Role of ion channels in ionizing radiation-induced cell death Biochimica et Biophysica Acta 1848 (2015) 2657–2664 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Role of ion channels in ionizing radiation-induced cell death☆ Stephan M. Huber a,⁎, Lena Butz a,b, Benjamin Stegen a, Lukas Klumpp a, Dominik Klumpp a, Franziska Eckert a a Department of Radiation Oncology, University of Tübingen, Germany b Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Germany ☆ This article is part of a Special Issue entitled: Membra cancers. ⁎ Corresponding author at: Department of Radiation On Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany. Tel.: +49 E-mail address: stephan.huber@uni-tuebingen.de (S.M http://dx.doi.org/10.1016/j.bbamem.2014.11.004 0005-2736/© 2014 Elsevier B.V. All rights reserved. a b s t r a c t a r t i c l e i n f o Article history: Received 31 July 2014 Received in revised form 30 October 2014 Accepted 5 November 2014 Available online 15 November 2014 Keywords: Ion transport Radiation Cancer Cell death Therapy resistance Ca2+-activated K+ channels Neoadjuvant, adjuvant or definitive fractionated radiation therapy are implemented in first line anti-cancer treatment regimens of many tumor entities. Ionizing radiation kills the tumor cells mainly by causing double strand breaks of their DNA through formation of intermediate radicals. Survival of the tumor cells depends on both, their capacity of oxidative defense and their efficacy of DNA repair. By damaging the targeted cells, ionizing radiation triggers a plethora of stress responses. Among those is the modulation of ion channels such as Ca2+- activated K+ channels or Ca2+-permeable nonselective cation channels belonging to the super-family of tran- sient receptor potential channels. Radiogenic activation of these channels may contribute to radiogenic cell death as well as to DNA repair, glucose fueling, radiogenic hypermigration or lowering of the oxidative stress bur- den. The present review article introduces these channels and summarizes our current knowledge on the mech- anisms underlying radiogenic ion channel modulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. © 2014 Elsevier B.V. All rights reserved. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2657 2. Radiotherapy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2658 3. Radiosensitizing ion channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2658 4. Ion channels conferring intrinsic radioresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2659 5. Ion channels in acquired radioresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2660 6. Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2661 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2662 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2662 1. Introduction Ionizing radiation kills or inactivates cells mostly by damaging the nuclear DNA and cell survival critically depends on successful repair of the DNA damage [1]. Ionizing radiation may lead to necrotic as well as apoptotic cell death depending on cell type, dose and fractionation pro- tocols [2]. The major death pathway in this scenario in normal tissue cells is apoptosis. However, cancer cells which often have developed strategies to evade apoptosis [3] may either undergo (regulated) necro- sis or reenter the cell cycle with accumulated DNA damages. During the ne channels and transporters in cology, University of Tübingen, 7071 29 82183. . Huber). subsequent cell divisions those cells will not be able to segregate the chromosomes and end up as multinucleated giant cells in mitotic catas- trophe. Mitotic catastrophe again leads either to apoptotic or necrotic cell death. Another possible mechanism of radiation-induced death in cells with disturbed apoptosis machinery is excess autophagy. While autophagy is a survival strategy [4] excess autophagy overdigests the cytoplasm and cell organelles forcing the cell into apoptosis or necrosis [5]. Meanwhile, the evidence is overwhelming that ion channels fulfill pivotal functions in cell death mechanisms such as apoptosis (for review see the article by Annarosa Arcangeli in this special issue on “Membrane channels and transporters in cancers”) as well as in stress response and survival strategies. Notably, tumor cells have been dem- onstrated to express a set of ion channels which is different to that of the parental normal cells. These channels may fulfill specific oncogenic functions in neoplastic transformation, malignant progression or tissue http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamem.2014.11.004&domain=pdf http://dx.doi.org/10.1016/j.bbamem.2014.11.004 mailto:stephan.huber@uni-tuebingen.de http://dx.doi.org/10.1016/j.bbamem.2014.11.004 http://www.sciencedirect.com/science/journal/00052736 www.elsevier.com/locate/bbamem 2658 S.M. Huber et al. / Biochimica et Biophysica Acta 1848 (2015) 2657–2664 invasion and metastasis (for review see [1]). In addition, they may con- tribute to the cellular stress response for instance during fractionated radiation therapy and may confer radioresistance. The present review intends to sum up data on ion channel function in the stress response to ionizing radiation. In particular, ion channels that may induce cell death in tumor cells and facilitate radiogenic cell killing are introduced. In addition, data on ion channels which, in con- trast to the before mentioned, confer radioresistance are reviewed. Finally, ion channels of tumor cells that might contribute to acquired radioresistance, e.g. by promoting radiogenic hypermigration or transi- tion into relatively radioresistant cancer stem (cell)-like cells (CSCs) are described. Prior to that, a brief introduction into radiotherapy and its radiobiological principles is given in the next paragraphs. 2. Radiotherapy Radiation therapy together with surgery and systemic chemothera- py is the main pillar of anti-cancer treatment. About half of all cancer patients receive radiation therapy, half of all cures from cancer include radiotherapy [6]. Despite modern radiation techniques and advanced multimodal treatments, local failures and distant metastases often limit the prognosis of the patients, especially due to limited salvage treatments [7]. Ionizing radiation impairs the clonogenic survival of tumor cells mainly by causing double strand breaks in the DNA backbone. The num- ber of double strand breaks increases linearly with the absorbed radia- tion dose. The intrinsic capacity to detoxify radicals formed during transfer of radiation energy to cellular molecules such as H2O (giving rise to hydroxyl radicals, ˙OH) and the ability to efficiently repair DNA double strand breaks by non-homologous end joining or homologous recombination determines the radiosensitivity of a given tumor cell. Irradiated tumor cells which leave residual DNA double strand breaks un-repaired lose their clonogenicity meaning that these cells can not restore tumor mass (for review see [8]). In addition to these intrinsic resistance factors, the microenviron- ment may lower the radiosensitivity of tumor cells. Hypoxic areas are frequent in solid tumors reaching a certain mass. Tumor hypoxia, how- ever, decreases the efficacy of radiation therapy [9]. Ionizing radiation directly or indirectly generates radicals in the deoxyribose moiety of the DNA backbone. In a hypoxic atmosphere, cellular thiols can react with those DNA radicals resulting in chemical DNA repair. At higher oxygen partial pressure, in sharp contrast, radicals of the deoxyribose moiety are chemically transformed to strand break precursors [10]. By this mechanism, hypoxia increases radioresistance by a factor of two to three (oxygen enhancement ratio) [11]. Fractionated treatment regimens which improve recovery of the normal tissue after irradiation but not of the tumor have been established in radiotherapy [12]. In addition to limit normal tissue tox- icity, killing of tumor mass by initial radiation fractions has been dem- onstrated to reoxygenate and thereby radiosensitize solid tumors during further fractionated radiotherapy. Beyond that, fractionated radiation regimens aim to redistribute tumor cells in a more vulnerable phase of the cell cycle in the time intervals between two fractions [13]. Accelerated repopulation of the tumor after irradiation is a frequently reported phenomenon. Possible mechanisms of accelerated repopula- tion include induction of CSCs: It has been proposed that radiation ther- apy induces CSCs to switch from an asymmetrical into a symmetrical mode of cell division; i.e., a CSC which is thought to normally divide into a daughter CSC and a lineage-committed progenitor cells is induced by the radiotherapy to divide symmetrically into two proliferative CSC daughter cells. This is thought to accelerate repopulation of the tumor after end of radiotherapy. Importantly, CSCs are thought be relatively radioresistant possibly due to i) high oxidative defense and, therefore, low radiation-induced insults, ii) activated DNA checkpoints resulting in fast DNA repair, and iii) an attenuated radiation-induced cell cycle redistribution [14]. Finally, fractionated radiation therapy, which applies fractions of sublethal radiation doses (usually 2 Gy per fraction), has been demon- strated in a variety of tumor entities in vitro and in animal models to stimulate hypermigration and hypermetastasis of tumor cells as well as infiltration of the tumor by CD11b-positive myeloid cells and subse- quent vasculogenesis. It is tempting to speculate that radiogenic hypermigration boosts cellular interaction of tumor cells with non- tumor cells, e.g. endothelial cells. It has been proposed that CSCs lodge within perivascular niches where a complex regulatory network supports CSC survival [15]. As a matter of fact, CSCs but not non-CSCs gain radioresistance when transplanted orthotopically in mice [16] supporting the idea of a tumor microenvironment-dependent acquired radioresistance. Ion channels contribute to both, intrinsic and acquired radioresistance of tumor cells as discussed in the next paragraphs 3. Radiosensitizing ion channels Member 2 of the melastatin family of transient receptor potential channel (TRPM2) is a Ca2+-permeable nonselective cation channel. Heterologous expression of TRPM2 in human embryonic kidney cells [17] or A172 human glioblastoma cells [18] facilitates oxidative stress- induced cell death. Reactive oxygen species (ROS) have been demon- strated to trigger TRPM2 activation [19,20]. The principal activator, however, of TRPM2 is ADP-ribose (ADPR) that binds to a special domain located at the C-terminus of the channel [21,22]. Sources of ADPR are the mitochondria [23] or ADPR polymers. The latter are formed, e.g., during DNA repair by poly (ADP-ribose) polymerases (PARPs). ADPR is released from the ADPR polymers by glycohydrolases [21,24]. Expression of TRPM2 has been demonstrated in several tumor enti- ties such as insulinoma [25], hepatocellular carcinoma [25], prostate cancer [26], lymphoma [27], leukemia [28] and lung cancer cell lines [29]. TRPM2 activity increases the susceptibility to cell death [30] prob- ably by overloading cells with Ca2+ (Fig. 1A). Remarkably, cancer cells may evade TRPM2-mediated cell death. In lung cancer cells, de-methylation of a GpC island within the TRPM2 gene gives rise to new promoters that regulate transcription of a non- functional truncated TRPM2 channel [29] and to a TRPM2 specific anti- sense RNA. This antisense RNA inhibits TRPM2 translation. Moreover, the truncated channel is non-functional and acts dominant negative, thus switching off the tumor-suppressing function of the full-length TRPM2 protein [29] (Fig. 1B). The initially described member of the vanilloid family of TRP chan- nels, the nociceptive and heat receptor TRPV1, is reportedly expressed in several tumor entities such as uveal melanoma [31], pancreatic [32] and prostatic neuroendocrine tumors [33], glioblastoma [34] and urothelial cancer of human bladder [35]. At least in the latter two tumor entities, TRPV1 exerts anti-oncogenic effects [35,36]. TRPV1 expression inversely correlates with glioma grading [34]. Remarkably, neural precursor cells have been demonstrated to induce ER stress- mediated cell death of glioblastoma cells by activating glioblastoma TRPV1 channels through secretion of endogenous vanilloids [37]. Along those lines is the observation that a TRPV1 antagonist promotes tumorigenesis in mouse skin [38]. Notably, targeting of TRPM2 and TRPV1 by RNA interference has been demonstrated to decrease gamma irradiation-induced formation of nuclear γH2AX foci and further DNA damage response in A549 lung adenocarcinoma cells [39]. Since γH2AX foci are used as a surrogate for DNA double strand breaks, one might speculate that TRPM2 or TRPV1 may amplify ionizing radiation-induced insults (Fig. 1). Another interpretation which has been favored by the author of the study [39] would be that activity of TRPM2 and TRPV1 is required for the formation of DNA repair complexes. In combination, the data hint to the possibility of radiosensitizing cancer cells by pharmacologically activating TRPM2 or TRPV1 channels. Whether this might become a promising new strat- egy of tumor radiosensitization has to await animal studies. TRPM2 TRPM2 TRPM2 ADP-ribose cell death DSB radiation Ca2+ Ca2+overload ER nucleus mito. oxidative stress TRPM2 TRPM2-TE TRPM2 TRPM2-TE TRPM2 TE AS CpG island ADP-ribose TRPM2-AS DSB radiation Ca2+ survival Ca2+ ER nucleus mito. survival BA Fig. 1. Speculative mechanism of a putative TRPM2-mediated radiosensitization (A) and reported strategy [29] of lung cancer cells to avoid TRPM2-mediated susceptibility to cell death (B), for details see text. TRPM2-TE (TE): truncated TRPM2, TRPM2-AS (AS): TRPM2 antisense RNA, mito.: mitochondrion). 2659S.M. Huber et al. / Biochimica et Biophysica Acta 1848 (2015) 2657–2664 4. Ion channels conferring intrinsic radioresistance DNA repair involves cell cycle arrest, chromatin relaxation and for- mation of repair complexes at the site of DNA damage. Moreover, radiation-induced formation of radicals requires activated radical detoxification pathways and increased oxidative defense to constrain the radiation-induced insults. All these processes of stress response lead to elevated ATP consumption which requires intensified energy supply. Recent in vitro observations suggest that these processes depend at least partially on radiation-induced ion channel activation. Studies of our laboratory indicate that survival of irradiated human leukemia cells critically depends on Ca2+ signaling involving radiogenic activation of TRPV5/6-like nonselective cation and Kv3.4 voltage-gated K+ channels [40,41]. The nonselective cation channels in concert with Kv3.4 generate radiogenic Ca 2+ signals that contribute to G2/M cell cycle arrest by CaMKII-mediated inhibition of the phosphatase cdc25B. Activity of the latter is required in these cells for release from radiation-induced G2/M arrest via dephosphorylation and thereby activation of cdc2, a component of the mitosis promoting factor. Exper- imental interference with the radiogenic Ca2+ signals, e.g. by pharma- cological inhibition or knock-down of Kv3.4 overrides cell cycle arrest resulting in increased apoptosis and decreased clonogenic survival of irradiated leukemia cells [40,41]. This radiosensitization by Kv3.4 targeting demonstrates the pivotal role of radiogenic Kv3.4 channel activation for cell cycle arrest and DNA repair. Similar to leukemia cells, A549 lung adenocarcinoma cells reported- ly respond to ionizing radiation with activation of Kv K + channels [42] and transient hyperpolarization of the plasma membrane. Later on, the membrane potential of the irradiated A549 cells strongly depolar- izes. This depolarization is dependent on external glucose and inhibited by phlorizin, a sodium glucose cotransporter (SGLT) blocker. In parallel, irradiation induces phlorizin-sensitive 3H-glucose uptake within few minutes after irradiation [43]. Combined, these data suggest that radio- genic activation of SGLT transporters and Kv K + channels cooperate in glucose fuelling of the irradiated A549 cells, the former by generating the glucose entry routes, the latter by increasing and maintaining the driving force for Na+-coupled glucose entry. Glucose uptake by SGLTs is mainly driven by the inwardly directed electrochemical driving force for Na+ which in turn is highly dependent on the K+ channel- regulated membrane potential. SGLTs allow efficient glucose uptake even from a glucose-depleted microenvironment which is typical for malperfused solid tumors [44]. It is therefore not surprising that several tumor entities such as colorectal, pancreatic, lung, head and neck, pros- tate, kidney, cervical, breast, bladder and prostate cancer as well as chondrosarcomas and leukemia upregulate SGLTs [45–53]. SGLT has been shown to be in complex with the EGFR [50,53] and radiogenic SGLT activation depends on EGFR tyrosine kinase activi- ty [43]. Importantly, radiogenic increase in glucose fuelling seems to be required for cell survival since the SGLT inhibitor phlorizin radiosensitizes A549 lung adenocarcinoma and FaDu head and neck squamous carcinoma cells [43]. Intracellular ATP concentration has been reported to drop in irra- diated A549 cells indicative of an irradiation-caused energy crisis. Notably, recovery from radiation-induced ATP decline is EGFR/SGLT- dependent and associated with improved DNA-repair leading to increased clonogenic cell survival. This is evident from the fact that EGFR or SGLT blockade delays recovery of intracellular ATP concentra- tion and histone modifications necessary for chromatin remodeling during DNA repair. Vice versa, inhibition of the histone H3 modification prevents chromatin remodeling as well as energy crisis [8]. Together, these data suggest that irradiation-associated interactions between SGLT1 and EGFR result in increased glucose uptake, which counteracts the energy crisis in tumor cells caused by chromatin remodeling required for DNA repair (Fig. 2) [8,43]. Besides plasma membrane ion channels, mitochondrial transport pathways have been shown to contribute to cellular stress response. Stress-induced upregulation of uncoupling proteins (UCPs) conveys hyperpolarization of the membrane potential across the inner mito- chondrial membrane (ΔΨm,) and thereby formation of reactive oxygen species [54]. UCPs are reportedly upregulated in a number of aggressive human tumors (leukemia, breast, colorectal, ovarian, bladder, esopha- gus, testicular, kidney, pancreatic, lung, and prostate cancer) in which they are proposed to contribute to malignant progression (for review see [54]). In addition to malignant progression, UCPs may alter the therapy sensitivity of tumor cells. UCP-2 expression has been associated with paclitaxel resistance of p53 wildtype lung cancer, CPT-11 resistance of colon cancer and gemcitabine resistance of pancreatic adenocarcinoma, lung adenocarcinoma, or bladder carcinoma. Accordingly, experimental targeting of UCPs has been demonstrated to sensitize tumor cells to chemotherapy in vitro (for review see [54]). Notably, ionizing radiation induces up-regulation of UCP-2 expres- sion in colon carcinoma cells [55] and in a radiosensitive subclone of B cell lymphoma [56], as well as UCP-3 expression in rat retina [57]. Radioprotection might result from lowering the radiation-induced bur- den of reactive oxygen species. As a matter of fact, multi-resistant subclones of leukemia cells reportedly show higher UCP-2 protein expression, lower ΔΨm, lower radiation induced formation of reactive oxygen species, and decreased DNA damage as compared to their parental sensitive cells [58]. radiation DSB histone phosphorylation (γ recruitment of repair enzymes oxidative insults Na+ glucose SGLT energy crisis ↓ phlorizin oxidative defense ↑ EGFR P K+ driving force erlotinibcell death radiation radiation DSB histone phosphorylation histone acetylation BA survival DNA decondensation energy crisis histone acetylation (γH2AX foci) H2AX foci) Fig. 2. Radiation-caused energy crisis (A) and functional significance of SGLT1-mediated glucose fueling for DNA repair and cell survival (B) of irradiated A549 lung adenocarcinoma cells (DSB: double strand breaks). 2660 S.M. Huber et al. / Biochimica et Biophysica Acta 1848 (2015) 2657–2664 In summary, these data indicate that ion transports through chan- nels may regulate processes that mediate intrinsic radioresistance. Only few laboratories worldwide including ours are working on the radiophysiology of tumor cells. The investigation of ion transports in irradiated cells therefore is at its very beginning and the few data available are mostly phenomenological in nature. The molecular mech- anisms that underlie e.g. radiogenic channel activation are still ill- defined. Nevertheless, the data prove functional significance of ion transports and electrosignaling for the survival of irradiated tumor cells and might have translational implications for radiotherapy in the future. 5. Ion channels in acquired radioresistance Microenvironmental stress such as hypoxia, interstitial nutrient depletion or low pH has been proposed to switch tumor cells from a “Grow” into a “Go” phenotype. By migration and tissue invasion “Go” tumor cells may evade the locally confined stress burden and resettle in distant and less hostile regions. Once resettled, tumor cells may readapt the “Grow” phenotype by reentering cell cycling and may establish tumor satellites in more or less close vicinity of the primary focus (for review see [54]). In accordance with this hypothesis, sublethal ionizing irradiation as applied in single fractions of fractionated radiotherapy has been BK CXCR4 SDF-1 K+ CaMKII volume d H2O macrophag vascular da Ca2+ S-nitrosylation HIF-1α Fig. 3. Hypothetical signaling underlying radiogenic hypermigration of glioblastoma cells. SDF- damage of the tumor vasculature and resultant tumor hypoxia has been proposed to induce SDF NO in tumor-associated macrophages leading to HIF-1α stabilization by S-nitrosylation [100]. F unpublished results). SDF-1 induces Ca2+ signals through CXCR4 chemokine receptor that in t possibly invasion, e.g., via calpain-dependent [112] activation of matrix metalloproteinases [11 demonstrated in vitro and/or in rodent tumor models to induce migra- tion, invasion and metastasis or spreading of cervix carcinoma [59], head and neck squamous cell carcinoma [60], lung adenocarinoma [61,62], colorectal carcinoma [62], breast cancer [62–64], meningioma [65], medulloblastoma [66] and glioblastoma. In particular, in glioblas- toma the experimental evidence for such radiogenic hypermigration is meanwhile overwhelming [67–80]. Glioblastoma cells show a highly migrative phenotype that may “travel” large distances through the brain [81]. At least in theory, radiogenic hypermigration might, there- fore, contribute to locoregional treatment failure by promoting emigra- tion of tumor cells from the target volume during fractionated radiation therapy. Migration and radiogenic hypermigration are well documented in glioma cells. They invade the surrounding brain parenchyma primarily by moving along axon bundles and the vasculature. During brain inva- sion along those tracks cells have to squeeze between very narrow interstitial spaces which requires effective local cell volume decrease and reincrease. Glioblastoma cells are capable of losing all unbound cell water [82]. The electrochemical driving force for this tremendous cell volume decrease is provided by an unusually high cytosolic Cl− concentration (100 mM) [83,84] which is utilized as an osmolyte. Dur- ing local regulatory volume decrease, extrusion of Cl− and K+ along their electrochemical gradients involves ClC-3 Cl−- channels [85,86], Ca2+-activated high conductance BK- [74,87,88] and intermediate invasion ClC-3Cl- ynamics ionizing radiation es, endothelial cells, NO mage, hypoxia, ROS matrix metalloproteinases migration actin dynamics 1 is a HIF-1α target gene and hypoxia is a strong inductor of SDF-1 expression. IR-caused -1 expression [111]. Beyond that, ionizing radiation reportedly stimulates the generation of inally, radiation may directly stabilize HIF-1α as deduced from in vitro experiments (own urn contribute to the programming and mechanics of migration (for details see text) and 3,114]. CXCR4 SDF-1 TGFBR CD133+ K+ MMP-2 SDF-1 “homing“ endothelial cell pericyte v 3 nutrition VEGF VEGF CD144+ TGF-ß transition 3 1 CD133- IK CXCR4 SDF-1 TGFBR CD133+K+ radiation SDF-1 radiation K+ “niche“perivascular MMP-2 CXCR4 IK/BK transition signaling network A B C CD133+ VEGF β α α β Fig. 4. Synopsis of the signaling network in glioblastoma conferring radioresistance and speculative role of ionizing radiation herein. A. Irradiation induces secretion of SDF-1 [80,95–97] and transition of CD133− “differentiated” glioblastoma cells to CD133+ GSCs with up-regulated CXCR4 [106], β1/α3 integrins [108], TGFB2 receptor [115], TGF-β responsiveness [115], and IK Ca2+-activated K+ channel-dependent highly migratory and invasive phenotype [109] B. Irradiation promotes “homing” of GSCs to perivascular niches by stimulating cell migration. C. The reciprocal interaction between glioblastoma and endothelial cells strongly depends on matrix metalloproteinase-2 (MMP-2) expres- sion by glioblastoma [114] and SDF-1 signaling of endothelial cells [110]. Importantly, irradiation induces upregulation of MMP-2 in glioblastoma cells (B) which is required for tissue invasion [67,71,72,79,114] and VEGF secretion (B) [71,75] which reportedly may promote angiogenesis [116]. In addition, transition of glioblastoma cells into endo- thelial cells [117] and pericytes [15] reconstruct the glioblastoma vasculature which sup- ports both, vessel function and tumor growth. 2661S.M. Huber et al. / Biochimica et Biophysica Acta 1848 (2015) 2657–2664 conductance IK K+ channels [86,89]. Inhibition of either of these chan- nels attenuates glioblastoma cell migration or invasion [83,90–94] confirming their pivotal function in these processes. Ionizing radiation has been demonstrated in our laboratory to acti- vate BK K+ channels in glioblastoma cells in vitro [74]. Radiogenic BK channel activity, in turn, is required for Ca2+/calmodulin kinase II (CaMKII)- [74] and consecutive CaMKII-dependent ClC-3 channel acti- vation (own unpublished observation and [85]). Inhibition of BK or CaMKII abolishes radiogenic hypermigration [74] indicating BK channel activation as key event of radiogenic hypermigration of glioblastoma cells. Radiogenic hypermigration is paralleled by radiogenic expression of the chemokine SDF-1 (stromal cell-derived factor-1, CXCL12) in different tumor entities including glioblastoma [80,95–97]. Glioblasto- ma cells reportedly express CXCR4 chemokine receptors and SDF-1 stimulates glioblastoma cell migration via CXCR4-mediated Ca2+ sig- naling [93]. CXCR4 receptors reportedly signal through phospholipase C and BK channels have been shown to be functionally coupled with IP3 receptors in the ER [98] suggesting (and confirmed by own unpub- lished observations) that radiogenic SDF1/CXCR4 signaling is upstream of BK channel activation. SDF-1, in turn, is a target gene of the transcrip- tion factor HIF-1α which reportedly becomes stabilized, e.g. by S- nitrosylation, upon irradiation [95,99–101] (Fig. 3). Together, this gives a good example of radiogenic signaling which integrates biochem- ical signaling, electrosignaling (i.e., BK-dependent regulation of mem- brane potential) and Ca2+ signaling modules (more details are given in the legend to Fig. 3). Ionizing radiation has been demonstrated to select stem (cell)-like glioblastoma cells (GSCs) or even induce transition of “differentiated” cancer cells to GSCs/CSCs in glioblastoma [102–104] and other tumor entities [14]. Notably, “stemness” is associated with SDF-1 secretion [105] and markedly increased CXCR4 chemokine expression [106]. Im- portantly, CXCR4 upregulation is required to maintain “stemness” of non-small cell lung cancer [107] and glioblastoma cells [105]. In accor- dance to CXCR4 upregulation, GSCs show a highly migratory/invasive phenotype [108,109]. Most importantly, this phenotype is highly dependent on the Ca2+-activated IK K+ channel [89,109]. Furthermore, IK channels have been demonstrated to be overexpressed in about one third of the glioma patients with IK protein expression correlating with poor patient survival [89]. Unexpectedly, a previous report demonstrated that xenografted CD133+ stem-like subpopulations of glioblastoma exhibit a higher radioresistance than xenografted CD133− cells while radiosensitivity of both subpopulations does not differ in vitro [16]. This clearly indicates a function of the brain microenvironment for radioresistance. In partic- ular, endothelial cells have been postulated to promote glioblastoma therapy resistance [110]. Part of the reported reciprocal interaction between glioblastoma cells and endothelial cells as well as of the com- plex signaling network in perivascular “niches” is schematically sum- marized in Fig. 4. Albeit merely speculative, the idea that radiogenic hypermigration might promote “homing” of (CXCR4-highly-expressing stem-like) glio- blastoma cells to perivascular niches is highly attractive. The subse- quent reciprocal modifications of glioblastoma and endothelial cells might eventually induce radioresistance of glioblastoma cells. Together, these data suggest that radiogenic hypermigration might contribute to the apparently high radioresistance of glioblastoma cells either by pro- moting evasion from the radiation target volume or by stimulating the chemotaxis of glioblastoma cells to “radioprotective” perivascular niches. 6. Concluding remarks The radiation physiology of cancer cells is yet a neglected research field. While the number of reports on ion channel function in neoplastic transformation, malignant progression or metastasis of cancer cells in- creases constantly only little is known about the role of ion channels in radiotherapy. The few data available strongly suggest that ionizing radiation-induced ion channel modifications are a common phenome- non. Importantly, these modifications impact on the stress response and survival of irradiated tumor cells. By modulating intracellular Ca2+ signals radiosensitive ion channels may directly crosstalk with the biochemical signaling of the DNA damage response. By driving local cell volume changes radiogenic ion channel modifications may promote cell migration and stress evasion of irradiated tumor cells. By stabilizing the membrane potential ionizing radiation-induced K+ channel activity might facilitate Na+-coupled glucose uptake providing the energy for DNA-repair. Finally, mitochondrial channels upregulated 2662 S.M. Huber et al. / Biochimica et Biophysica Acta 1848 (2015) 2657–2664 by ionizing radiation might lower the oxidative insults associated with ionizing radiation. Given the aberrant and partly specific ion channel expression of tumor cells, a more profound understanding of the mechanisms underlying radiogenic ion channel modifications might be harnessed in the future to develop new strategies for the radiosensitization of tumors. Acknowledgment This work was supported by a grant from the Wilhelm-Sander- Stiftung awarded to SH (2011.083.1). BS and DK were supported by the DFG International Graduate School 1302 (TP T9 SH). References [1] S.M. Huber, Oncochannels, Cell Calcium 53 (2013) 241–255. [2] M. Verheij, Clinical biomarkers and imaging for radiotherapy-induced cell death, Cancer Metastasis Rev. 27 (2008) 471–480. [3] D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell 100 (2000) 57–70. [4] A. Apel, I. Herr, H. Schwarz, H.P. Rodemann, A. Mayer, Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy, Cancer Res. 68 (2008) 1485–1494. [5] S. Palumbo, S. Comincini, Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma, J. Cell. Physiol. 228 (2013) 1–8. [6] German-Cancer-Aid, Information Booklet, http://www.krebshilfe.de/fileadmin/ Inhalte/Downloads/PDFs/Blaue_Ratgeber/053_strahlen.pdf 2013. [7] A.C. Muller, F. Eckert, V. Heinrich, M. Bamberg, S. Brucker, T. Hehr, Re-surgery and chest wall re-irradiation for recurrent breast cancer: a second curative approach, BMC Cancer 11 (2011) 197. [8] K. Dittmann, C. Mayer, H.P. Rodemann, S.M. Huber, EGFR cooperates with glucose transporter SGLT1 to enable chromatin remodeling in response to ionizing radia- tion, Radiother. Oncol. (2013), http://dx.doi.org/10.1016/j.radonc.2013.03.016 (pii: S0167-8140(13)00145-X). [9] H. Harada, How can we overcome tumor hypoxia in radiation therapy? J. Radiat. Res. 52 (2011) 545–556. [10] P.M. Cullis, G.D.D. Jones, J. Lea, M.C.R. Symons, M. Sweeney, The effects of ionizing radiation on deoxyribonucleic acid. Part 5. The role of thiols in chemical repair, J. Chem. Soc. Perkin Trans. 2 (1987) 1907–1914. [11] M. Langenbacher, R.J. Abdel-Jalil, W. Voelter, M. Weinmann, S.M. Huber, In vitro hypoxic cytotoxicity and hypoxic radiosensitization. Efficacy of the novel 2- nitroimidazole N, N, N-tris[2-(2-nitro-1H-imidazol-1-yl)ethyl]amine, Strahlenther. Onkol. 189 (2013) 246–254. [12] B. Jones, R.G. Dale, A.M. Gaya, Linear quadratic modeling of increased late normal- tissue effects in special clinical situations, Int. J. Radiat. Oncol. Biol. Phys. 64 (2006) 948–953. [13] T.M. Pawlik, K. Keyomarsi, Role of cell cycle in mediating sensitivity to radiothe- rapy, Int. J. Radiat. Oncol. Biol. Phys. 59 (2004) 928–942. [14] F. Pajonk, E. Vlashi, W.H. McBride, Radiation resistance of cancer stem cells: the 4 R's of radiobiology revisited, Stem Cells 28 (2010) 639–648. [15] L. Cheng, Z. Huang, W. Zhou, Q. Wu, S. Donnola, J.K. Liu, X. Fang, A.E. Sloan, Y. Mao, J.D. Lathia, W. Min, R.E. McLendon, J.N. Rich, S. Bao, Glioblastoma stem cells gener- ate vascular pericytes to support vessel function and tumor growth, Cell 153 (2013) 139–152. [16] M. Jamal, B.H. Rath, P.S. Tsang, K. Camphausen, P.J. Tofilon, The brain microenviron- ment preferentially enhances the radioresistance of CD133+glioblastoma stem- like cells, Neoplasia 14 (2012) 150–158. [17] Y. Hara, M. Wakamori, M. Ishii, E. Maeno, M. Nishida, T. Yoshida, H. Yamada, S. Shimizu, E. Mori, J. Kudoh, N. Shimizu, H. Kurose, Y. Okada, K. Imoto, Y. Mori, LTRPC2 Ca2+-permeable channel activated by changes in redox status confers sus- ceptibility to cell death, Mol. Cell 9 (2002) 163–173. [18] M. Ishii, A. Oyama, T. Hagiwara, A. Miyazaki, Y. Mori, Y. Kiuchi, S. Shimizu, Facilita- tion of H2O2-induced A172 human glioblastoma cell death by insertion of oxida- tive stress-sensitive TRPM2 channels, Anticancer Res. 27 (2007) 3987–3992. [19] M. Naziroglu, A. Luckhoff, A calcium influx pathway regulated separately by oxida- tive stress and ADP-Ribose in TRPM2 channels: single channel events, Neurochem. Res. 33 (2008) 1256–1262. [20] M. Naziroglu, A. Luckhoff, Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide, J. Neurol. Sci. 270 (2008) 152–158. [21] E. Fonfria, I.C. Marshall, C.D. Benham, I. Boyfield, J.D. Brown, K. Hill, J.P. Hughes, S.D. Skaper, S. McNulty, TRPM2 channel opening in response to oxidative stress is de- pendent on activation of poly(ADP-ribose) polymerase, Br. J. Pharmacol. 143 (2004) 186–192. [22] F.J. Kuhn, I. Heiner, A. Luckhoff, TRPM2: a calcium influx pathway regulated by ox- idative stress and the novel second messenger ADP-ribose, Pflugers Arch. 451 (2005) 212–219. [23] A.L. Perraud, C.L. Takanishi, B. Shen, S. Kang, M.K. Smith, C. Schmitz, H.M. Knowles, D. Ferraris, W. Li, J. Zhang, B.L. Stoddard, A.M. Scharenberg, Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels, J. Biol. Chem. 280 (2005) 6138–6148. [24] J. Eisfeld, A. Luckhoff, Trpm2, Handb. Exp. Pharmacol. (2007) 237–252. [25] K. Inamura, Y. Sano, S. Mochizuki, H. Yokoi, A. Miyake, K. Nozawa, C. Kitada, H. Matsushime, K. Furuichi, Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line, J. Membr. Biol. 191 (2003) 201–207. [26] X. Zeng, S.C. Sikka, L. Huang, C. Sun, C. Xu, D. Jia, A.B. Abdel-Mageed, J.E. Pottle, J.T. Taylor, M. Li, Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation, Prostate Cancer Prostatic Dis. 13 (2010) 195–201. [27] W. Zhang, I. Hirschler-Laszkiewicz, Q. Tong, K. Conrad, S.C. Sun, L. Penn, D.L. Barber, R. Stahl, D.J. Carey, J.Y. Cheung, B.A. Miller, TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage, Am. J. Physiol. Cell Physiol. 290 (2006) C1146–C1159. [28] W. Zhang, X. Chu, Q. Tong, J.Y. Cheung, K. Conrad, K. Masker, B.A. Miller, A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death, J. Biol. Chem. 278 (2003) 16222–16229. [29] U. Orfanelli, A.K. Wenke, C. Doglioni, V. Russo, A.K. Bosserhoff, G. Lavorgna, Identi- fication of novel sense and antisense transcription at the TRPM2 locus in cancer, Cell Res. 18 (2008) 1128–1140. [30] S. McNulty, E. Fonfria, The role of TRPM channels in cell death, Pflugers Arch. 451 (2005) 235–242. [31] S. Mergler, R. Derckx, P.S. Reinach, F. Garreis, A. Bohm, L. Schmelzer, S. Skosyrski, N. Ramesh, S. Abdelmessih, O.K. Polat, N. Khajavi, A.I. Riechardt, Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal mela- noma cells, Cell. Signal. 26 (2014) 56–69. [32] S. Mergler, M. Skrzypski, M. Sassek, P. Pietrzak, C. Pucci, B. Wiedenmann, M.Z. Strowski, Thermo-sensitive transient receptor potential vanilloid channel-1 regu- lates intracellular calcium and triggers chromogranin A secretion in pancreatic neuroendocrine BON-1 tumor cells, Cell. Signal. 24 (2012) 233–246. [33] S. Malagarie-Cazenave, N. Olea-Herrero, D. Vara, C. Morell, I. Diaz-Laviada, The vanilloid capsaicin induces IL-6 secretion in prostate PC-3 cancer cells, Cytokine 54 (2011) 330–337. [34] C. Amantini, M. Mosca, M. Nabissi, R. Lucciarini, S. Caprodossi, A. Arcella, F. Giangaspero, G. Santoni, Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation, J. Neurochem. 102 (2007) 977–990. [35] G. Santoni, S. Caprodossi, V. Farfariello, S. Liberati, A. Gismondi, C. Amantini, Antioncogenic effects of transient receptor potential vanilloid 1 in the progression of transitional urothelial cancer of human bladder, ISRN Urol. 2012 (2012) 458238. [36] C. Amantini, P. Ballarini, S. Caprodossi, M. Nabissi, M.B. Morelli, R. Lucciarini, M.A. Cardarelli, G. Mammana, G. Santoni, Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner, Carcinogenesis 30 (2009) 1320–1329. [37] K. Stock, J. Kumar, M. Synowitz, S. Petrosino, R. Imperatore, E.S. Smith, P. Wend, B. Purfurst, U.A. Nuber, U. Gurok, V. Matyash, J.H. Walzlein, S.R. Chirasani, G. Dittmar, B.F. Cravatt, S. Momma, G.R. Lewin, A. Ligresti, L. De Petrocellis, L. Cristino, V. Di Marzo, H. Kettenmann, R. Glass, Neural precursor cells induce cell death of high- grade astrocytomas through stimulation of TRPV1, Nat. Med. 18 (2012) 1232–1238. [38] S. Li, A.M. Bode, F. Zhu, K. Liu, J. Zhang, M.O. Kim, K. Reddy, T. Zykova, W.Y. Ma, A.L. Carper, A.K. Langfald, Z. Dong, TRPV1-antagonist AMG9810 promotes mouse skin tumorigenesis through EGFR/Akt signaling, Carcinogenesis 32 (2011) 779–785. [39] K. Masumoto, M. Tsukimoto, S. Kojima, Role of TRPM2 and TRPV1 cation channels in cellular responses to radiation-induced DNA damage, Biochim. Biophys. Acta 1830 (2013) 3382–3390. [40] N. Heise, D. Palme, M. Misovic, S. Koka, J. Rudner, F. Lang, H.R. Salih, S.M. Huber, G. Henke, Non-selective cation channel-mediated Ca2+-entry and activation of Ca2+/ calmodulin-dependent kinase II contribute to G2/M cell cycle arrest and survival of irradiated leukemia cells, Cell. Physiol. Biochem. 26 (2010) 597–608. [41] D. Palme, M. Misovic, E. Schmid, D. Klumpp, H.R. Salih, J. Rudner, S. Huber, Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells, Pflugers Arch. (2013), http://dx.doi.org/10.1007/ s00424-013-1249-5. [42] S.S. Kuo, A.H. Saad, A.C. Koong, G.M. Hahn, A.J. Giaccia, Potassium-channel activa- tion in response to low doses of gamma-irradiation involves reactive oxygen inter- mediates in nonexcitatory cells, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 908–912. [43] S.M. Huber, M. Misovic, C. Mayer, H.P. Rodemann, K. Dittmann, EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells, Radiother. Oncol. 103 (2012) 373–379. [44] V. Ganapathy, M. Thangaraju, P.D. Prasad, Nutrient transporters in cancer: rele- vance to Warburg hypothesis and beyond, Pharmacol. Ther. 121 (2009) 29–40. [45] J.A. Nelson, R.E. Falk, The efficacy of phloridzin and phloretin on tumor cell growth, Anticancer Res. 13 (1993) 2287–2292. [46] N. Ishikawa, T. Oguri, T. Isobe, K. Fujitaka, N. Kohno, SGLT gene expression in pri- mary lung cancers and their metastatic lesions, Jpn. J. Cancer Res. 92 (2001) 874–879. [47] B.M. Helmke, C. Reisser, M. Idzko, G. Dyckhoff, C. Herold-Mende, Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck, Oral Oncol. 40 (2004) 28–35. [48] L.C. Yu, C.Y. Huang, W.T. Kuo, H. Sayer, J.R. Turner, A.G. Buret, SGLT-1-mediated glu- cose uptake protects human intestinal epithelial cells against Giardia duodenalis- induced apoptosis, Int. J. Parasitol. 38 (2008) 923–934. [49] V.F. Casneuf, P. Fonteyne, N. Van Damme, P. Demetter, P. Pauwels, B. de Hemptinne, M. De Vos, C. Van de Wiele, M. Peeters, Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival, Cancer Invest. 26 (2008) 852–859. http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0005 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0010 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0010 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0015 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0020 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0020 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0025 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0025 http://www.krebshilfe.de/fileadmin/Inhalte/Downloads/PDFs/Blaue_Ratgeber/053_strahlen.pdf http://www.krebshilfe.de/fileadmin/Inhalte/Downloads/PDFs/Blaue_Ratgeber/053_strahlen.pdf http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0030 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0030 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0030 http://dx.doi.org/10.1016/j.radonc.2013.03.016 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0040 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0040 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0575 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0575 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0575 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0045 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0045 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0045 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0045 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0050 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0050 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0050 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0055 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0055 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0060 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0060 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0065 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0065 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0065 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0065 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0580 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0580 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0580 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0580 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0070 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0070 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0070 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0070 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0070 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0070 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0075 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0075 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0075 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0080 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0080 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0080 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0085 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0085 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0085 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0090 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0090 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0090 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0090 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0095 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0095 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0095 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0100 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0100 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0100 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0100 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0585 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0105 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0105 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0105 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0110 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0110 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0110 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0110 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0115 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0115 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0115 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0115 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0120 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0120 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0120 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0125 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0125 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0125 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0130 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0130 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0135 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0135 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0135 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0135 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0140 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0140 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0140 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0140 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0145 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0145 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0145 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0150 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0150 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0150 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0150 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0155 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0155 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0155 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0160 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0160 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0160 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0160 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0160 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0165 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0165 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0165 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0165 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0165 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0165 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0170 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0170 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0170 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0175 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0175 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0175 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0180 http://dx.doi.org/10.1007/s00424-013-1249-5 http://dx.doi.org/10.1007/s00424-013-1249-5 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0185 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0185 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0185 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0190 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0190 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0190 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0190 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0195 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0195 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0200 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0200 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0205 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0205 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0205 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0210 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0210 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0210 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0215 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0215 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0215 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0220 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0220 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0220 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0220 2663S.M. Huber et al. / Biochimica et Biophysica Acta 1848 (2015) 2657–2664 [50] Z. Weihua, R. Tsan, W.C. Huang, Q. Wu, C.H. Chiu, I.J. Fidler, M.C. Hung, Survival of cancer cells is maintained by EGFR independent of its kinase activity, Cancer Cell 13 (2008) 385–393. [51] N. Leiprecht, C. Munoz, I. Alesutan, G. Siraskar, M. Sopjani, M. Foller, F. Stubenrauch, T. Iftner, F. Lang, Regulation of Na+-coupled glucose carrier SGLT1 by human papillomavirus 18 E6 protein, Biochem. Biophys. Res. Commun. 404 (2011) 695–700. [52] E.M. Wright, D.D. Loo, B.A. Hirayama, Biology of human sodium glucose trans- porters, Physiol. Rev. 91 (2011) 733–794. [53] J. Ren, L.R. Bollu, F. Su, G. Gao, L. Xu, W.C. Huang, M.C. Hung, Z. Weihua, EGFR- SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors, Prostate 73 (2013) 1453–1461. [54] S.M. Huber, L. Butz, B. Stegen, D. Klumpp, N. Braun, P. Ruth, F. Eckert, Ionizing radi- ation, ion transports, and radioresistance of cancer cells, Frontiers in Physiology | Membrane Physiology and Membrane Biophysics 4 (2013) 212. [55] A. Sreekumar, M.K. Nyati, S. Varambally, T.R. Barrette, D. Ghosh, T.S. Lawrence, A.M. Chinnaiyan, Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins, Cancer Res. 61 (2001) 7585–7593. [56] D.W. Voehringer, D.L. Hirschberg, J. Xiao, Q. Lu, M. Roederer, C.B. Lock, L.A. Herzenberg, L. Steinman, L.A. Herzenberg, Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apopto- sis, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 2680–2685. [57] X.W. Mao, J.D. Crapo, D.S. Gridley, Mitochondrial oxidative stress-induced apopto- sis and radioprotection in proton-irradiated rat retina, Radiat. Res. 178 (2012) 118–125. [58] M.E. Harper, A. Antoniou, E. Villalobos-Menuey, A. Russo, R. Trauger, M. Vendemelio, A. George, R. Bartholomew, D. Carlo, A. Shaikh, J. Kupperman, E.W. Newell, I.A. Bespalov, S.S. Wallace, Y. Liu, J.R. Rogers, G.L. Gibbs, J.L. Leahy, R.E. Camley, R. Melamede, M.K. Newell, Characterization of a novel metabolic strategy used by drug-resistant tumor cells, FASEB J. 16 (2002) 1550–1557. [59] W.H. Su, P.C. Chuang, E.Y. Huang, K.D. Yang, Radiation-induced increase in cell mi- gration and metastatic potential of cervical cancer cells operates via the K-Ras pathway, Am. J. Pathol. 180 (2012) 862–871. [60] A.C. Pickhard, J. Margraf, A. Knopf, T. Stark, G. Piontek, C. Beck, A.L. Boulesteix, E.Q. Scherer, S. Pigorsch, J. Schlegel, W. Arnold, R. Reiter, Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways, BMC Cancer 11 (2011) 388. [61] J.W. Jung, S.Y. Hwang, J.S. Hwang, E.S. Oh, S. Park, I.O. Han, Ionising radiation in- duces changes associated with epithelial–mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells, Eur. J. Cancer 43 (2007) 1214–1224. [62] Y.C. Zhou, J.Y. Liu, J. Li, J. Zhang, Y.Q. Xu, H.W. Zhang, L.B. Qiu, G.R. Ding, X.M. Su, S. Mei, G.Z. Guo, Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial–mesenchymal tran- sition, Int. J. Radiat. Oncol. Biol. Phys. 81 (2011) 1530–1537. [63] S. Biswas, M. Guix, C. Rinehart, T.C. Dugger, A. Chytil, H.L. Moses, M.L. Freeman, C.L. Arteaga, Inhibition of TGF-beta with neutralizing antibodies prevents radiation- induced acceleration of metastatic cancer progression, J. Clin. Invest. 117 (2007) 1305–1313. [64] D.M. Kambach, V.L. Sodi, P.I. Lelkes, J. Azizkhan-Clifford, M.J. Reginato, ErbB2, FoxM1 and 14-3-3zeta prime breast cancer cells for invasion in response to ioniz- ing radiation, Oncogene 33 (2014) 589–598. [65] O. Kargiotis, C. Chetty, V. Gogineni, C.S. Gondi, S.M. Pulukuri, A.P. Kyritsis, M. Gujrati, J.D. Klopfenstein, D.H. Dinh, J.S. Rao, uPA/uPAR downregulation in- hibits radiation-induced migration, invasion and angiogenesis in IOMM-Lee meningioma cells and decreases tumor growth in vivo, Int. J. Oncol. 33 (2008) 937–947. [66] S. Asuthkar, A.K. Nalla, C.S. Gondi, D.H. Dinh, M. Gujrati, S. Mohanam, J.S. Rao, Gadd45a sensitizes medulloblastoma cells to irradiation and suppresses MMP-9- mediated EMT, Neuro Oncol. 13 (2011) 1059–1073. [67] C. Wild-Bode, M. Weller, A. Rimner, J. Dichgans, W. Wick, Sublethal irradiation pro- motes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma, Cancer Res. 61 (2001) 2744–2750. [68] W. Wick, A. Wick, J.B. Schulz, J. Dichgans, H.P. Rodemann, M. Weller, Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase, Cancer Res. 62 (2002) 1915–1919. [69] B. Hegedus, J. Zach, A. Czirok, J. Lovey, T. Vicsek, Irradiation and Taxol treatment result in non-monotonous, dose-dependent changes in the motility of glioblasto- ma cells, J. Neuro Oncol. 67 (2004) 147–157. [70] S. Rieken, D. Habermehl, A. Mohr, L. Wuerth, K. Lindel, K. Weber, J. Debus, S.E. Combs, Targeting alphanubeta3 and alphanubeta5 inhibits photon-induced hypermigration of malignant glioma cells, Radiat. Oncol. 6 (2011) 132. [71] A.V. Badiga, C. Chetty, D. Kesanakurti, D. Are, M. Gujrati, J.D. Klopfenstein, D.H. Dinh, J.S. Rao, MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells, PLoS One 6 (2011) e20614. [72] S.Y. Kwak, J.S. Yang, B.Y. Kim, I.H. Bae, Y.H. Han, Ionizing radiation-inducible miR- 494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP, Biochim. Biophys. Acta 1843 (2014) 508–516. [73] A. Canazza, C. Calatozzolo, L. Fumagalli, A. Bergantin, F. Ghielmetti, L. Fariselli, D. Croci, A. Salmaggi, E. Ciusani, Increased migration of a human glioma cell line after in vitro CyberKnife irradiation, Cancer Biol. Ther. 12 (2011) 629–633. [74] M. Steinle, D. Palme, M. Misovic, J. Rudner, K. Dittmann, R. Lukowski, P. Ruth, S.M. Huber, Ionizing radiation induces migration of glioblastoma cells by activating BK K+ channels, Radiother. Oncol. 101 (2011) 122–126. [75] W.J. Kil, P.J. Tofilon, K. Camphausen, Post-radiation increase in VEGF enhances gli- oma cell motility in vitro, Radiat. Oncol. 7 (2012) 25. [76] I. Vanan, Z. Dong, E. Tosti, G. Warshaw, M. Symons, R. Ruggieri, Role of a DNA dam- age checkpoint pathway in ionizing radiation-induced glioblastoma cell migration and invasion, Cell. Mol. Neurobiol. 32 (2012) 1199–1208. [77] W.T. Arscott, A.T. Tandle, S. Zhao, J.E. Shabason, I.K. Gordon, C.D. Schlaff, G. Zhang, P.J. Tofilon, K.A. Camphausen, Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration, Transl. Oncol. 6 (2013) 638–648. [78] W. Zhou, Y. Xu, G. Gao, Z. Jiang, X. Li, Irradiated normal brain promotes inva- sion of glioblastoma through vascular endothelial growth and stromal cell- derived factor 1alpha, Neuroreport 24 (2013) 730–734. [79] A. Shankar, S. Kumar, A. Iskander, N.R. Varma, B. Janic, A. Decarvalho, T. Mikkelsen, J.A. Frank, M.M. Ali, R.A. Knight, S. Brown, A.S. Arbab, Subcurative radiation signif- icantly increases proliferation, invasion, and migration of primary GBM in vivo, Chin. J. Cancer 33 (2013) 148–158. [80] S.C. Wang, C.F. Yu, J.H. Hong, C.S. Tsai, C.S. Chiang, Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis, PLoS One 8 (2013) e69182. [81] J. Johnson, M.O. Nowicki, C.H. Lee, E.A. Chiocca, M.S. Viapiano, S.E. Lawler, J.J. Lannutti, Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy, Tissue Eng. C Methods 15 (2009) 531–540. [82] S. Watkins, H. Sontheimer, Hydrodynamic cellular volume changes enable glioma cell invasion, J. Neurosci. 31 (2011) 17250–17259. [83] B.R. Haas, H. Sontheimer, Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion, Cancer Res. 70 (2010) 5597–5606. [84] C.W. Habela, N.J. Ernest, A.F. Swindall, H. Sontheimer, Chloride accumulation drives volume dynamics underlying cell proliferation and migration, J. Neurophysiol. 101 (2009) 750–757. [85] V.A. Cuddapah, H. Sontheimer, Molecular interaction and functional regulation of ClC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malig- nant glioma, J. Biol. Chem. 285 (2010) 11188–11196. [86] V.A. Cuddapah, K.L. Turner, S. Seifert, H. Sontheimer, Bradykinin-induced chemo- taxis of human gliomas requires the activation of KCa3.1 and ClC-3, J. Neurosci. 33 (2013) 1427–1440. [87] C.B. Ransom, H. Sontheimer, BK channels in human glioma cells, J. Neurophysiol. 85 (2001) 790–803. [88] H. Sontheimer, An unexpected role for ion channels in brain tumor metastasis, Exp. Biol. Med. (Maywood) 233 (2008) 779–791. [89] K.L. Turner, A. Honasoge, S.M. Robert, M.M. McFerrin, H. Sontheimer, A proinvasive role for the Ca2+-activated K+ channel KCa3.1 in malignant glioma, Glia 62 (2014) 971–981. [90] N.J. Ernest, A.K. Weaver, L.B. Van Duyn, H.W. Sontheimer, Relative contribution of chloride channels and transporters to regulatory volume decrease in human glio- ma cells, Am. J. Physiol. Cell Physiol. 288 (2005) C1451–C1460. [91] M.B. McFerrin, H. Sontheimer, A role for ion channels in glioma cell invasion, Neu- ron Glia Biol. 2 (2006) 39–49. [92] L. Catacuzzeno, F. Aiello, B. Fioretti, L. Sforna, E. Castigli, P. Ruggieri, A.M. Tata, A. Calogero, F. Franciolini, Serum-activated K and Cl currents underlay U87-MG glio- blastoma cell migration, J. Cell. Physiol. 226 (2010) 1926–1933. [93] M. Sciaccaluga, B. Fioretti, L. Catacuzzeno, F. Pagani, C. Bertollini, M. Rosito, M. Catalano, G. D'Alessandro, A. Santoro, G. Cantore, D. Ragozzino, E. Castigli, F. Franciolini, C. Limatola, CXCL12-induced glioblastoma cell migration requires in- termediate conductance Ca2+-activated K+ channel activity, Am. J. Physiol. Cell Physiol. 299 (2010) C175–C184. [94] V.C. Lui, S.S. Lung, J.K. Pu, K.N. Hung, G.K. Leung, Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3, Anticancer Res. 30 (2010) 4515–4524. [95] G. Tabatabai, B. Frank, R. Mohle, M. Weller, W. Wick, Irradiation and hypoxia pro- mote homing of haematopoietic progenitor cells towards gliomas by TGF-beta- dependent HIF-1alpha-mediated induction of CXCL12, Brain 129 (2006) 2426–2435. [96] M. Kioi, H. Vogel, G. Schultz, R.M. Hoffman, G.R. Harsh, J.M. Brown, Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice, J. Clin. Invest. 120 (2010) 694–705. [97] S.V. Kozin, W.S. Kamoun, Y. Huang, M.R. Dawson, R.K. Jain, D.G. Duda, Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation, Cancer Res. 70 (2010) 5679–5685. [98] A.K. Weaver, M.L. Olsen, M.B. McFerrin, H. Sontheimer, BK channels are linked to inositol 1,4,5-triphosphate receptors via lipid rafts: a novel mechanism for cou- pling [Ca2+]i to ion channel activation, J. Biol. Chem. 282 (2007) 31558–31568. [99] C. Garcia-Moruja, J.M. Alonso-Lobo, P. Rueda, C. Torres, N. Gonzalez, M. Bermejo, F. Luque, F. Arenzana-Seisdedos, J. Alcami, A. Caruz, Functional characterization of SDF-1 proximal promoter, J. Mol. Biol. 348 (2005) 43–62. [100] F. Li, P. Sonveaux, Z.N. Rabbani, S. Liu, B. Yan, Q. Huang, Z. Vujaskovic, M.W. Dewhirst, C.Y. Li, Regulation of HIF-1alpha stability through S-nitrosylation, Mol. Cell 26 (2007) 63–74. [101] B.J. Moeller, Y. Cao, C.Y. Li, M.W. Dewhirst, Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules, Cancer Cell 5 (2004) 429–441. [102] M.J. Kim, R.K. Kim, C.H. Yoon, S. An, S.G. Hwang, Y. Suh, M.J. Park, H.Y. Chung, I.G. Kim, S.J. Lee, Importance of PKCdelta signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment, J. Cell Sci. 124 (2011) 3084–3094. http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0225 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0225 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0225 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0230 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0230 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0230 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0230 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0230 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0235 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0235 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0240 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0240 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0240 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0240 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0245 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0245 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0245 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0250 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0250 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0250 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0255 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0255 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0255 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0255 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0260 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0260 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0260 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0265 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0265 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0265 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0265 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0265 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0270 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0270 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0270 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0275 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0275 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0275 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0275 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0280 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0280 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0280 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0280 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0285 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0285 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0285 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0285 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0290 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0290 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0290 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0290 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0295 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0295 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0295 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0300 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0300 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0300 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0300 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0300 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0305 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0305 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0305 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0310 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0310 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0310 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0315 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0315 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0315 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0315 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0320 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0320 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0320 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0325 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0325 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0325 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0330 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0330 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0330 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0335 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0335 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0335 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0340 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0340 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0340 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0345 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0345 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0345 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0345 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0350 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0350 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0595 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0595 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0595 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0360 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0360 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0360 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0360 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0365 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0365 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0365 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0600 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0600 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0600 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0600 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0375 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0375 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0375 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0380 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0380 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0380 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0380 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0385 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0385 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0390 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0390 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0390 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0395 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0395 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0395 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0400 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0400 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0400 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0400 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0400 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0405 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0405 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0405 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0410 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0410 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0415 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0415 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0420 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0420 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0420 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0420 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0420 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0420 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0425 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0425 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0425 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0430 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0430 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0605 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0605 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0605 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0440 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0445 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0445 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0445 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0450 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0450 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0450 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0450 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0455 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0455 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0455 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0460 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0460 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0460 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0465 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0465 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0465 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0465 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0465 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0465 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0470 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0470 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0470 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0475 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0475 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0475 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0480 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0480 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0480 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0485 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0485 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0485 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0485 2664 S.M. Huber et al. / Biochimica et Biophysica Acta 1848 (2015) 2657–2664 [103] C. Lagadec, E. Vlashi, L. Della Donna, C. Dekmezian, F. Pajonk, Radiation-induced reprogramming of breast cancer cells, Stem Cells 30 (2012) 833–844. [104] K. Tamura, M. Aoyagi, N. Ando, T. Ogishima, H. Wakimoto, M. Yamamoto, K. Ohno, Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy, J. Neurosurg. 119 (2013) 1145–1155. [105] M. Gatti, A. Pattarozzi, A. Bajetto, R. Wurth, A. Daga, P. Fiaschi, G. Zona, T. Florio, F. Barbieri, Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity, Toxicology 314 (2013) 209–220. [106] G. Liu, X. Yuan, Z. Zeng, P. Tunici, H. Ng, I.R. Abdulkadir, L. Lu, D. Irvin, K.L. Black, J.S. Yu, Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma, Mol. Cancer 5 (2006) 67. [107] M.J. Jung, J.K. Rho, Y.M. Kim, J.E. Jung, Y.B. Jin, Y.G. Ko, J.S. Lee, S.J. Lee, J.C. Lee, M.J. Park, Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells, Oncogene 32 (2013) 209–221. [108] M. Nakada, E. Nambu, N. Furuyama, Y. Yoshida, T. Takino, Y. Hayashi, H. Sato, Y. Sai, T. Tsuji, K.I. Miyamoto, A. Hirao, J.I. Hamada, Integrin alpha3 is overexpressed in glioma stem-like cells and promotes invasion, Br. J. Cancer 108 (2013) 2516–2524. [109] P. Ruggieri, G. Mangino, B. Fioretti, L. Catacuzzeno, R. Puca, D. Ponti, M. Miscusi, F. Franciolini, G. Ragona, A. Calogero, The inhibition of KCa3.1 channels activity re- duces cell motility in glioblastoma derived cancer stem cells, PLoS One 7 (2012) e47825. [110] S. Rao, R. Sengupta, E.J. Choe, B.M. Woerner, E. Jackson, T. Sun, J. Leonard, D. Piwnica-Worms, J.B. Rubin, CXCL12 mediates trophic interactions between endo- thelial and tumor cells in glioblastoma, PLoS One 7 (2012) e33005. [111] J.P. Greenfield, W.S. Cobb, D. Lyden, Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas, J. Clin. Invest. 120 (2010) 663–667. [112] H.S. Jang, S. Lal, J.A. Greenwood, Calpain 2 is required for glioblastoma cell invasion: regulation of matrix metalloproteinase 2, Neurochem. Res. 35 (2010) 1796–1804. [113] C.M. Park, M.J. Park, H.J. Kwak, H.C. Lee, M.S. Kim, S.H. Lee, I.C. Park, C.H. Rhee, S.I. Hong, Ionizing radiation enhances matrix metalloproteinase-2 secretion and inva- sion of glioma cells through Src/epidermal growth factor receptor-mediated p38/ Akt and phosphatidylinositol 3-kinase/Akt signaling pathways, Cancer Res. 66 (2006) 8511–8519. [114] D.R. Maddirela, D. Kesanakurti, M. Gujrati, J.S. Rao, MMP-2 suppression abrogates irradiation-induced microtubule formation in endothelial cells by inhibiting alphavbeta3-mediated SDF-1/CXCR4 signaling, Int. J. Oncol. 42 (2011) 1279–1288. [115] X.Z. Ye, S.L. Xu, Y.H. Xin, S.C. Yu, Y.F. Ping, L. Chen, H.L. Xiao, B. Wang, L. Yi, Q.L. Wang, X.F. Jiang, L. Yang, P. Zhang, C. Qian, Y.H. Cui, X. Zhang, X.W. Bian, Tumor- associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway, J. Immunol. 189 (2012) 444–453. [116] S. Bao, Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li, A.B. Hjelmeland, Q. Shi, R.E. McLendon, D.D. Bigner, J.N. Rich, Stem cell-like glioma cells promote tumor angio- genesis through vascular endothelial growth factor, Cancer Res. 66 (2006) 7843–7848. [117] R. Wang, K. Chadalavada, J. Wilshire, U. Kowalik, K.E. Hovinga, A. Geber, B. Fligelman, M. Leversha, C. Brennan, V. Tabar, Glioblastoma stem-like cells give rise to tumour endothelium, Nature 468 (2010) 829–833. http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0490 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0490 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0495 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0495 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0495 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0500 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0500 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0500 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0500 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0505 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0505 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0505 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0505 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0510 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0510 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0510 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0515 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0515 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0515 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0520 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0520 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0520 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0520 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0525 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0525 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0525 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0530 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0530 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0535 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0535 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0540 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0540 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0540 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0540 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0540 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0545 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0545 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0545 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0550 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0550 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0550 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0550 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0555 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0555 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0555 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0555 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0560 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0560 http://refhub.elsevier.com/S0005-2736(14)00390-3/rf0560 Role of ion channels in ionizing radiation-�induced cell death 1. Introduction 2. Radiotherapy 3. Radiosensitizing ion channels 4. Ion channels conferring intrinsic radioresistance 5. Ion channels in acquired radioresistance 6. Concluding remarks Acknowledgment References