, data 

collection module, and evaluation module. 

The module of virtual environment technique and virtual human technique is 

used to provide the virtual working environment and to avoid field-dependent work 

evaluation. Based on VE, immersive work simulation system is constructed to provide 

the virtual working environment. Virtual human is modelled and driven by the motion 

data to generate the manual handling job in the virtual environment. Another 
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component, haptic interface is used to enable the interactions between the worker and 

virtual environment. 

Data collection module is responsible for obtaining all the necessary 

information for further data processing. From the introduction part, necessary 

information for evaluating dynamic manual handling jobs consists of motion, forces 

and personal factors. To achieve the motion data, motion capture technique can be 

applied to achieve the motion information with individuality. Nevertheless, the 

motion information can also be achieved from some existing human simulation tools. 

Personal factors can be obtained from anthropometry database or measurements. The 

forces can be measured by force measurement devices or known external loads. 

The evaluation module takes all the input data to evaluate the manual 

operation. In this module, evaluation criteria of all the aspects of the manual operation 

are predefined in the framework, such as posture analysis criteria, fatigue criteria and 

discomfort criteria. With these criteria, different aspect can be evaluated by 

processing the input data.  

The detailed technical analysis of the framework was presented in the 

literature [MB1], and here we just make a brief introduction to its work flow. In this 

framework, at first the manual handling operation is carried out in the virtual 

environment module. Virtual working environment is provided for visualization. 

Human’s motion in a manual handling operation is either captured from motion 

capture system or simulated using human simulation software. The motion 

information combined with the interaction information with the virtual environment is 

collected and further processed in the objective work evaluation module. In this 

module, with the predefined criteria, different aspects of the manual operation can be 
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evaluated. The evaluation results can be used for further improvement of the work 

design.  

3 Muscle fatigue and recovery model 

Muscle fatigue is defined as the point at which the muscle is no longer able to sustain 

the required force or work output level [V1]. In order to evaluate the muscle fatigue 

during a manual handling operation, a new muscle fatigue and recovery model was 

developed based on muscle motor mechanisms pattern, and the details are presented 

in this section. At first, the parameters in this muscle fatigue and recovery model are 

listed in Table 1. 

Table 1: Parameters in muscle fatigue and recovery model 

Parameters Unit Description 

U - Fatigue index 

MVC N Maximum voluntary contraction 

Fcem N Muscle force capacity at time instant t 

Fload N Muscle load at time instant t 

Γmax Nm Maximum joint strength 

Γcem Nm Joint strength at time instant t 

Γ Nm Torque at the joint at time instant t 

k min-1 Fatigue ratio, equals to 1 

R min-1 Recovery ratio, equals to 2.4 

t min Time 

 

3.1 Muscle fatigue model 

The muscle fatigue model is based on motor mechanism pattern of muscles. A muscle 

consists of many motor units. Each motor unit has different force generation 

capability, and different fatigue and recovery properties. In general, there are three 

types in the muscle: type I is slow-twitch motor units with small force generation 

capability and low conduction velocity, but a very high fatigue resistance; type II b is 

of fast-twitch speed, high force capacity, but fast fatigability; type II a, between type I 

and type II b, has a moderate force capacity and moderate fatigue resistance. The 

sequence of recruitment is in the order of: I II a  II b [V1]. For a specified 



Virtual and Physical Prototyping,  Vol. 5(3), September 2010, pp. 123 - 137 

muscle, larger Fload means more type II motor units are involved to generate the force. 

As a result, the muscle becomes fatigued more rapidly, as expressed in Eq. (2). Fcem 

represents the non-fatigue motor units of the muscle. In the process of force 

generation, the amount of non-fatigued type II motor units gets smaller and smaller 

due to fatigue, while the number of the type I motor units remains almost the same 

due to their high fatigue resistance, and the decrease of Fcem with time becomes 

slower, as expressed in Eq. (2) by term Fcem(t)/MVC. This muscle fatigue model has 

been mathematically validated by comparing 24 existing static endurance time models 

listed in [EK1] and 3 dynamic models in [LB2, FT1, DW3] in [MC1]. The validation 

result proves that this model is capable for muscle fatigue evaluation. 

 load

cem cem

FdU M VC

dt F F
  (1) 

 cem cem

load

dF F
k F

dt M VC
   (2) 

3.2 Muscle recovery model 

This model (Eq.(3)) is developed based on recovery models mentioned in the 

literature [WF1, CN1]. This model can also be explained by muscle motor mechanism 

pattern. (MVC-Fcem) represents the fatigued motor units in the muscle. The recovery 

rate from fatigue muscle motor units is assumed to be constant 2.4 [LB2, WF1], in 

symbol R. 

 ( )
cem

cem

dF
R M VC F

dt
   (3) 

Therefore, the Fcem can be determined by Eq. (4) 

 0
( )

t Rt

cem cemF MVC F MVC e


    (4) 

With this recovery model, the recovery time from a certain fatigue level F
0

cem 

to p percentage of MVC can be determined by Eq. (5).  
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3.3 Extension of this model to joint level 

The muscles attached around a joint are responsible for generating torque to move the 

joint or keep it stable for maintaining the external load. There are several muscle 

engaged in generating a simple movement of the arm. Mathematically, to determine 

the efforts of each muscle involved in the movement is an underdetermined problem, 

so it is difficult to determine the actual load of each muscle. Although some 

optimisation methods have been created to solve force distribution problem in muscle 

levels, it is not easy to achieve the accurate result for each individual muscle. 

However, according to inverse dynamics, it is accurate enough to calculate the torque 

of each joint. And meanwhile, in ergonomics application, the analysts do often 

evaluate the physical exposures in joint level. MVC is sometimes defined in the 

literature [ME1] as joint strength. For this reason, this muscle fatigue and recovery 

model is extended to evaluate the fatigue and joint level by simply replacing the 

parameters in the muscle model. MVC is replaced by the maximum joint strength 

Γmax. Fcem is replaced by current joint strength with time Γcem, and Fload is replaced by 

the joint load torque Γ. The other parameters are kept the same in the model. The 

extension of the model is also mathematically validated by comparing the existing 

models in [MC1]. 

The muscle model fatigue and recovery model can be used to analyze the 

performance of an individual muscle. The extended model is available to analyze 

muscle groups performance, in other words, reduction of joint strength in a 

continuous working process. 
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4 Application of the fatigue model 

4.1 Special application cases in EADS 

 

Figure 2: Drilling task in EADS field application 

 

In our research project, the application case is junction of two fuselage sections with 

rivets from the assembly line of a virtual aircraft. One part of the job consists of 

drilling holes all around the section. The properties of this task can be described in 

natural language as: drilling holes around the fuselage circumference. The number of 

the holes could be up to 2000 under real work conditions. The drilling machine has a 

weight around 5 kg, and even up to 7 kg in the worst condition with consideration of 

the pipe weight. The drilling force applied to the drilling machine is around 49N. In 

general, it takes 30 seconds to finish a hole. The drilling operation is graphically 

shown in Figure 2. 

In this application case, there are several ergonomics issues and several 

physical exposures contribute to the difficulty and penalty of the job. It includes 

posture, heavy load from the drilling effort, the weight of the drilling machine, and 

vibration. Muscle fatigue is mainly caused by the load on certain postures, and the 

vibration might result in damage to some other tissues of arm. To maintain the drilling 

work for a certain time, the load could cause fatigue in elbow, shoulder, and lower 

back. In this paper, the analysis is only carried out to evaluate the fatigue of right arm 

in order to verify the conception of the framework. The vibration is excluded from the 
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analysis. Further more, the external loads are divided by two in order to simplify the 

calculation, for two arms are usually engaged in drilling operation.  

4.2 Geometrical modelling of arm 

According to the new fatigue model, it is important to calculate the joint torques of 

human; therefore, geometrical model of the right arm is developed using the modified 

Denavit-Hartenberg (DH) notation methods [KK1] to describe the geometric 

structure of the right arm. In modified DH notation system, four parameters are used 

to describe the transformation between two Cartesian coordinates in Figure 3. 

αj: angle between axes Zj-1 and Zj around the axis Xj-1. 

dj: distance between axes Zj-1 and Zj along the axis Xj-1. 

θj: angle between axes Xj-1 and Xj around the axis Zj 

rj: distance between axes Xj-1 and Xj along the axis Zj. 

From anatomic, the shoulder joint allows the movement as a sphere joint in 

flexion and extension, adduction and abduction, and supination and pronation 

directions. Elbow joint is able to move in flexion and extension direction and 

supination and in pronation direction.  

 

Figure 3: Modified Denavit-Hartenberg notation system 
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The shoulder complex is separated into 3 rotational joints and the elbow joint 

is separated into 2 rotational joints shown in Figure 4. Each joint has its own joint 

coordinate system defined in DH notation system, and the joint can only rotate around 

its Z-axis within rotation limits. The anatomical function of each joint is explained in 

Table 2. The parameters in modified DH notation system are listed in Table 3, and the 

transformation matrix between current joint coordinate to precedent joint coordinate is 

Eq. (6). The right arm is geometrically represented by a chain of rotational joints, by a 

general vector q=[q1,q2,q3,q4,q5]. Each element qi represents the rotation angle around 

the Z-axis in Ri. Once the geometrical configuration q is given, the posture of the arm 

can be fixed. 

Table 2: Geometrical parameters for modelling right arm 

Joints Description 

1 Flexion and extension of shoulder joint 

2 Adduction and abduction of shoulder joint 

3 Supination and pronation of upper arm 

4 Flexion and extension of shoulder joint 

5 Supination and pronation of upper arm 

 

Table 3: Geometrical parameters for modelling right arm 

Joint σ α d r θ θini 

1 0 -π/2 0 0 θ1 -π/2 

2 0 -π/2 0 0 θ2 -π/2 

3 0 -π/2 0 -RL3 θ3 -π/2 

4 0 -π/2 0 0 θ4 0 

5 0 π/2 0 0 θ5 0 

 

 
1
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 (6) 
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Figure 4: Geometrical model of the arm 

4.3 Dynamical parameters of arm 

Table 4: Dynamic parameters for modelling the right arm 

Parameters Unit Description 

M kg mass of the virtual human 

H m height of the virtual human 

m kg mass of the segment 

f - subscript for forearm  

u - subscript for upper arm 

IG - moment of inertia of the segment 

h m length of the segment 

r m radius of the segment 

 

The arm is segmented into two parts: upper arm and forearm (hand included). Each 

part of the arm is simplified to a cylinder form and assumed a uniform distribution of 

density in order to calculate its moment of inertia. The weight and dimensional 

information of the arm can be achieved from anthropometry in occupational 

biomechanics [CA1] by Eq. (7) and Eq. (8), with M as weight of the digital human 

and H as height of digital human. Once the weight m and cylinder radius r and height 

h are known, its inertia moment around its long axis can be determined by a diagonal 

matrix in Eq. (9). 

 
0.451 0.051

0.549 0.051

f

u

m M

m M

 


 

 (7) 
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h H

r h

h H

r h




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


 

 (8) 

Erreur ! Des objets ne peuvent pas être créés à partir des codes de champs de mise en forme. (9) 

In our case, a digital human weighted as 70 kg and with a height as 1.70m is 

chosen to calculate those parameters of the right arm. 

4.4 4.4- Calculation of internal joint forces and torques 

The source of the external load is original from two parts: the gravity of the drilling 

machine with direction vertical down, and the drilling effort in direction of the hole. 

The forces and torques at each joint can be calculated following Newton-Euler inverse 

dynamic methods mentioned in book [KD1]. At the end, the forces and torques are 

projected into general joint coordinates to calculate the effort generating the 

corresponding movement of the joint.  

4.5 4.5- Fatigue evaluation of the joints 

As mentioned in the fatigue model, it is necessary to find out the joint strength in 

order to evaluate the joint fatigue. The standard strength data of shoulder and elbow 

can be obtained from the occupational biomechanics [CA1]. The flexion strength of 

shoulder and elbow are mainly depending on gender and flexion angles of the arm. In 

this case, the q1 and q4 are used as variables to calculate the joint strength. The result 

of the joint strength is the mean value Γj of the population and its standard deviation 

σj. In order to analyze the compatibility of the population, 95% (Γj±2σj) population is 

taken into consideration in our analysis. As an example, the elbow flexion strength for 

the 95% male adult population is graphically shown in Figure 5. Two geometrical 

variables, flexion angle of elbow and flexion angle of shoulder, are used to calculate 

the elbow flexion joint strength. It is obvious that different geometrical configuration 
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determines different flexion joint strength and that the variation of the strength among 

the population is quite large. 

The joint strength in a given geometrical configuration can be calculated, and 

then with the new fatigue model, the reduction of the joint strength can be evaluated.  

 

Figure 5: Flexion elbow joint strength within the joint limits. 

5 5- Results and Discussion 

5.1 Results 

5.1.1 Endurance Time for continuous work 

Table 5: Initial parameters and joints flexion strength under geometrical configuration 

αE =90° and αS  =90° 

Height 1,70 m Weight 70 kg 

 Δq1 -30°  Δq4 -90° 

 Mean Std. Deviation 95% Population 

Γshoulder [Nm] 75.620 17.476  

Γelbow [Nm] 75.141 18.470   

Extenral Load Γ1 (Nm) Γ4 (Nm)  

2.5kg 23.043 7.394  

3.5kg 26.873 9.672  

 

With the new fatigue model, a continuous work procedure is evaluated under a 

geometrical configuration of the arm listed in Table 5. Δq1 means the flexion of the 

shoulder, and Δq4 means the flexion of the shoulder. The sign of both variables 

indicates the rotation direction around its Z-axis. With this geometrical configuration, 
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the strength and variation of the joint can be determined, and they are also listed in 

Table 5. Different external load generates different torque in flexion joints. 

The endurance time for the static posture is listed in Table 6. Under the same 

geometrical configuration, different load influences the endurance time. For shoulder, 

even the difference of the shoulder load is about 4 Nm, but it could decrease almost 

one forth of endurance time. The higher external load is, the shorter endurance time 

for maintaining the job is. It is quite clear that different capacity of the population can 

do the same task with quite different performance. It varies from 60 s to 450 s for 

drilling a same hole until exhausted stage. For maintaining the posture, the shoulder 

and elbow have different endurance time. For the overall work capacity evaluation, 

the minimum capacity is used to avoid any injury on human body. From the last two 

rows of Table 6, the number of holes which the worker is able to drill in a continuous 

working procedure is shown. Using our fatigue index, the fatigue of each joint is also 

evaluated. For drilling only one hole in 30 seconds, the maximum fatigue index 

occurs at the negative side of the population in the shoulder joint (0.330). 

Table 6: Endurance time [s] and fatigue index U of shoulder and elbow flexion joints 

under continuous working condition 
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External Load -2σ -σ 0 -2σ +2σ 

2.5 kg, Shoulder [s] 60.155 140.125 233.984 338.456 451.520 

Us of 30 s * 0.283 0.198 0.152 0.124 0.104 

2.5 kg, Elbow [s] 509.083 936.582 1413.831 1928.300 2472.535 

Ue of 30 s * 0.097 0.065 0.049 0.039 0.033 

2.5 kg Holes 2 5 8 11 15 

3.5 kg, Shoulder [s] 37.623 100.198 174.683 258.268 349.221 

Us of 30 s 0.330 0.231 0.178 0.144 0.122 

3.5 kg, Elbow [s] 325.501 621.517 955.564 1318.062 1703.315 

Ue of 30 s 0.127 0.085 0.064 0.052 0.043 

3.5 kg Holes 1 3 6 9 11 

External load Recovery time for 30 s drilling work [s] 

3.5 kg Shoulder 83.542 75.758 69.815 65.011 60.981 

3.5 kg Shoulder 61.945 52.576 45.774 40.432 36.033 

2.5 kg Elbow 80.243 72.301 66.270 61.412 57.343 

2.5 kg Elbow 55.584 46.101 39.240 33.863 29.439 

*Us, Ue: Fatigue index of shoulder and elbow 

 

From Figure 6 to Figure 9, the reduction of the joint strength during the 

operation is graphically presented. In a continuous static posture holding procedure, 

there is no recovery of the joint strength. The joint strength decreases with time. 

 

Figure 6: Reduction of the elbow strength while holding a drilling machine weighted 

as 2.5 kg 
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Figure 7: Reduction of the elbow strength while holding a drilling machine weighted 

as 3.5 kg 

 

Figure 8: Reduction of the shoulder strength while holding a drilling machine 

weighted as 2.5 kg 
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Figure 9: Reduction of the shoulder strength while holding a drilling machine 

weighted as 3.5 kg 

5.1.2 Influence of Recovery 

Work-rest schedule is very important in ergonomics application. Combining 

fatigue and recovery model can determine the work-rest schedule. Different work 

cycle results in different fatigue evaluation results. In our case, two working cycle are 

evaluated. One is drilling a hole in 30 s and recovery 30s in Figure 10, and another 

one is 30s drilling and 60s recovery in Figure 11. From previous analysis, we take the 

3.5kg and shoulder joint for demonstrate the influence of recovery period. It is 

obvious that the longer the rest period is, the better the joint strength can be 

recovered. Sufficient recovery time can maintain the worker’s physical capacity for 

quite a long time; but insufficient recovery time might cause cumulative fatigue in the 

joint. In Figure 10, cumulative fatigue during the working procedure can be indicated 

by the reduction of the joint strength. And in rest time 60 s, the joint strength can be 

recovered during the rest period to maintain the job. Once the requirement of the joint 

strength is over the capacity; the overexertion might cause MSD in human body. It 

should be mentioned that in actual work; there are lots of influencing factors affecting 

the recovery procedure, and the recovery ratio is changed individually. According to 

[LB2, WF1], R is set as 2.4 min
-1

 for 50% population to determine the work-rest 

schedule. 



Virtual and Physical Prototyping,  Vol. 5(3), September 2010, pp. 123 - 137 

 

Figure 10: Recovery 30 s after drilling a hole 

 

Figure 11: Recovery 60 s after drilling a hole 

5.1.3 With consideration of discomfort 

In fact, fatigue is not a single aspect in ergonomics analysis. There are some other 

factors influencing the actual operation of the worker, such as joint discomfort, so the 

posture prediction is a multi-objective optimisation problem.  

In our application, fatigue and discomfort are combined into Eq. (10) to 

convert the multi-objective function into a single objective function for posture 

prediction. 

The fatigue index (stress index) is expressed by the summation of the relative 

joint load. In paper [YM1], a discomfort index is proposed as an objective to predict 

human motion and it is taken into our framework to evaluate the joint discomfort. 
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This discomfort index from Eq. (12) to Eq. (15) estimates the comfort of the joint by 

comparing its current position with its upper limitation, lower limitation and its 

neutral position. The most comfortable position is in neutral position of the joint.  

In our case, right shoulder and the hole are predefined in the same horizontal 

line in sagittal plane. Therefore, different postures need to be adjusted to adapt to the 

variation of the distance. Different posture causes different fatigue and different 

discomfort. Therefore, using the discomfort index and stress index in Eq. (11) and Eq 

(12), an optimal posture can be found to balance the requirement of fatigue and 

discomfort. The results are shown in Figure 12. 

Table 7: Parameters used in VSR discomfort index 

Parameters Unit Description 

qi degree current position of joint i 

qU
i degree upper limit of joint i 

qL
i degree lower limit of joint i 

qN
i degree neutral position of joint i 

G - constant, 106 

QUi - penalty term of upper limits 

QLi - penalty term of lower limits 

γi - weighting value of joint i 
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Figure 12: Evaluation of the influence of the working distance 

 

Figure 13: Optimal posture analysis of the weighting values 

 

Figure 14: Graphical visualization of the optimal posture 

 

In Figure 12, the left upper subfigure is the stress index of the 95% population. 

This stress index can represent certain fatigue level of a posture. The longer the 

distance, the larger moment arm of external loads, more stress it is for the right arm. 
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The discomfort of right shoulder and elbow are shown in right upper subfigure. It is 

clear that the elbow becomes more comfort while the distance gets longer, since it 

approaches to its neutral position. Conversely, the shoulder gets more discomfort 

since it moves further from its neutral position. The sum of both discomforts is shown 

in left lower subfigure. After normalization of the stress and discomfort, both are 

added together to be a overall objective function for the optimization of the posture. 

Both factors are weighted by weight factor wi. The variation of wi allows us to move 

the optimal solution along the Pareto surface in Figure 13. In our analysis, both 

weighting factors are set as 1. These weighting factors can be set according to the 

preference of less fatigue or less discomfort. In the right lower subfigure, an optimal 

posture can be found at the distance around 0.53m. The optimal position is 

graphically shown in Figure 14. The flexion angle of shoulder and elbow are 22° and 

98° to maintain the drilling machine. By setting different weighting values, different 

optimal posture can be achieved.  

5.2 Discussion 

The main difference between the fatigue analysis in this paper and the conventional 

methods for posture analysis is: all the physical exposure factors are taken into 

consideration in this method as well, but in a continuous record method. In this way, 

much detailed analysis of the operation can be achieved.  

With the new fatigue and recovery model, it is possible to evaluate the fatigue 

of a certain manual handling job. Although until now only a specific application case 

is analyzed, the feasibility of the overall concept is verified in this paper. The fatigue 

at each joint, the reduction of the joint strength and the recovery time necessary for 

preventing the worker from cumulative fatigue can be calculated out with respect to 

physical and temporal parameters of the job. With the analysis result, it is possible to 
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determine suitable work-rest schedules to minimizing fatigue during a job, and to 

provide recommended postures to the user. With the analysis the distribution of the 

population, the fatigue model can also be used to select suitable workers for the jobs.  

However, in a manual handling job, there are lots of objective factors 

influencing the performance of the worker, such as, temperature, vibration, and so on. 

In a virtual reality framework, it is impossible to reproduce all these factors. From 

another view, there are different aspects concerning the difficulty of the job, such as 

accessibility, visibility, comfort, and fatigue. In real working process, the worker can 

adjust the operation according to the environment, the requirement of the job and his 

own capacities. For this reason, the actual operation is the result of multiple-objective 

optimisation. In the drilling case, multiple-objective optimisation posture can be 

achieved by weighting fatigue and discomfort as the same. Although this cannot 

reflect the actual posture in the manual handling work, at least the result can provide 

us a recommended posture to decrease MSD risks. 

6 Conclusions and Perspectives 

In this paper, the application of a new muscle fatigue and recovery model in a virtual 

environment framework is presented. In the digital human simulation, the joint torque 

load can be calculated after geometrical and dynamic modelling of human. Thus, 

according to biomechanical limits of each joint, the fatigue level of the joint can be 

figured out using the fatigue model. Further more, the fatigue model and recovery 

model can be used to determine the work-rest schedule for manual handling jobs. 

Nevertheless, combining fatigue index and discomfort index of joint, virtual human’s 

motion can be predicted or proposed in digital human simulation tools.  

In the future, other manual handling jobs are going to be evaluated under this 

framework with consideration of fatigue. Full body geometrical and dynamic model 
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of virtual human is going to be constructed to evaluate the joint fatigue for all the key 

joints of human. Experimental validation of the evaluation results is now under 

construction. It is possible to apply the new fatigue and recovery model in 

commercialised simulation software to simplify ergonomics evaluation procedures 

and enhance the work design efficiency, and make contribution to its final goal – 

reduce MSD risks in manual handling jobs.  
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