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ABSTRACT

Distributed Artificial Intelligence (DAI) systems in which multiple problem solving agents

cooperate to achieve a common objective is a rapidly emerging and promising technology.

However, as yet, there have been relatively few reported cases of such systems being employed to

tackle real-world problems in realistic domains. One of the reasons for this is that DAI researchers

have given virtually no consideration to the process of incorporating pre-existing systems into a

community of cooperating agents. Yet reuse is a primary consideration for any organisation with

a large software base.

To redress the balance, this paper reports on an experiment undertaken at the CERN

laboratories in which two pre-existing and standalone expert systems for diagnosing faults in a

particle accelerator were transformed into a community of cooperating agents. The experiences

and insights gained during this process provide a valuable first step towards satisfying the needs of

potential users of DAI technology - identifying the types of changes required for cooperative

problem solving, quantifying the effort involved in transforming standalone systems to ones

suitable for cooperation and highlighting the benefits of a cooperating systems approach in a

realistic industrial application.
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INTRODUCTION

As computer hardware and software becomes increasingly powerful, so applications which used to

be considered beyond the scope of automation come into reach. To cope with these increased

demands, software systems are becoming correspondingly larger and more complex. However the

problems encountered in building these large systems are not simply scaled up versions of those

faced when constructing small ones. Since the late 1960’s, when the “software crisis” was first

noted, it has been realised that large systems require radically different techniques and methods.

One paradigm for overcoming the complexity barrier is to build systems of smaller more

manageable components which can communicate and cooperate1,2,3. Such a Distributed Artificial

Intelligence (DAI) approach has several potential advantages. Firstly, divide and conquer has long

been championed as a means of constructing large systems because it limits the scope of each

processor. The reduced size of the input domain means the complexity of the computation is lower,

thus enabling the components to be simpler and more reliable. Secondly, decomposition aids

problem conceptualisation; many tasks appear difficult because of their sheer size. Other benefits

includereusability of problem solving components, greater robustness in the case of component

failure, speed up due to parallel execution, enhanced problem solving due to the combination of

multiple paradigms and sources of information and finally increased system modularity1,3.

In DAI systems, individual problem solving entities are calledagents; agents are grouped

together to formcommunities which cooperate to achieve the goals of the individuals and of the

system as a whole. It is assumed that each agent is capable of a range of useful problem solving

activities in its own right, has its own aims and objectives and can communicate with others. The

ability to solve some problems alone (coarse granularity4) distinguishes components of DAI

systems from the components of neural systems in which individual nodes have very simple states

(either on or off) and only by combining many thousands of them can problem solving expertise

be recognised.
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Agents in a community usually have problem solving expertise which is related, but distinct,

and which frequently has to be combined to solve problems.Such joint work is needed because of

the dependencies between agents’ actions, the necessity to meet global constraints and the fact that

often no one individual has sufficient competence to solve the entire problem alone. There are two

main causes of such interdependence (adapted from Davis and Smith5). Firstly, when problem

partitioning yields components which cannot be solved in isolation. In speech recognition, for

example, it is possible to segment an utterance and work on each component in isolation, but the

amount of progress which can be made on each segment is limited. Allowing the sharing of

hypotheses is a far more effective approach6. Secondly, even if subproblems are solvable in

isolation, it may be impossible to synthesize their results because the solutions are incompatible or

because they violate global constraints. For instance when constructing a house, many

subproblems are highly interdependent (eg determining the size and location of rooms, wiring,

plumbing, etc.). Each is solvable independently, but conflicts which arise when the solutions are

collected are likely to be so severe that no amount of work can make them compatible. It is also

unlikely that global constraints (eg total cost less than£70,000) would be satisfied. In such cases,

compatible solutions can only be developed by having interaction and agreements between the

agents during problem solving. It is the need for significant amounts of cooperation to achieve

tasks and the relative autonomy of the agents to determine their own activities which distinguishes

DAI from more conventional distributed systems work.

Despite these potential advantages, there are still relatively few DAI applications working on

realistic problems in real world domains7. One of the reasons for this is the mismatch between the

needs of organisations who require solutions to their problems and the research objectives of the

DAI community. Typically organisations which have problems amenable to a cooperating systems

approach already possess computer systems in which they have invested substantial amounts of

time and money. Naturally enough they want the return on this investment to be maximised,

meaning the systems should be utilised until they become obsolete or significantly better

alternatives become available. However, most work in DAI assumes that the agents have been
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purpose built using tools and techniques designed solely for cooperative problem solving. Virtually

no consideration is given to the process of incorporating pre-existing systems into a cooperating

community - yet this must be a central concern if DAI is to leave the laboratory and progress to

real applications.

To help redress the balance, this paper reports on an experiment carried out at the CERN

laboratory, under the auspices of the ARCHON project8,9, in which two standalone and pre-

existing expert systems for diagnosing faults in a particle accelerator were transformed into a

community of cooperating agents. The problems faced during this process and the insights which

emerged are recounted as an important first step towards tackling the larger issue of providing a

methodology for describing how pre-existing systems can be incorporated into a cooperating

community. The framework used to facilitate the cooperative problem solving was GRATE10,11

which is described more fully in the following section. This paper also indicates the types of social

interaction which can be expected between large, coarse grained agents - an important indication

of the appropriateness of theoretical research into techniques for cooperation and coordination for

real-size industrial applications. Finally because DAI (and AI in general) techniques are so rarely

applied to real applications, this experiment offers valuable insights into the problems and

constraints encountered during this process - such issues often fail to emerge when idealised

problems or simulated environments are used12.

GRATE: A GENERAL FRAMEWORK FOR COOPERATIVE PROBLEM SOLVING

GRATE (Generic Rules and Agent model Testbed Environment) is a general framework for

constructing communities of cooperating agents for industrial applications. GRATE agents have

two major components - acooperation and control layer and adomain level system (see figure 1).

The domain level system solves problems such as detecting and diagnosing faults, proposing

remedial activities and checking the validity of operator actions. These problems are expressed as

tasks - atomic units of processing when viewed from the cooperation and control layer. The

cooperation layer is a meta-level controller which operates on the domain level system; its
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objective is to ensure that the agent’s activities are coordinated with those of others within the

community. It decides which tasks should be performed locally, determines when social activity is

appropriate, receives requests for cooperation from other community members, and so on.

GRATE’s clear delineation of domain problem solving and knowledge related to cooperation

and control has several advantages. Firstly, it increases software reusability in that the cooperation

layer can be deployed in multiple applications without having to disentangle the knowledge used

to guide social activity from that used to solve domain level problems. Secondly, the domain and

cooperation layers can be developed independently provided that they respect the interface
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definition. This is especially important with respect to pre-existing software because it places very

few restrictions or constraints on the types of system which can be incorporated. Thus the domain

level systems may be written on different hardware and software platforms, use different

knowledge representation formalisms and have different control regimes13. By providing a

standard interface to the domain level system, all of the underlying heterogeneity can be masked;

enabling the cooperation layer to be used in a wide range of applications. The division also

simplifies the domain level system because it can continue to act on the basis of local information;

it need not be concerned with the activities of other agents because any influence they have on its

behaviour will be exerted through the cooperation layer.

The disadvantage of the delineation, with respect to pre-existing systems, is that the control

regime and some interface interpretation commands may need to be written to enable the

cooperation layer to exact the appropriate control - this issue is discussed further in the section

describing the implementation details. Also for systems which are purpose built for cooperative

problem solving in a particular environment, this architecture may involve creating an artificial

barrier in its local control regime if the interface definition is too rigid.

In GRATE communities control is completely distributed, there is no hierarchy and all agents

are equal. Agents have a degree of autonomy in generating new activities and in deciding which

tasks to perform next. A global controller would have been the easiest way of ensuring the

cooperating community acted in a coherent way; with its knowledge of the goals, actions and

interactions of all community members the controller could have ensured: that misleading and

distracting information was not spread, that multiple agents did not compete for unshareable

resources simultaneously, that agents did not unwittingly undo the results of each others activities

and that the same actions were not carried out redundantly. However because of the complexity of

most industrial applications this approach was deemed inappropriate because:

• Bandwidth limitations make it impossible for agents to be constantly informed of all

developments in the system5.
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• A local perspective simplifies conceptualisation and implementation. Problems become

more complex if agents have to monitor the activities of all the others - the theory of

bounded rationality14.

• The controller would become a severe communication and computational bottleneck and

would cause the whole system to collapse if it failed15.

GRATE’s cooperation and control layer has three main problem solving modules. Each

module is implemented as a separate forward-chaining production system with its own inference

engine and local working memory. Communication between the modules is via message passing.

The rules built into each module are generic, they are applicable for controlling activities in a broad

class of industrial applications. Some credence to this claim is given by the fact that GRATE has

been applied to the domain of electricity transportation management10 and detecting overloads in

a telecommunication network16, as well as the problem of diagnosing faults in a particle

accelerator which is reported here. A more comprehensive description of GRATE can be found in

reference 17.

The control module is GRATE’s interface to the domain level system and is responsible for

managing all interactions with it. This interaction is controlled through the following set of

primitives:

• From GRATE to the domain level system:

<START task inputs> <STOP task>

<SUSPEND task> <KILL task>

<REACTIVATE task> <MORE-INFO-AVAILABLE task info>

• From the domain level system to GRATE:

<DIRECTIVE-FAILED directive> <RESULTS-PRODUCED task>

<DIRECTIVE-EXECUTED directive> <FINISHED task>
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Thesituation assessment modulemakes decisions which affect both of the other modules. It

decides which activities should be performed locally and which should be delegated, which

requests for cooperation should be honoured, how requests should be realised, what actions should

be taken as a result of freshly arriving information and so on. It issues instructions to, and receives

feedback from, the other modules. Typical requests to the cooperation module include “get

information X” and “send out information Y to interested acquaintances”. Requests to the control

module are of the form “stop task T1” and “start task T2”.

Thecooperation module is responsible for managing the agent’s social activities. The need for

such activity is detected by the situation assessment module, but its realisation is left to this

module. Three primary objectives related to the agent’s role in a social problem solving context are

supported. Firstly, the cooperation module has to establish new social interactions (eg find an agent

capable of supplying a desired piece of information). Secondly, the module has to maintain

cooperative activity once it has been established, tracking its progress until successful completion

(eg sending out relevant intermediate and final results to interested agents). Finally the module has

to respond to cooperative initiations from other agents.

The cooperation layer’s other components provide support for the activities of the main

problem solving modules. Theinformation store provides a repository for all the data which the

underlying domain level system has generated or which has been received as a result of interaction

with others.Acquaintance and self models are representations of other agents and of the local

domain level system respectively. They describe the agent’s current problem solving state, the

tasks it is able to solve, the goals it is working towards and so on - a fuller description is given in

reference 10 and an illustration of their use in the CERN experiment is given in the next section.

The agent models and the information store contain all the domain dependent data needed at the

cooperation and control layer - thus enabling the rules of the problem solving modules to be

application independent.

Agents communicate with one another via a message passing paradigm. This form of
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communication has several advantages over a shared memory approach (such as a

blackboard18,19). Firstly, message passing has well understood semantics and offers a more

abstract means of communication20. No hidden interactions can occur; so there is greater

comprehensibility, reliability and control over access rights. Secondly, message passing makes

fewer assumptions about system architecture. Finally, shared memory systems do not easily scale

up. If only a single blackboard exists then it becomes a severe bottleneck and if several exist the

semantics revert to message passing21.

DIAGNOSING FAULTS IN A PARTICLE ACCELERATOR

This section describes the diagnosis problem of accelerator operation, details two pre-existing

expert systems used for this task which are running at the CERN laboratories and outlines the

potential benefits of cooperation in this application.

Particle Accelerator Operation

The CERN Proton Synchrotron (PS) accelerators are one of the world’s most sophisticated high

energy research tools. The PS complex is at the heart of CERN’s experimental facilities acting as

an injector for the larger accelerators - the Super Proton Synchrotron and the huge Large Electron

Positron rings. In the PS, nuclear particles are focused into particle beams, accelerated, and

directed through several linear and ring accelerators using electromagnetic fields. These beams are

then used in the physicists’ experiments. Different experiments require different types of beam, the

variations are provided by the accelerator’s different operational modes.

The PS complex is controlled by a team of operators who maintain the beam performance and

the operational modes of the accelerators. Accelerator operation is a task demanding technical

competence, experience, diagnostic skill and judgement. The operator has to handle information

coming from control system modules, accelerator components and the acceleration process itself.

Observations are made via measurement devices and range from simple status displays of specific

accelerator components to complicated application programs and graphical information. The
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operator can change setpoint control values for the different components directly or he can use

application programs which present the beam properties on a higher conceptual level. Different

sections of the accelerator are controlled from different consoles in the same control room. In the

present system if there is some suspicion about a problem in an overlapping area, operators

communicate by talking to their colleagues on other consoles.

 The operator’s workload is constantly increasing as new accelerators and different operational

modes are added to the system. To cope with this increase, automated tools are becoming an

integral part of the control process. CERN has already equipped their control room with several

supporting tools - ranging from simple ones that display status information to high level software

based on Expert System technology22,23,24,25,26. This experiment on cooperative problem solving

concentrated on two of the high level tools, BEDES and CODES, which employ expert systems

technology for diagnosing faults in the accelerator.

BEDES and CODES

The main goal ofBEDES (BEam Diagnostic Expert System) is to diagnose operational faults at the

beam level for the PS Booster injection part of the PS complex. Operational faults occur, for

example, if the intensity of the particle beam falls below a certain level or if the beam deviates

considerably from its ideal trajectory. Such problems can be caused by the incorrect setting of a

control parameter (e.g. wrong timing is set for a switching magnet), a breakdown in a controller

(e.g. the switching magnet is not working), or an error in the control system (e.g. a module that

controls the switching magnet is down). BEDES can diagnose the first two types of fault if the

underlying control system is still working correctly. If such faults are detected, BEDES tries to

recover from them by resetting the correct control value or by optimizing a control value

respectively.

CODES (COntrol Diagnostic Expert System) has a similar control structure to BEDES, the

main difference is in the domain knowledge. Whilst BEDES works on the beam level, CODES
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operates on the level of the accelerator’s control system. This control system consists of thousands

of hardware and software modules in a large computer network and is used by the operator to

ensure that the accelerator process works successfully. A fault in the control system usually

manifests itself in terms of a deviation of the particle beam and so the problem will be picked up

by BEDES. In such cases BEDES and CODES could work together to determine the source of the

fault. BEDES could help to detect whether the problem is caused by wrong parameter settings or

a breakdown of a controller, while CODES could determine whether the fault is caused by the

control system itself.

Preparing for Cooperative Problem Solving

When the particle accelerator is running, the operator receives a myriad of information from which

he has to make an overall judgement of the situation and take reasonable decisions. As humans are

resource-bounded, the operator is only able to use a limited number of tools and correlate very few

pieces of information in real time. Therefore assistance is required in producing a consistent

interpretation of the information. At present BEDES and CODES report information

independently to the operator who then has to translate it to a common domain, determine whether

it is consistent and decide upon the appropriate course of action. If the tools were capable of

exchanging information directly, they would be capable of producing a consistent view

automatically, leaving the operator to concentrate on the more cognitive activities (eg interpreting

and acting upon diverse sources of information, tweaking the system to enhance performance, etc.)

for which he is better suited. From here stems the motivation for introducing cooperation between

the expert systems27,28.

BEDES and CODES have knowledge about the diagnosis of the same particle accelerator from

different perspectives. In certain situations, faults can be identified or even recovered from using

only one of the systems, but in many instances contributions from both of them are needed. By

exchanging intermediate and final results, the expert systems are able to focus each other’s

problem solving activity on promising areas and draw each other away from unprofitable avenues
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of reasoning.

Initially cooperation between BEDES and CODES was studied by means of several paper

exercises. Later practical exercises started and the expert systems were enhanced with an

application-specific cooperation software which sent hypotheses directly from BEDES to

CODES29. These preliminary studies identified some key design issues which needed to be

addressed, these include: how are local actions performed in one expert system?, what is the

common language of the expert systems?, how does one expert system model the other expert

system? and how does one expert system model itself? Each of these questions are addressed in

turn before the GRATE experiment is described in detail.

Local Actions

The main unit of reasoning for both BEDES and CODES is the hypothesis. Hypotheses are

stored on an agenda; the status of the agenda determines whether the expert system is active or just

idling. At the beginning of each inference cycle the agenda is rearranged (see figure 2), which

means that hypotheses are realigned according to their priority and any which have become

obsolete are removed. The first hypothesis is then taken from the agenda, it is evaluated and

possibly more detailed descendant hypotheses are created and injected into the agenda. Evaluation

requires that data describing the current status is gathered from the accelerator’s control system

(e.g. currently valid control values); reasoning about this data is then undertaken, the outcome of

which is a change in state of the hypothesis being evaluated (e.g. from unconfirmed to confirmed).

If the evaluated hypothesis is confirmed, the fault has been found and diagnosis stops - the results

are then reported to the operator.
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From this structure it is apparent that the natural unit of local activity is the basic inference

cycle and that local action can be controlled through operations on the agenda (eg to stop diagnosis

the agenda should be cleared and to focus on a promising hypothesis it should be moved to the

beginning of the agenda). Using this strategy local and cooperative actions can be kept separate

and well organised, cooperative features can be added to the expert systems without significantly

modifying their existing reasoning mechanisms.

Common Language

As both BEDES and CODES represent their hypotheses using a similar structure, it was

decided to use this as the basis of a common language between the two agents. Hypotheses are

assertions together with accompanying knowledge about how to prove them. The assertion is about

an element or parameter of the accelerator which might be in an incorrect state or could go wrong

in the near future. The related knowledge is composed of the necessary inference steps to prove the

assertion and has two parts:procedural steps including data acquisition (eg read values from the

Agenda
Empty?

Retrieve Data from
Control System

Take First Hypothesis

Wait

Re-Arrange
Agenda

Create and Inject
Hypotheses

Evaluate
Hypothesis

ACTIVE
IDLE

Yes No

Recover from Error
Report ResultConfirmed

NOT.Confirmed

Figure 2: Expert System Control Loop
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control system, filter uncertainty and discrepancies and compute the derived parameter) and

declarative rules operating on the structural description of the diagnosed system stored in the

knowledge base of the expert system (eg is the value close enough to “ideal”?, if not then create

derived hypotheses for those parts that can cause the deviation).

Hypotheses are implemented as frames. Although the structure of the hypotheses are the same

for both expert systems, the contents of the slots are different. Asuspected-entityslot describes the

element which may be at fault. Astate-of-entity slot provides detailed data about the state of a

suspected entity - including information such as the element is in fault, is operating out of

specification or is operating normally. During the evaluation cycle, this slot is used to indicate the

progress of the fault finding. Thestate-of-hypothesis slot expresses the state of the hypothesis

itself. Possible values include:

NOT.EVALUATED The hypothesis is newly created and not yet evaluated.

NOT.CONFIRMED The hypothesis could not be confirmed but no attempt has been made to deny it.

CONFIRMED The hypothesis was confirmed but no recovery attempt has been made.

The state of a hypothesis is important for cooperation, because it contains information on the

current phase of the diagnosis process. For example if a hypothesis is confirmed by one agent, then

the fault has been found and the other system should stop trying to locate it. Another example is

that if a hypothesis is evaluated by an expert system because of a request from an acquaintance and

it cannot be confirmed, then the originator should be informed since it affects its local problem

solving behaviour. Arating slot indicates the priority of a hypothesis and is used to order items on

the agenda.

During evaluation the expert system might create new hypotheses of a more detailed level -

resulting in a tree structure (see figure 3). BEDES and CODES are incapable of understanding each

others hypotheses directly because they refer to different domains - BEDES to sub-systems and
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elements, CODES to knobchains, modules and details. However there is a level of commonality,

in that translation can be performed between element and knobchain level hypotheses. This process

involves changing the value of some slots of the hypothesis and loading structural data into the

knowledge base. For example if BEDES suspects that something is wrong with a controller

element (the element is the suspected-entity of a BEDES hypothesis), then CODES cannot directly

use this. CODES has to map the element to that set of control system elements (knobchain) which

operates this controller element. It also has to load into its knowledge base the structure of the

knobchain. The structural knowledge is physically stored in a centralised and separate database for

ease of maintenance and because of its sheer size. However for the purposes of this experiment,

the database was regarded as part of CODES’s domain level system. So that the agents are not

unnecessarily distracted by extraneous hypotheses which they cannot understand (eg CODES
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E1 E4E3E2 K1 K2 K6K3 K4 K5

M1 M2 M3 M4 M7M6

D1 D2

BEDES CODES
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Figure 3: Hierarchy of Hypotheses
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cannot use those of a general or sub-system level), agents represent the types of hypotheses that

their acquaintances can process in their agent models (see the following section for more details).

This knowledge is then used to guide hypothesis interchange.

The advantage of using the hypothesis as a common language is that it involves a minimal

translation overhead. Also it is close to the language used by the domain level systems which

reduces the amount of modification required in the pre-existing systems. The disadvantage is that

any new agents which may be added to the community at a later stage must also be able to represent

and understand knowledge in this particular format. A better approach in terms of extensibility

would be to construct a domain independent interlingua in which assumptions about the knowledge

representation commitments are stated explicitly - see the work on the knowledge interchange

format30,31 for a more comprehensive discussion of this issue.

Benefits of a Distributed AI Approach

The benefits of a DAI approach in this particular domain include:

1) As the accelerator and its control system consist of huge numbers of elements,

corresponding to more than 10,000 setpoint control values, it would be extremely difficult

to maintain and develop a centralised knowledge base for the whole process. Decomposing

the problem into smaller modules results in smaller subproblems which are much easier to

tackle. A modularised approach also fits more naturally into the existing organisational

structure - knowledge of different domains (located in different divisions or groups) can be

kept separate, but can be combined by cooperative problem solving at runtime.

2) The overall system will beopen.32 New agents covering different aspects of the particle

accelerator process can be added when they are developed without having to alter the

application’s existing conceptual model. This is important because new accelerators are

built and added during the lifetime of the accelerator complex, also new operational modes

may be developed.
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3) The computing power of several workstations connected together through a network can

be utilised. Thus the agents can work in parallel and produce results faster by sharing the

workload.

4) Some of the drudgery and non-cognitive aspects of the operator’s job are removed,

leaving greater time for the higher level tasks which cannot be automated using the

currently available technology.

THE GRATE CERN EXPERIMENT

This section describes how cooperative fault detection can be carried out using the methods and

tools discussed above. A typical cooperative scenario involving BEDES and CODES is outlined,

before the steps involved in transforming the stand-alone systems into a community of cooperating

agents being controlled by GRATE are expanded upon.

A Cooperative Scenario

In the implemented scenario, the main form of cooperation manifests itself in terms of the

intelligent sharing of information between the two agents. This information is used to indicate

changes in the status of the particle accelerator and to direct agents’ problem solving by sharing

intermediate and final results.

There are three distinct phases to controlling the particle accelerator. Firstly, there isnormal

operatingconditions in which no fault has been detected. In this phase BEDES monitors the

accelerator system to identify possible discrepancies. Monitoring involves continually comparing

measurable system properties (such as the particle beam’s intensity, efficiency and trajectory) with

their archived “ideal” values. If there is a significant discrepancy, then there is a possible fault in

the accelerator. When a possible fault is detected, BEDES carries out a preliminary diagnosis phase

and produces a list of hypotheses about suspected subsystem components.

Once BEDES has produced a list of hypotheses to explain the accelerator fault, the second
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phase ofverifying the cause of the problem begins. The fault may have occurred as the result of a

problem at the beam level or a fault with the control system. Therefore as well as starting to verify

the cause of the fault, BEDES also informs CODES that there is probably a faulty element in the

accelerator. When CODES receives this notification, it starts a diagnostic process to determine

whether the problem lies within the control system. At this stage BEDES and CODES share the

common goal of trying to locate the accelerator’s fault; they are looking at different aspects of the

problem but their work is related by the fact that the hypotheses of CODES are further

specialisations of BEDES’s element level hypotheses.

As the two agents proceed with their diagnoses, various possibilities for cooperation exist

based on the exchange of information about hypotheses. When such information is received, the

recipient will undertake one of the following courses of action. A practical illustration of each case

follows.

1) take no action if the information is not relevant to its current problem solving context.

2) use the information to deflect the focus of its problem solving activity away from an

unprofitable area.

3) use the information to concentrate its problem solving activity on a promising area.

Case 1

As a result of its evaluation, BEDES creates some new element level hypotheses. These

hypotheses are sent to CODES, which translates them, before adding them to its agenda. As they

are new hypotheses (status NOT.EVALUATED) they are merely added to the list of things to do,

they do not affect the focus of CODES’s current problem solving.

Case 2

BEDES evaluates an element level hypothesis (denoted by H). As H is at the element level it
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would have already been sent to CODES when it was created (see Case 1). However as a

consequence of its evaluation task BEDES has produced more information about H. This

additional information is either that H is NOT.CONFIRMED or that H is CONFIRMED (see Case

3 for the latter situation). In the former case, when CODES receives the NOT.CONFIRMED

message it takes one of the following actions depending on its problem solving context:

a) CODES has not started working on H yet. Since BEDES was unable to confirm H, the

chance that CODES will find a fault with the derivatives of H has been lowered. Knowing

this, CODES’s rating of H will be reduced meaning that other more likely hypotheses will

be dealt with first.

b) CODES has started work on H or its derivatives. The probability that one of the

hypotheses of the derived tree can be confirmed has been decreased. If there are other high

level hypotheses in its agenda, then CODES continues with those. CODES drops its

attention on the hypothesis tree of H and will, after the next rearrange agenda, continue with

a new tree.

c) CODES has already finished the evaluation of H and all the hypotheses derived from it.

If CODES was also unable to confirm any hypothesis in the tree of H, then this is further

confirmation of BEDES’s result and can be used to increase the operator’s level of

confidence in the information. However if CODES did find a fault, then there is a conflict.

In this instance resolution is straightforward; since CODES works at a lower level than

BEDES its results are assumed to be more reliable. The user is thus presented with the

result of CODES and a short note about the conflict.

Case 3

If BEDES can confirm H, then the problem solving effort of CODES now switches to

concentrate on the hypothesis tree of H and its derivatives. If CODES also detects a fault in this

tree then the user’s confidence in the diagnosis will be heightened. If it does not find a fault then
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there is a conflict and the operator is informed.

The above cases describe situations in which information supplied by BEDES is used to direct

the problem solving of CODES. However there is also a valuable flow of information in the

opposite direction. The exchange of hypotheses from CODES to BEDES works differently

because BEDES cannot translate nor understand the hypotheses of CODES directly. So knobchain

level hypotheses created by CODES (eg K5 and K6 in figure 2) are of no direct relevance to

BEDES. BEDES is only interested in results related to the hypotheses which it has previously sent

to CODES (K1-K4 in figure 2). There are two situations in which CODES should send a result to

BEDES:

a) CODES was able to confirm a hypothesis. Since BEDES cannot understand the

hypothesis itself a back-translation is needed. This involves moving up the tree to find the

root node from which all the other hypotheses were derived and then sending this

hypothesis back to BEDES. Thus if CODES finds a fault in the detail level (say D1 in figure

2) then its root hypothesis (K3) should be translated to (E3) and sent back to BEDES.

b) CODES could not confirm any of the hypotheses derived from those sent by BEDES.

This only occurs if all hypothesis from the tree are evaluated and none of them could be

confirmed. The result sent back (after translation) will be the original hypothesis of BEDES

with the status NOT.CONFIRMED.

In both of these cases, BEDES tries to integrate the information received into its own problem

solving activity. The situations which might occur now are quite similar to those of Cases 1-3 in

that the attention of BEDES can be drawn or dropped to a certain hypothesis depending on the

status of the information supplied by CODES. If BEDES was ahead of CODES then the results will

be compared; in the case of a conflict it is assumed that the agent which found a fault is more

reliable.

The cooperative fault finding phase comes to an end if all hypotheses are evaluated and none
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of them could be confirmed (a transient fault or a false alarm) or a hypothesis has been confirmed.

In either case therecovery phase will begin. This phase is outside the scope of this experiment.

Integrating Pre-Existing Expert Systems

Converting the standalone versions of BEDES and CODES into a community of cooperating

agents being controlled by GRATE required three main activities to be carried out. Firstly, some

adaptations to the control of BEDES and CODES were required and the domain level tasks had to

be defined. Secondly, the interface between the expert systems and GRATE had to be constructed.

Finally, the acquaintance and self models of the agents needed to be populated - this process

includes specifying the recipes2 which control agent activity, enumerating the tasks which the

domain level system can perform and representing the information which other agents would

benefit from receiving.

Expert System Adaptations

As figure 2 illustrates, the initial control of both BEDES and CODES was a non-interruptible

loop. However for the purpose of controlling local problem solving from an upper layer, such a

coarse granularity was inappropriate. To utilise the benefits of cooperation, GRATE has to be

capable of influencing the rating of hypotheses and of injecting new items into the agenda.

Therefore the control cycle needed to be split into more manageable components. As the original

coding of the control loop was carried out in a modular fashion it was relatively straightforward to

decouple the cycling routines from the actual functionality which it drove.

Having identified the control regime, the next step is to determine the domain level system

tasks. When performing this analysis the overriding objective was to minimise the amount of

change required to the structure of the pre-existing systems, whilst still permitting the benefits of

interaction to take place. Inspection of the existing control loop suggested there should be six tasks

2. Recipes are sequences of actions known by an agent for achieving a particular objective33.
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- one for each node of the graph. However a deeper examination of the system structure revealed

that “retrieve data” and “evaluate hypothesis” are virtually indivisible because the former is deeply

embedded within the latter. Also “create and inject” is intimately related to the evaluation process

and also could not easily be separated. Selection of hypothesis from the agenda was regarded as

the initialisation phase for evaluation, therefore it was decided to leave it hidden in the intelligent

system. Thus the control loop was collapsed into two basic tasks - evaluating hypotheses and

rearranging the agenda.

• REARRANGE-AGENDA: re-arranges the agenda so that the highest priority tasks are near

the beginning. Also removes any superfluous hypotheses.

• EVALUATE-HYPO: takes the first hypothesis from the agenda and evaluates it.

This level of control was considered appropriate for two reasons. Firstly because of the way the

pre-existing systems were implemented; any other decomposition would have required significant

modifications to the existing structure. Secondly, from the perspective of exploiting information

gleaned from other agents, the advantages of a finer level control would have been negligible. As

a consequence of this reconceptualisation it is apparent that some of the control which resided

originally in the expert system has migrated up into GRATE’s cooperation and control layer.

However not all of the control has been moved, a significant amount of lower level control remains

with the domain level system.

In this application GRATE exerts control over the domain level system through its agenda.

Therefore some of the manipulation functions which existed within the domain level system

needed to be made available at the cooperation and control layer if the benefits of information

received from acquaintances is to be exploited. These functions include:

• INJECT-HYPO: inject a hypothesis into the agenda

• DELETE-HYPO: remove a hypothesis from the agenda
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• GET-AGENDA: return the current contents of the agenda

• CHANGE-RATING: modify the rating slot of a hypothesis in the agenda

The responsibility for ensuring that these commands are executed in a coherent manner resides

with the control of the domain level system. Thus if GRATE decides that the rating of a hypothesis

should be modified, it issues the “change-rating” command to its domain level system. Once

received this directive will not be acted upon immediately since, for example, the expert system

may be in the middle of performing an evaluation. Only when it comes to its rearrange agenda task

will the modification actually take place. From a design perspective, it is important that such

domain specific control remains within the expert systems. Exporting it to the upper level would

require GRATE’s control module to be at least as sophisticated as the control of the domain level

system and would also mean that it was different for each and every application. Maintaining a

clean separation of concerns allows GRATE’s control module to be simpler and more generic.

Interfacing GRATE and the Domain Level Systems

BEDES and CODES run on separate workstations and are implemented in KEE making use of

SUN Common LISP; GRATE is written in Allegro Common LISP. Because of incompatibilities

between the different pieces of software, and also for efficiency reasons, it was decided to run

GRATE on a third workstation. Thus all the agents’ cooperation and control layers ran on one

machine, this machine being different from the ones which were executing the domain level

systems. To allow an agent’s control module to interact with its domain level system a

communication package was utilised. This package established bidirectional communication

between SUN Common LISP on one workstation and Allegro Common LISP on another. It was

based on standard UNIX tools such as sockets and TCP/IP and had been developed as part of the

application specific cooperation software used for preliminary experimental work. GRATE would

issue commands such as: START(EVALUATE-HYPO). This directive would be picked up by the

communication package which would send the message onto the workstation running the
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appropriate domain level system.

In addition to interacting with the domain level system, the cooperation and control layer needs

to carry out reasoning about received and generated information. To facilitate this, some domain

dependent functions needed to be written for inclusion into GRATE’s recipes. In this experiment

these functions were primarily related to providing an interpretation of the common language (i.e.

the hypotheses) and of presenting output to the operator. Examples of such functions include:

• (has-slot-value <hypo> <slot> <value>)

boolean function which verifies if a specified slot of a hypothesis contains a certain

value

• (has-equal-slots <hypo-1> <hypo-2> <slot>)

boolean function which verifies if the slots of the two hypotheses contain the same

value

• (find-related-hypos <hypo-list> <hypo>)

returns all members of the hypothesis list which have the same value in the

SUSPECTED.ENTITY slot as the specified hypothesis

• (confirm <hypo>)

displays message to the operator that a hypothesis has been confirmed by both agents

Instantiating the Agent Models

When building a GRATE application a significant proportion of the knowledge required to

control cooperative problem solving is built into the system. For these experiments, no additions

were needed to the generic rule set. Thus each agent had exactly the same rules in its cooperation

and control layer and the application builder was only concerned with the domain-dependent
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features of GRATE (i.e. the agent models).

Firstly, the self models need to be instantiated. This involves describing the tasks which the

domain level system is able to perform - including the name, the inputs it must receive in order to

execute and the results which are produced. In this experiment the self models contained

descriptions of the following tasks: rearrange-agenda, evaluate-hypo, inject-hypo, delete-hypo,

get-agenda and change-rating. Two sample descriptions are given below:

TASK NAME: EVALUATE-HYPO

MANDATORY INPUTS:(HYPO)

RESULTS PRODUCED:(STATUS NEW-HYPOS)

TASK NAME: CHANGE-RATING

MANDATORY INPUTS: (HYPOS RATING-CHANGE)

RESULTS PRODUCED: NIL

Tasks are grouped together into recipes. Recipes have trigger conditions which indicate when

they should be activated, a body which describes the actions to be performed and a description of

the results produced. The recipe which encodes the basic control loop for the agent’s fault

verification phase is shown in figure 43. This recipe is triggered when the accelerator monitoring

phase detects a problem; it loops continuously until the cause of the fault has been ascertained

whereupon a recovery mode recipe is invoked.

RECIPE NAME:(VERIFY-CAUSE-OF-FAULT)

TRIGGER: (ENTER-FAULT-FINDING-MODE)

ACTIONS:( (START (REARRANGE-AGENDA (> FIRST-HYPO))

3. “>” means unbound variable and “<” indicates a bound variable. Thus the evaluate-hypo task takes one input (called

first-hypo) and produces two outputs (respectively named status and new-hypos).
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(START (EVALUATE-HYPO (< FIRST-HYPO) (> STATUS) (> NEW-HYPOS)))

(LOOP-UNTIL (FAULT-CONFIRMED (< STATUS))))

RESULTS: (NEW-HYPOS)

Figure 4: Basic Control Loop for Fault Verification Phase

Figure 5 illustrates a recipe which describes how CODES utilises information about

hypotheses received from BEDES. In particular it highlights the way in which information about

the state of hypotheses can be used to draw or deflect CODES’s attention from a particular branch

of the search space. It encodes cases two and three of the cooperative scenarios highlighted earlier;

note to simplify the example, cases of conflict are not dealt with.

The recipe is triggered when CODES receives a hypothesis which BEDES has evaluated

(status CONFIRMED or NOT.CONFIRMED). According to cooperative scenario case 1, CODES

will already have received information about the hypothesis when it was first generated (status

NOT.EVALUATED). To carry out the necessary reasoning, CODES has to identify those

hypotheses in its agenda which are related to the one just received from BEDES. This matching

process is carried out by the recipe’s first two actions GET-AGENDA and FIND-RELATED-

HYPOS.

The remaining recipe actions are conditional upon CODES’s current problem solving context.

The first condition tests whether BEDES has also verified a hypothesis which CODES has already

confirmed (CONFIRMED.HYPO). If this is the case, then the level of confidence in the diagnosis

is increased and the operator should be informed. The second conditional action draws the attention

of CODES to the hypotheses related to the one confirmed by BEDES - this is achieved by

increasing the rating of the related hypotheses by a value of 30. The final action deflects CODES’s

attention away from a hypothesis tree which appears less promising.
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RECIPE NAME:(USE-EVALUATED-HYPO-INFORMATION)

TRIGGER: (AND(info-available HYPO)

 (not (has-slot-value HYPO STATE.OF.HYPO NOT.EVALUATED))

ACTIONS:

 ( (start(GET-AGENDA (> FULL-AGENDA)))

(start (FIND-RELATED-HYPOS (< FULL-AGENDA)(< HYPO)(> RELATED-HYPOS)))

(start-if

(and (has-slot-value HYPO STATE.OF.HYPO CONFIRMED)

(has-equal-slot HYPO CONFIRMED.HYPO SUSPECTED.ENTITY))

 (CONFIRM (< HYPO)))

(start-if (has-slot-value HYPO STAT.OF.HYPO CONFIRMED)

(CHANGE-RATING (< RELATED-HYPOS) 30))

 (start-if (has-slot-value HYPO STAT.OF.HYPO NOT.CONFIRMED)

(CHANGE-RATING (< RELATED-HYPOS) -20)))

RESULTS: NIL

Figure 5: CODES recipe for exploiting information received from BEDES

Once the self models have been completed the acquaintance models need to be populated. In

the example cooperative scenarios the most important feature to model about another agent is the

information which it is known to be interested in. For example BEDES’s model of CODES

contains the information that CODES would benefit from receiving any newly generated

hypotheses which are at the element level (cooperative scenario case 1), any element level

hypotheses that it has been unable to confirm (cooperative scenario case 2), or any element level

hypotheses that it has been able to confirm (cooperative scenario case 3).
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INTERESTS:

(..(HYPO (AND (AT-ELEMENT-LEVEL HYPO)

(HAS-SLOT-VALUE HYPO STAT.OF.HYPO NOT.EVALUATED)))

(HYPO (AND (AT-ELEMENT-LEVEL HYPO)

(HAS-SLOT-VALUE HYPO STAT.OF.HYPO CONFIRMED)))

(HYPO (AND (AT-ELEMENT-LEVEL HYPO)

(HAS-SLOT-VALUE HYPO STAT.OF.HYPO NOT.CONFIRMED)))...)

RESULTS AND EXPERIENCES

BEDES and CODES were successfully transformed from standalone expert systems to a

community of cooperating agents under the control of GRATE. This transformation was achieved

with minimal modifications to the pre-existing expert systems and with no augmentation to

GRATE’s generic knowledge. The cooperating system was tested using a special development

mode of the accelerator in real time. As the accelerator operates in a time sharing fashion it was

possible to deliberately introduce faults into the system in the test mode without disturbing the

other modes which were serving real physicists experiments.

The results of this experiment highlighted some shortcomings in the design decision to map the

BEDES and CODES expert systems directly into agents. This proved to be a less than optimal

choice because of the large amount and diverse range of processing carried out in each system. As

both systems were originally conceived as standalone pieces of software they contain a vast array

of functionality which does not logically belong together - including monitoring, data acquisition,

fault diagnosis and recovery. Also because of their sheer size, the expert systems were becoming

unwieldy in their own right. Introducing such systems into a cooperating community merely

exacerbated these problems.
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Using the cooperation metaphor it is possible to divide the systems into a number of simpler

and logically separate agents which could work on dedicated areas of the problem. A new design

was proposed in which the functionality contained in BEDES and CODES was split into seven

agents34. This new approach offers greater system modularity and allows the benefits of

parallelism and interaction to be exploited to an even greater degree.

Firstly the data acquisition and treatment functionalities were separated out. It became apparent

that the reasoning process in the different agents was heavily reliant on the correctness of the data.

For this reason, the treatment of acquisitions is likely to become increasingly sophisticated in the

future and so a dedicated agent is warranted. An additional advantage is that it is easier to provide

treated data from a single source rather than having to do separate acquisition and treatment in each

and every agent.

The next decision was to remove the user interface functionality from the individual systems

and provide homogeneous presentation of data through a specialised agent. This provides the

operator with one entry point to the entire agent community. It also allows him to be presented with

high level information about process parameters which can be obtained through interaction with

the acquisition agent. This is not possible in the existing control system and so the operator has to

rely on raw data from the process.

BEDES and CODES were originally conceived as diagnostic expert systems; it was some time

before their recovery facilities were incorporated. Because of their add-on nature, it was decided

to separate the recovery actions from the diagnostic part.

Finally, BEDES reasons on two conceptual levels: on the high level of beam parameters (which

must be deduced from raw data rather than acquired directly) and on the direct level of the

equipment (raw data). In the modified design these two levels are mapped into separate agents.

This is beneficial because it frees the high level reasoning from the shackles imposed by the strict

mechanism of the hypothesis verification process.
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CONCLUSIONS

The stated aim of this work was to take two standalone and pre-existing expert systems and

construct from them a community of cooperating agents. This was achieved by using the GRATE

system to control the cooperative activity and required only slight modifications to the expert

systems. The cooperating community worked together to diagnose faults which occurred in the real

particle accelerator process.

Most reported systems work with highly idealised problem solvers and simplified domains.

This naturally makes experimentation easier, but is dangerous in that the assumptions which have

to be made may hide important issues which need to be addressed if the technology is to be used

in realistic environments eventually. This experiment used real expert systems working on a real

world problem. By adopting this approach the experiment provided many useful insights into the

fundamental problem of incorporating pre-existing systems in a community of cooperating agents.

When undertaking this activity, the structure of the pre-existing system needs to be analysed to

ensure it is open enough for the cooperation and control layer to exploit the information gleaned

during interactions with fellow community members. Necessary modifications may include

defining a finer granularity of control, making previously hidden control functions explicit or

developing completely new functions.

From this experiment it is clear that some of the basic control which previously resided in the

domain level system needs to be moved into the cooperation and control layer. However lower

level control which is more application specific is best left at the domain level. When deciding the

separation of concerns there is a tradeoff between the amount of restructuring of the domain level

system and the desired granularity of control. A detailed analysis of the existing system must be

undertaken so that a balance can be struck which avoids a significant reformulation system but

which still allows the benefits of interaction to be realised.

A second important consideration which this experiment uncovered is the relationship between
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pre-existing systems and agents - it is not always best to adopt a simple one to one mapping. Often

standalone systems contain a number of logically disparate tasks which can be split into separate

agents. This decomposition typically allows greater parallelism to be exploited in problem solving

and makes better use of the cooperating systems metaphor.

The types of interaction exhibited by BEDES and CODES are typical of a broad class of

problem solving called Functionally Accurate, Cooperative (FA/C)35. In the FA/C paradigm

agents asynchronously exchange partial results about the intermediate state of their processing to

ensure the community arrives at a consistent interpretation of the whole problem. From a

traditional computer science perspective, this type of cooperative problem solving can be viewed

as a form of distributed search which has multiple loci of control36. In the CERN experiment, the

partial results are hypotheses and as further evidence emerges (eg hypotheses become

CONFIRMED or NOT.CONFIRMED) so the problem solving behaviour of the community

develops accordingly. The types of cooperation exhibited in this experiment are similar in nature

to other industrial applications which have been studied within the context of the ARCHON project

(eg electricity transport management37 and management of electricity distribution38) which

suggests that theoretical research into the FA/C paradigm has a practical use.

This experiment also provides further support for two of Lesser’s observations about the FA/

C paradigm36. Firstly, that in comparison to a standalone version, an FA/C agent is more complex.

This can be seen by the refashioning of and additions to the expert systems’ control regimes.

Secondly it is observed that effective control of cooperative problem solving requires local control

decisions to be influenced by the state of problem solving in other agents. In this experiment, the

behaviour of other agents is monitored by the cooperation and control layer and influence is

exerted through modifications of the agent’s agenda.

The implemented cooperation schemes are relatively straightforward, but there is scope for

greater sophistication which may enhance performance still further. At present when BEDES sends

CODES its initial block of hypotheses, CODES starts processing them in the order in which they
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arrive. This means both agents start trying to verify the fault from the same position in the search

space. As the hypotheses are unrated at this point, this focuses the communities efforts on an

uneccesarily small portion of the accelerator. It would be better if the two agents worked on

different areas of the search space while the information about the faults is limited, then only when

further information becomes available would they focus their joint efforts on promising areas. This

could be realised by a relatively straightforward approach in which CODES starts working on

hypotheses from the end of the list or in a more elegant manner by a form of negotiation39,40 in

which agents decide upon the portion of the problem space on which they will concentrate their

initial efforts. This division of labour is possible because both systems are usually capable of

detecting the same fault. If, however, neither of them is able to find the fault in their part of the

search space then only at this stage should they start trying to work on areas which the other agent

has already processed.

A final enhancement to the application would be to incorporate a more sophisticated

mechanism for resolving conflicting opinions between the agents. For example rather than simply

assuming the result produced by CODES is correct, it would be better if some conflict resolution

expertise could be used to determine the source of the conflict and provide a means of resolving

it41. Such a mechanism would enable better quality information to be presented to the operator.
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FIGURE LEGENDS

1) Detailed GRATE Agent Architecture

2) Expert System Control Loop

3) Hierarchy of Hypotheses

4) Basic Control Loop for Fault Verification Phase

5) CODES recipe for exploiting information received from BEDES


