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Abstract 

The use of digital simulation tools for the planning and verification of manufacturing processes has been identified as a key enabler 
technology. Through these tools, the need for physical prototypes is reduced, thus enabling the early assessment of decisions, 
regarding the efficiency of processes. The same stands for manual assembly planning. However, in industrial current practices, the 
digital simulation tools are scarcely used since the times for the generation of human simulations are still high. Furthermore, the 
current tools do not support the generation of motions that correspond to real life worker behaviors. This paper presents a 
methodology for the recognition and reuse of motions and motion parameters during a manual assembly execution. The 
methodology is based on a motion recognition algorithm using low cost sensors. This algorithm employs a rule based approach in 
order to identify motions that are translated into semantic individuals. A semantic model is also presented, accompanied by the 
relevant semantic rules for the organization and reuse of recorded motion parameters, during the production planning and more 
specifically, during the Digital Human Simulation. The methodology is applied to an industrial case study around the assembly of a 
car differential. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP 
CMS 2015. 
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1. Introduction  

In today’s market, manufacturing companies face 
increased pressure for quick responses to changes in the 
environment [1]. Therefore, research efforts are being 
carried out to provide flexible, robust and competitive 
solutions that enable the faster and more effective 
commissioning of manufacturing systems. 

Regarding human centered operations, such as 
manual assembly, the manufacturing companies use 
digital tools to simulate and optimize them [2, 3]. Based 
on this, the simulation of human-centered systems has 
been one of the vital topics of research [4-6]. A 

challenge with manual operations is that, during their 
simulation, a number of constraints must be defined and 
taken into account. The human related processes should 
respect ergonomic and time values that correspond to 
real life practices. This should be done in a manner that 
would allow alternative strategies to be assessed, in 
order to come up with a near optimum solution for a 
given set of criteria. Details and results from operations 
without interfering and affecting their performance [7, 8] 
are needed. Since many industries make an intense use 
of human resources, e.g. for assembly, repair and recycle 
operations, the inclusion of this information would 
improve the accuracy of simulations [9-11]. 
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The use of modern Digital Human Simulation 

systems enables the representation and inspection of a 
process in a simulated environment. A digital simulation 
may provide the required functionalities for the 
assessment and evaluation of alternative strategies 
during the design and reconfiguration of a 
manufacturing process [2]. For example, the use of 
Digital Human Simulation tools has enabled the Ford 
automotive industry to reduce its assembly-related 
worker injuries dramatically, when at the same time, the 
quality of new vehicles had been improved by 11% [12]. 
Furthermore, mapping the performed operations to 
digital structures by means of information technologies 
can provide a framework for advanced planning and 
control of the overall industrial operation [13]. Detailed 
reviews on manufacturing system simulation techniques 
can be found in [14, 15]. From these detailed reviews, 
the requirement for more efficient methods is pointed 
out as one of the more important ones. Finally, Digital 
Human Simulations tend to include miscalculated 
process durations, which can lead to non-effective 
planning of the actual operations [16]. 

The fact that when simulations may be incorrect in 
terms of duration, thus resulting in non-realistic 
conclusions is one of the main motivations for the study 
presented in the following sections. The problem with 
standardizing motions and their parameters, such as the 
ones performed during assembly tasks, is that of 
variations caused by the environmental parameters. As 
an example, a carrying motion performed for different 
parts with different volumes will have different 
durations. The existing approaches propose either 
functions or discrete values, expressing the duration of a 
certain process, which has to be manually calculated or 
identified in relevant indexes [17]. 

In order to provide realistic parameters, related to the 
execution of manual processes with specific 
environmental characteristics, a motion recognition and 
classification approach is proposed. Motion recognition 
is used in order to identify the actual motions carried out 
on the shop floor for their classification, based on their 
type and the environmental characteristics (including the 
actor’s characteristics, parts’ dimensions etc.) and make 
them available for the simulation of similar motions in 
future scenarios. For the storage and reuse of the 
identified motion parameters, a semantic model is 
proposed. In the next section, the overall methodology is 
described. 

2. Methodology 

As stated in the previous section, the approach 
discussed, is based on a motion recognition algorithm in 
combination with a data structure, which is used to 
storing the semantic representations of motions. 

In order to record human motions similar to the ones 
performed in a shop floor environment, three types of 

Fig. 1. Sensors used and the data provided by each type. 

sensors are proposed, namely the optical, force and tool 
embedded sensors that can provide process related 
information such as fastening torque for electric 
screwdrivers. In the implementation presented in this 
paper, a second generation Kinect sensor for Windows 
has been selected as an optical sensor due to its low cost. 
It can capture depth images in a 3 to 4 meters limited 
field of view, under a maximum recorded resolution of 
30 frames per second (fps). The optical sensor can track 
25 joints of the human body and store the related 
information into a structured form. The force sensors 
provide information by expressing the force applied to 
them in different key frames. Sensors, integrated into 
tools, such as the electric screw drivers, provide process 
related information, namely torque, start and finish of a 
process. All the data produced by these sensors are then 
used to identifying and properly recognizing the 
captured motions. In the implementation presented in 
this paper, only optical and force sensor data are used. 
Through various motion captures (MoCaps), common 
patterns are sought after for the identification of specific 
motions. However, motion styles can vary depending on 
a number of secondary features, such as age, gender, 
body shape etc. In order for the issues caused by these 
features (i.e. variations in sensor data) to be overcome, 
the use of rules is proposed. 

Performed motions, such as picking, placing, 
walking, etc. can comprise smaller ones. For example, 
picking is the combination of a reaching action towards 
an object, a grasping action and a motion where the hand 
moves closer to the body. Therefore, in order for the 
more effective recognition of motions to be enabled, a 
two level approach has been used, where the motions are 
recognized firstly through their sub-components and 
then confirmed and completed, on the basis of their 
sequence or intersection with a common timeline. 

The component motions are termed Motion Elements 
(MEs) and are recognized by the Motions Recognition 
Algorithm (MRA). Afterwards, the MEs are 
semantically stored and there, through additional 
semantic rules, the high level motions are identified. 
These motions are termed Elementary Actions (EAs). 
The EAs are provided by clustering MEs. EAs are 
generated and constrained through the semantic 
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correlation of MEs. As an example, the fusion of a 
grasping motion, preceded and followed by motions 
reaching forward and backwards respectively, results in 
a Pick Elementary Action. As presented in the following 
sections, the combination of MRA and semantic 
processing can currently recognize the following EAs: 
Walk, Walk Inverse, Pick, Place, Carry, Carry Inverse, 
Sidestep and Sidestep-Carry. 

Apart from the generation of EAs, the semantic 
storage functionality enables the reuse of MEs and EAs 
as well as their related parameters and constraints for 
future simulations. As stated earlier, MEs are stored into 
a semantic repository together with parameters related to 
the environment. EAs are also stored into this database 
after their generation. The database created has a triple 
database (TDB) format. Semantic queries enable the 
retrieval of EAs’ parameters, which can be used in 
digital simulations as constraints. 
 

 

Fig. 2. Overall methodology steps. 

3. Motion recognition algorithm 

In order to test and evaluate the proposed 
methodology, a software application was developed on 
the basis of requirements for low processing time and 
low storage requirements. The developed application can 
be divided into two parts; motion recognition and 
semantic storage and processing. In this section, the first 
part will be described. 

In the current implementation, two types of data are 
collected and used as input; the optical and force ones 
(Fig. 3). Data coming from optical sensors include 
joints’ displacement and rotation values for each of the 
recorded time frames. Force data are measurements on 
the force applied to a body part during a motion, e.g. the 
fingers’ force during a grasp motion. 
 

 

Fig. 3. MRA Steps. 

The MEs recognition is based on the use of rules 
related to the joint distances, their differentials and raw 
force data, while the EAs upon semantic rules which are 
further explained in the next section. The MEs’ rules use 
parameters exported from optical and force data and are 
divided into two categories: 
 Rules related to the motion, e.g. distance, velocity, 

start and stop time frames, force etc. The calculation 
of these parameters is made by considering the joint 
values related to the motion. 

 Rules related to the environment, e.g. human body 
dimensions, size of picked object etc. 

In the current implementation, the MEs that can be 
recognized are Walk, Reach and their inverses as well as 
Grasp and Sidestep, Sidestep-Carry. The relations 
between these MEs and the EAs can be seen below: 
 

 

Fig. 4. Hierarchical relations between MEs and EAs. 

The first action performed by the algorithm is the 
calculation of the distances between the joints using the 
optical data: 

Table 1. Joint distances calculated for recognition of specific motions. 

Distance Used in recognition of 

Ankle – Waist Walk, Walk Inv., Sidestep, Sidestep Inv. 

Ankle – Ankle Walk, Walk Inv., Sidestep, Sidestep Inv. 

Wrist – Waist Reach, Reach Inv. 

Ankle – Wrist Reach, Reach Inv. 

Wrist – Wrist Reach, Reach Inv. 
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The velocity is calculated through differentiation. An 

interesting characteristic of the motions is that the 
velocity peak values arise near the middle of an ME. 
Based on this, the MEs’ starting points are sought after 
within the times that precede and follow the peak values. 
A starting point is set at the time when the relative 
velocity has a zero or near-zero value.  This is done by 
following the velocity curve backwards from peak to the 
first zero point. The relative velocity, here, expresses 
either the change in the distance between two specified 
joints or one joint and the global coordinate system. 
Following a similar approach, an ME ends at a 
timeframe after a peak value, when velocity derives 
from a peak value to near-zero. 

At this point, it should be noted that the velocity 
criterion enables recognition only to a certain extent. In 
order to be firmly resolved whether an ME has been 
performed or not, further processing is required. The 
additional rules used involve the “IF… THEN…” 
condition. These rules examine the values of different, 
secondary to the motion, joints. As an example, a rule 
for walking would consider, apart from the movement of 
the ankle joints, the concurrent hip joints’ motion in 
space. 

 For instance, a Pick EA, consists of two MEs that 
have to be recognized; Reach, and Grasp. The following 
figure shows the speed between the examined joints. The 
wrist to hip distance is calculated and translated by 
differentiation to speed. Within the speed values, peaks 
are identified and compared to threshold values. When 
walking, the users’ hands are also moving in a similar to 
reaching motion. In order to avoid including this, the 
threshold is set accordingly. The positive values in the 
following figure correspond to the Reach MEs, while the 
negative correspond to the hands’ return or the Reach 
Inverse ME. Afterwards, it is the start and stop frames 
that are identified. 

 

 

Fig. 6. Right Hand - Waist Speed Curve. 

In Fig. 6, points 1.1 and 3.1 define the start of the 
Reach MEs and 1.2 and 3.2 the end of them. In addition, 
points 2.1 and 4.1 correspond to the starting frames of 
the Reach Inverse MEs, while 2.2 and 4.2 to the end of 
the MEs. The existence of a Grasp ME is expected from 
the identification of a Reach and Reach Inverse MEs, but 
it is not recognizable by the kinematic data. The 
recognition of a Grasp ME is carried out by force sensor 
data. The Grasp is separately recognized and when all 
the MEs are stored into the semantic repository, the 
semantic rules identify the sequence of the MEs, leading 
to the generation of the relative EAs. In this way, when a 
Reach ME is falsely identified, it will not lead to the 
storage of a Pick EA. 

Each ME recognition is accompanied by additional 
rules which confirm the identification. As an example, 
for Reach, the ankle joints are also checked; at least, one 
foot has to remain still during a reaching motion. In a 
similar way, all possible MEs are recognized and further 
parameters are calculated. For Walk, the distance 
covered by walking is calculated and stored. For Reach, 
the height of the reached object’s position is calculated 
and so on. Extra parameters include the person’s height, 
which is calculated at the beginning of the MoCap 
session, the object’s size, when it is carried with both 
hands (average distance of hands during carrying), etc. 

The algorithm was written in Matlab® and follows a 
linear processing of data. The specific sequence and 
results of the described steps can be seen in Fig. 6. 

Fig. 5. Motions indication and recognition  
steps of the MRA. 
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4. Human motions semantic model and application 

The second part of the applications developed, 
concerns the MEs’ semantic representation and storage, 
the generation of the EAs and the reuse of their 
parameters. These features are performed within a 
Motion Semantic Repository (MSR). The MSR was 
developed through the Jena framework. 

Within the repository, the MEs are stored as 
individuals. Data Properties are used for the storage of 
the MEs’ related parameters, whilst the Object 
Properties are used for the storage of the relations 
between the MEs and the EAs. The developed semantic 
model is composed of two main classes; the 
MotionElement class is used for the MEs, and the 
ElementaryAction class for EAs. The recognized MEs 
and their parameters, provided from the MRA, are stored 
into the MotionElement class, using specific sub-classes. 
The following figure shows the different sub-classes of 
each main class. One sub-class is provided for each type 
of Motion Element and Elementary Action. The data 
properties presented describe the instances (individuals) 
of each sub-class. Depending on the type of motion, 
different parameters are stored as Data properties. As an 
example, for Walk or Carry motions, the “Distance” 
property is stored, which is the distance that the tracked 
person walked or carried an object. For Carry, Pick and 
Place EAs (and the relevant MEs) the hands that the 
person uses are stored using Boolean values.    

 

Fig. 7. Semantic model classes and properties. 

Based on the start and stop frame values, the ME 
individuals are sequenced with the use of the Data 
Property Sequence (integer). Then, on the basis of 

additional rules, the different sets or discrete ME 
individuals, generate EAs. An ElementaryAction 
individual obtains the IncludesME property, if the 
sequence of the ME individuals, stated to generate an 
EA, fulfil the constraints for the generation of this 
specific individual. An ME individual obtains the 
isIncluded if it is part of a generated EA. 

The semantic rules ensure the generation of EAs from 
the correct MEs as well as the correlation of the relevant 
parameters to them. Following the previous example, the 
start frame of the Reach ME becomes the start frame of 
the Pick EA, while the stop frame of the Reach Inv. ME 
becomes its stop frame. In other cases, such as the Carry 
EA, its start and stop frames are identified as the start 
and stop frames of the Walk ME being a part of it (Fig. 
8), since a Carry ME comprises the parallel execution of 
a Grasp and Walk MEs. 
 

 

Fig. 8. Rule for identification of the start and stop  
frames of a Carry EA. 

After all EAs have been generated and associated 
with the necessary Data Properties, all the MEs are 
deleted from the MSR. Then, the user can easily search 
in the MSR for the identification and reuse of motion 
parameters (Fig. 9).  

 

 
 
 
 
Via the interface, the user can access, search and 

retrieve information from the MSR. Moreover, new MEs 
can be imported. Delete and export functionalities are 
also available.  

5. Case study 

In order to present and evaluate the proposed concept 
in a real environment, a case study has been performed 
with the following scenario: 

Fig. 9. Input section of the MSR GUI. 
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 A person performs assembly operations on an 

automotive differential. 
 The session is recorded with the use of sensors. 
 The results of the MoCap session are imported to 

the MSR and processed via semantic rules. 

 Another user searches the MSR in order to identify 
time parameters for a digital simulation. 

 The user identifies the parameters and generates the 
simulation based on them. 
 

The first step was performed in an industrial 
environment with the use of an optical sensor and a set 
of force sensors. The force sensors were embedded 
within a glove that was used for assembly operations. 
The optical sensor was placed on the side of the user in a 
two meter distance from his original position. The 
activities planned and tracked were the following: 
 Walk to table with parts. 
 Pick left side mount of differential. 
 Carry left side mount of differential to differential 

casing’s position. 
 Place right side mount of differential on the casing. 
 Repeat all tasks for right side mount. 

 
The session was recorded and two separate files were 

generated comprising of optical and force data. Force 
data were communicated through a wireless node and 
collected.  

The two generated files (containing optical and force 
data), were processed by the MRA algorithm, and 
another file was generated. The file format used was of a 
spreadsheet application and contained all the MEs 
recognised as well as the relevant constraints per type. 
Afterwards, the files were imported through the 
Graphical User Interface (GUI) of the MSR.   

 
 

 

Fig. 10. Scene from the (a) MoCap sessions and  
from the (b) digital simulation. 

Finally, a simulation of the entire session was 
performed in a Digital Human Simulation software. The 
duration of all motions was requested and successfully 
retrieved through the GUI of the MSR, providing a 
realistic, in terms of time, simulation of processes 
similar to the ones performed in the MoCap sessions. 

During the MoCap sessions it was identified that, in 
order for the motion capturing to be successful, all key 
joints should be “visible” by the optical sensors at all 
times. This places the requirement for additional optical 
sensors as well as for a data fusion mechanism. 

6. Conclusions and discussion 

The motivation behind the study presented in this 
paper, was centred on the need for faster planning of 
manual assembly operations, and more precise Digital 
Human Simulations. The main idea proposed was the 
use of motion data, obtained from the performance of 
assembly operations by shop floor personnel, using 
various types of sensors. A methodology for the 
recognition of different motions as well as the storage 
and reuse of the generated parameters was also 
presented. Finally, the overall methodology was verified 
in a shop floor environment and reusing the parameters 
identified in a new Digital Human Simulation. 

The presented methodology has shown promise for 
future advancements that could bring it closer to 
industrial practices and help generate Digital Human 
Simulations in less time and with greater realism. As a 
first step towards the improvement of the methodology, 
the inclusion of additional sensors will be realised. As 
described in Section 2, sensors on tools will be used in 
future developments to enable the identification of 
additional processes which will further enhance the 
algorithm’s capabilities. This solution is already 
available in off-the-shelf products that use Bluetooth as a 
standard for wireless communication. Furthermore, the 
use of multiple optical sensors will be investigated. In 
order to realise this, an existing fusion algorithm will be 
used in order to merge data from different sensors [18]. 
Beyond these, the use of additional sensors, will be 
investigated, namely Inertial Measurement Units (IMUs) 
will be explored for tracking the motion of assembly 
equipment. 

Regarding MRA and MSR, two developments are 
foreseen: One will be the inclusion of motions for 
recognition such as kneeling and screwing (processing). 
Furthermore, key joint positions will be added to the 
MSR, to enable the storage of the actors’ detailed poses 
for specific motions. This will allow the more precise 
reuse of motion parameters, both concerning time and 
space. 

Finally, the most important step for the significant 
improvement of  the presented methodology and for 
bringing it closer to industrial practice, will be the 
integration of all the developed components both 
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internally and externally. Primarily, the distinct 
components, i.e. the Motion Recognition application and 
the Motion Semantic Repository, will be integrated into 
one application. Subsequently, the application will be 
integrated with existing, commercial Digital Simulation 
Tools in order to automatically receive requirements for 
assembly operation parameters and deliver them directly 
into simulations. 
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