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Introduction

                 Coal mining is a relatively dangerous industry 
compared to private industry[1], but is a key component to the 
national energy strategy[2]. One of the primary pieces of equip-
ment used during underground coal production is the continuous 
mining machine (CMM). These machines are operated by re-
mote control, and are used to extract coal from the working face 
through a rotary cutting drum and onboard articulating convey-
or. Since 1984, there have been 39 fatalities involving striking 
and pinning of the operator and other workers by the CMM[3] 
and according to MSHA (Mine Safety and Health Administra-
tion) data, during 2008 - 2012 in the U.S., there were, on aver-
age, 65 lost-time accidents per year during routine mining and 
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Abstract

 According to Mine Safety and Health Administration (MSHA) data, during 
2008-2012 in the U.S., there were, on average, 65 lost-time accidents per year during 
routine mining and maintenance activities involving remote-controlled continuous min-
ing machines (CMMs). To address this problem, the National Institute for Occupational 
Safety and Health (NIOSH) is currently investigating the implementation and integra-
tion of existing and emerging technologies in underground mines to provide automated, 
intelligent proximity detection (iPD) devices on CMMs. One research goal of NIOSH 
is to enhance the proximity detection system by improving its capability to track and 
determine identity, position, and posture of multiple workers, and to selectively disable 
machine functions to keep workers and machine operators safe. Posture of the miner 
can determine the safe working distance from a CMM by way of the variation in the 
proximity detection magnetic field. NIOSH collected and analyzed motion capture data 
and calculated joint angles of the back, hips, and knees from various postures on 12 
human subjects. The results of the analysis suggests that lower body postures can be 
identified by observing the changes in joint angles of the right hip, left hip, right knee, 
and left knee.
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maintenance activities on CMMs.
 In recent years technologies have been developed to 
reduce injuries and fatalities associated with CMM operation. 
Proximity detection systems warn and disable the machine if 
the operator intrudes into an unsafe area[4,5]. Recently, further 
advances have been made through triangulating operator posi-
tion and only disabling machine motions that are hazardous[6,7,8]. 
To improve the accuracy and performance, information about 
worker posture could be used by CMM proximity detection sys-
tems.
 The mining process requires workers to change pos-
ture and position based on several factors such as roof height, 
machinery location, and mine ventilation. Previous studies have 
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addressed worker positioning around the CMM rather than pos-
ture[9,10]. Some investigations unrelated to mining have focused 
on wireless and embedded sensor technology to determine hu-
man posture[11-14].  However, these studies were ultimately con-
cerned with human position in specific postures.  Further re-
search is needed to identify underground worker postures, and 
determine the transition between them. Through examination 
and understanding of key reference joint angles, underground 
mine worker posture can be analyzed and determined. 

Methods

 Posture identification research was in the feasibility 
stage so rather than using actual miners, twelve Federal employ-
ees at the Bruceton, PA location of NIOSH volunteered to be 
subjects. None of the subjects were specifically involved with 
posture identification research. Prior to developing the protocol, 
researchers conducted preliminary tests that helped them to de-
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sign the experiment, develop test procedures, and preliminarily 
determine which of the subjects’ changes in angles of the back, 
hips, and knees could be used to identify the posture. The proto-
col was approved by the NIOSH Human Subjects Review Board 
and all subjects were required to sign an informed consent.
 Posture data was collected from 12 human subjects (7 
male and 5 female) using motion capture hardware and soft-
ware (Cortex, Motion Analysis Corporation, Santa Rosa CA). 
This motion capture system uses an array of reflective markers 
placed on the subject and other items of interest. The array of 
markers used in this testing was the JACK marker set[15] that 
enable use with Jack® (Tecnomatix JACK, Siemens USA, Wash-
ington DC), Siemens’s 3D digital human modeling/simulation 
software. The Jack® software enabled analysis of the data for de-
termining accurate body joint angles of interest on each subject 
tested. Figure 1 is an example of a human subject in pose and the 
corresponding motion capture and Jack simulation.
 

Figure 1: Human subject, motion capture, and Jack software simulation displays.

 The subjects were asked to assume eight different pos-
tures: walking, standing, sitting with bent knees, sitting with legs 
straight, kneeling on left knee, kneeling on both knees, kneeling 
on right knee, and lying down. These were selected from previ-
ous research[16] where interviews conducted with CMM opera-
tors detailed their typical working postures. The order in which 
subjects were instructed to assume the postures was randomized 
so that subjects were unable to anticipate what the next posture 
would be. Subjects were instructed to assume the postures in 
the manner most natural to them. Subjects were tested 24 times 
in each posture, and data was captured at a rate of 30 frames 
per second. Upon completion of data collection, researchers re-
viewed the data for each subject and selected the portion of each 
test in which the subject was static, in other words, keeping still 
in a given posture in contrast to changing from one posture to the 
next. A set of data for each subject in each posture was construct-

ed by merging the static portions from the 24 tests of the given 
posture.

Measurement and Analysis
 Each subject provided joint angle data while standing, 
kneeling on the right knee, left knee, and both knees, sitting with 
legs bent, sitting with both legs extended, and lying on the left 
side. Human subjects were instructed to assume the position in 
their own natural way. No specific instructions were given on 
how to get into the position or exactly how the participants’ legs 
should be positioned. Playing back motion capture data on each 
subject on Jack digital human software enabled selection of a 
time frame for when each posture tested started and ended. As 
each posture time frame was found, the appropriate body joint 
angle data was collected and sorted for each of the 12 subjects. 
The shape of the distribution, statistical dispersion, and central 
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tendency were obtained from the descriptive statistics.
 The data for each of the 12 subjects was sorted into 
groups: Female, Male, and Gender-All and according to the sub-
jects’ height, weight, and age (Table 1). Heights in inches were 
separated into four sets: 64, 66, 70-71, and 73-74. Weights in 
pounds were separated into five sets: 125-135, 170, 180-185, 
200-205, and 210-220. Ages in years were separated into three 
sets: 25-26-30-32, 45-47-48, and 55-56. Height, weight, and age 
sets were constructed according to how their units clustered.

Table 1: Database assembled into Groups and Subgroups.
Group Sub Group Number of Subjects
Female - 5
Male - 7
Combined gender all 12 subjects

Height-inches

64 2
66 3

70 - 71(1) 5
73 - 74 2

Weight- pounds

125- 135 2
170 2

180(2) - 182 - 185 4
200 - 205 2
210 - 220 2

Age- Years
25 - 26 - 30 - 32 4

45 - 47 - 48 3
55(3) - 56(2) 5

 Researchers also generated data sets of descriptive sta-
tistics on each group. This statistical data was used to calculate 
an estimate of central tendency statistics for each posture and 

related body joints: back, right hip, left hip, right knee, and left 
knee. The median was used as a measure of central tendency, 
because the data was not normally distributed. In the case of the 
median on how widely values are dispersed, the measure of the 
inter quartile range (IQR) is used.
 Upon inspection of the data, it was found that the mean 
was not suitable to be used in a skewed distribution to determine 
joint angles. Because of the median’s ability to ignore outlying 
values, it is often regarded as a more robust measure, in that it 
is focused around the middle values and ignores extreme values 
on either side. The median is also very robust in the presence of 
outliers (values that differ significantly from the mean), while 
the mean is rather sensitive.
 The skewness measure was used to indicate the level of 
non-symmetry within the measured joint angle data. If the distri-
bution of the data is symmetric, then skewness will be close to 0 
(zero). A negative value indicates a skew to the left and a posi-
tive value a skew to the right. The skewness of a sample is con-
sistent with a normal distribution for a population if its absolute 
value is small, e.g. less than 0.3. The standard error of skewness 
(ses) can be estimated roughly using the following formula after 
Tabachnick and Fidell[17]: √ (6/N). For this research, N = 12, √ 
(6/12) or ses is 0.707. Values close to 2 ses or more (regardless 
of sign) are skewed to a significant degree. 
 After completion of the statistical analysis, researchers 
developed a posture-joint angle matrix that depicts joint angles 
that distinguish one posture from another. Table 2 (C rows) il-
lustrates the range joint angle values for corresponding postures. 
The A rows in Table 2 are the joint angles measured when a 
Jack human figure is placed in the corresponding posture. The 
postures used in this study are defined as standard postures in 
the Jack software. The statistical results in Table 2(B rows) show 
that these results are representative of the data and show similar 
trends as were established in the preliminary tests.

Table 2: Matrix that defines corresponding posture to ideal joint angles (A-rows), combined gender results (B-rows), and range of results for 
potential sensor parameters (C-rows).
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Results

 Walking posture data were not analyzed statically as 
with the other seven postures, so it is not included in the overall 
analysis. The skewness of all the statistical data sets showed that 
overall 38.1% were skewed to a significant degree (greater than 
2 ses or 1.414 absolute value). The skewness of a sample is con-
sistent with a normal distribution for a population if its value is 
small (< 0.3, absolute value); consequently, statistical data sets 
showed that overall 70.3% were skewed. Because of the skew-
ness in the database, the median was used for the estimate of 
central tendency.
 Hip joint angles for standing posture (right-173°, left-
172°) nearly reached the expected value of 179°. Knee joint an-
gles for standing (right-157°, left-156°) were less than the ex-
pected value; however, the IQR was 25.3 for the right knee and 
25.0 for the left knee and the Mode (most frequent value) was 
175 for both knees. Standing posture data indicate that both hip 
and knee joint values lean towards the maximum expected val-
ue. Slouching and favoring a side will cause hip and knee joints 
to move away from the expected standing joint values. 
 The hip and knee joint data for sitting with knees bent 
revealed that the angles were nearly the same—respectively 77°, 
76°, 77°, and 76°. Regarding sitting with both legs extended, 
the hip joint angles (right-105°, left-102°) were smaller than the 
knee joint angles (right-158°, left-156°), which is correct for 
this position. The knee joints in the sitting posture have similar 
values to knee joints in the standing posture and their interquar-
tile range (IQR) is high, sitting with legs extended (29.6, 25.9) 
and standing (25.3, 25.0). The data for when subjects were sit-
ting with both knees bent show that both hip and knee joints 
are nearly the same values. A slouching posture was observed in 
the subjects, which could have returned lower-than-expected hip 
joint measurements. When subjects were sitting with both legs 
extended, similar hip values were mirrored. Knee values lean 
towards the maximum expected value. During testing, observa-
tions of subjects showed that few extended their legs complete-
ly; instead, they extended their legs in a relaxed pose that caused 
the hip and knee angles to move away from the expected values 
for this posture. 
 The hip and knee joint values for kneeling on the left 
knee reflect expected values for the hips (right-96°, left-172°) 
and knees (right-71°, left-73°). The hip and knee joint values 
for kneeling on both knees reflect expected values for the hips 
(right-175°, left-173°) and knees (right-71°, left-71°). The hip 
and knee joint values for kneeling on the right knee reveal 
expected values for the hip (right-172°, left-89°) and knees 
(right-75°, left-82°). Kneeling postures show variations of joint 
values between the knees, making them ideal to distinguish be-
tween kneeling postures as well as other postures. Observation 
of subjects during kneeling postures on one knee showed that 
subjects leaned towards the knee that they were kneeling on. 
This posturing does affect hip and knee measurements, with 
slightly smaller values than if they were more erect in their pose.
 When subjects were lying down on the left side, the hips 
values (right-149°, left 124°) and knees values (right-148°, left-
139°) were all high as expected and they all varied as well. The 
lying down posture has the highest measure of variability for hip 
and knee joints among the postures as reflected in the IQR for 
the hips (right-23.0, left-23.2) and knees (right-43.4, left-33.0). 

Observation of subjects during testing revealed various leg po-
sitions when lying down, causing knee and hip measurements to 
vary significantly as indicated in the data. Independent-samples 
t-tests were conducted to determine whether data from male and 
female participants should be combined or analyzed separately. 
First, to summarize data for individual subjects, the median, 25th 
percentile, and 75th percentile of joint angles were computed for 
each joint in each posture, respectively. Then t-tests were used to 
test for significant between-gender differences in average values 
of the three summary statistics. Out of 84 tests (7-postures x 
4-joints x 3-summary statistics) there were only three significant 
observations. In the sitting with bent knees posture, significant 
differences were found in the median of right knee angles, the 
75th percentile of right knee angles, and the 75th percentile of left 
knee angles, with the average angle for females wider than the 
average angle for males.  

Discussion 

 These results can be explained by a situation that was 
observed during data collection for this posture. Whereas in most 
cases subjects sat with their backs straight and their knees in an 
angle close to 90 degrees, two female subjects and one male sub-
ject tended to sit in a more relaxed posture with their back bent 
and their knees at a wider angle. Due to this observation, it was 
felt that the significant results could be attributed to variation 
among individuals rather than to gender differences. It was de-
cided, therefore, to combine data from male and female subjects 
for every joint in every posture. Table 3 shows the results of the 
median joint angles for individual and combined gender for the 
25th, 50th, and 75th percentile.
 The analysis showed that the results are representative 
of the data, correlated well, and that change in angles of the hip 
and knee joints can used to distinguish postures. The analysis 
of combined gender data results are shown in Table 2 (B rows). 
Back joint data for all postures are between 92° and 89°. Be-
cause of how close the data are, back joint data is a non-factor in 
identifying a distinction between postures.
 So that female and male subject data could be com-
bined and acceptable for calculating statistical data sets, an in-
dependent-samples t-tests was measured. Due to the observation 
from the t-tests, it was felt that the significant results could be at-
tributed to variation among individuals rather than to gender dif-
ferences. It was decided, therefore, to combine data from male 
and female subjects for every joint in every posture. Kneeling 
postures show variations of values between the knees, making 
these values ideal to distinguish between other postures. Sitting 
postures and the standing posture have trends in their data that 
favor expected values for good posture identification. The lying 
down posture is unique in that all hip and knee joint values are 
relatively high and can be used to distinguish between sitting 
and kneeling postures. The one exception is that when com-
paring lying down to standing the knee joint data may overlap, 
making it difficult to distinguish between the postures. Analy-
sis determined that the results are representative of the data and 
confirmed similar data trends as established from the prelimi-
nary test results.
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Table 3: Median joint angles for individual and combined gender for 25th,50th, and 75th percentile.

Posture Gender
Right Hip Left Hip Right Knee Left Knee

P25 P50 P75 P25 P50 P75 P25 P50 P75 P25 P50 P75

Stand
Male 168 171 175 168 172 174 155 158 162 155 158 161
Female 168 174 176 167 172 174 163 164 164 164 164 165
Both 168 172 175 168 172 174 159 161 163 159 160 163

Sit bent knees
Male 72 75 78 72 74 77 72 75 81 72 76 81
Female 76 79 84 73 78 84 81 93 103 79 91 101
Both 74 77 81 72 76 80 76 83 90 75 82 89

Sit straight legs
Male 99 103 106 99 102 105 155 158 160 155 158 161
Female 103 105 109 102 105 108 161 164 164 162 164 165
Both 101 104 107 100 103 106 157 160 162 158 161 163

Kneel left knee
Male 91 97 103 157 165 174 67 81 86 68 79 86
Female 95 98 103 167 173 176 73 81 90 74 77 82
Both 93 97 103 161 169 175 69 81 88 71 78 84

Kneel both knees
Male 168 174 177 169 172 176 69 72 74 67 70 73
Female 168 175 178 168 174 177 71 74 77 72 75 79
Both 168 174 177 168 173 176 69 72 75 69 72 75

Kneel right knee
Male 167 173 176 85 88 91 72 76 79 76 79 84
Female 166 171 174 87 92 95 73 76 79 85 89 94
Both 167 172 175 86 90 93 72 76 79 80 83 88

Lying down
Male 144 150 155 120 125 132 142 149 154 126 130 140
Female 145 150 157 126 131 137 138 142 148 143 146 149
Both 144 150 156 122 127 134 140 146 152 133 137 144

Conclusions

 A range of values (minimums and maximums) by pos-
ture and individual body joint were obtained by sorting and ar-
ranging each median data set from each category (Female, Male, 
and Genders Combined; Heights, Weights, and Ages). This in-
formation was used to determine which body joints are needed 
to determine a specific posture used by workers during operation 
of CMMs in underground coal mines. The body joints of the 
back, hips, and knees can be used to predict whether a CMM 
operator is standing, sitting with knees bent, sitting with both 
legs extended, kneeling on the left knee, both knees, right knee, 
and lying done on the left side. More research would be needed 
to determine posture values using actual miners and postures as-
sociated with other work tasks that are performed on or around a 
CMM, such as maintenance.
 Results from the analysis revealed that it is feasible 
for postures to be identified by obtaining the values of the joint 
angles of the right hip, left hip, right knee, and left knee. In ad-
dition, posture joint values could be used to select person-wear-
able sensors for posture identification of CMM operators in un-
derground coal mines. Implementing sensors of this type into 
safety devices such as proximity detection systems could reduce 
fatalities and injuries in which a person is struck or pinned by 
underground machinery such as a CMM.
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