
Supporting activity modelling from activity
traces

Olivier L. Georgeon,1 Alain Mille,1 Thierry Bellet,2

Benoit Mathern1 and Frank E. Ritter3
(1) Université de Lyon, 86 Rue Pasteur 69007 Lyon, France
Email: olivier.georgeon@liris.cnrs.fr
(2) Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des
Réseaux, 25, Avenue François Mitterrand, 69500 Bron, France
(3) The Pennsylvania State University, University Park, PA 16802, USA

Abstract: We present a new method and tool for activity modelling through qualitative sequential data
analysis. In particular, we address the question of constructing a symbolic abstract representation of an activity
from an activity trace. We use knowledge engineering techniques to help the analyst build an ontology of the
activity, that is, a set of symbols and hierarchical semantics that supports the construction of activity models.
The ontology construction is pragmatic, evolutionist and driven by the analyst in accordance with their
modelling goals and their research questions. Our tool helps the analyst define transformation rules to process
the raw trace into abstract traces based on the ontology. The analyst visualizes the abstract traces and
iteratively tests the ontology, the transformation rules and the visualization format to confirm the models of
activity. With this tool and this method, we found innovative ways to represent a car-driving activity at different
levels of abstraction from activity traces collected from an instrumented vehicle. As examples, we report two
new strategies of lane changing on motorways that we have found and modelled with this approach.

Keywords: sequence mining, timeline analysis, activity trace, knowledge-based system, activity
modelling

1. Introduction

We introduce here new principles based on
knowledge engineering techniques for designing
systems to help analysts create models of activity
from activity traces. We illustrate these princi-
ples with a software tool that we have imple-
mented, and with an example modelling analysis
that we have performed using this tool.
By activity trace we mean a set of multiple

streams of quantitative or symbolic data that
record (at least partially) an activity performed
by a subject. The analysts may be psychologists
seeking to build theories of the subject’s cogni-
tion, ergonomists seeking to design better user

interfaces, analysts seeking to predict the sub-
ject’s behaviour in specific conditions, trainers
seeking to improve training techniques or even
the subjects themselves seeking to improve their
understanding of their actions. In each case, the
created models of activity constitute micro-
theories proposed by the analysts to describe,
explain and try to predict how the subject per-
forms the activity.

The principles and the tool that we introduce
here address three needs for helping analysts
construct models of activity from activity traces.
The first need is for helping the analyst learn
previously unknown aspects or details of the
subject’s activity from the activity traces. The

DOI: 10.1111/j.1468-0394.2011.00584.x

Article _____________________________

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

c! 2011 Blackwell Publishing Ltd Expert Systems 1

E X S Y 5 8 4 B Dispatch: 11.2.11 Journal: EXSY CE: Sandeep

Journal Name Manuscript No. Author Received: No. of pages: 15 PE: Chris/Satish

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

mailto:olivier.georgeon@liris.cnrs.fr
mailto:olivier.georgeon@liris.cnrs.fr
mailto:olivier.georgeon@liris.cnrs.fr
mailto:olivier.georgeon@liris.cnrs.fr

second need is for helping the analyst con-
struct meaningful symbolic representations of
interesting aspects of the activity. These repre-
sentations, associated with the explanations
proposed by the analyst, constitute the models
of activity. The third need is for helping the
analyst test and support the created models of
activity with regard to the activity trace.
Activity traces have also been called protocols

(Ericsson & Simon, 1993) or simply sequential
data (Sanderson & Fisher, 1994). We prefer the
term activity trace because this term conveys the
idea that the trace is intended to be interpreted by
somebody (designated here as the analyst). We
think of a trace as a footprint that helps who sees
it understand what happened. Our activity traces
yet differ frommere footprints in that they are not
accidentally produced or unprocessed but they
rather result from the analyst’s choices and set-up.
Many software tools have been implemented

for activity trace analysis. A recent review (Hil-
bert & Redmiles, 2000) notes 40 of them. These
tools cannot autonomously generate a compre-
hensive explanation of human behaviour but
they interactively support analysis. This analysis
consists of identifying, categorising, labelling
and transforming pieces of data and informa-
tion in the activity trace. We summarize this
process by the notion of abstraction. The ana-
lysts use their expertise and knowledge to for-
mulate a whole set of tiny hypotheses and
choices concerning how to collect the data, how
to filter it, how to cluster and label it and how to
display and to report it so that it responds to the
analysis purpose.
Although most of the existing tools acknowl-

edge the central role of the analysts and the
importance of their knowledge and expertise in
the analysing process, these tools still lack
knowledge representation mechanisms to sup-
port the management of the analysts’ knowl-
edge. For instance, MacShapa (Sanderson et al.,
1994) does help analysts label and cluster the
behavioural data. It also acknowledges the
usage of these labels as symbols to describe the
activity. It, however, does not help the analyst
formulate and manage the symbolic inferences
she can make from these symbols.

We formulated the hypothesis that aspects of
knowledge engineering can help design software
systems that address the three needs identified
above. We use ontology management facilities
and rule engines to capture the hypotheses and
choices made by the analyst. When interactively
used by the analyst or a group of analysts, these
facilities help formalize the way analysts find
interesting symbolic patterns and infer models
from them. Once this knowledge is formalized,
the system uses it to automatically compute new
representations of the activity from the activity
traces. The system also helps analysts organize
and store the different concepts and rules that
summarize different studies and help capitalize
on these studies.
To explain our principles and demonstrate

the system and its design, we have organized
this paper as follows: Section 2 presents the
principles of activity trace modelling, based on
a pragmatic and evolutionist approach. Section
3 presents the prototype software tool that we
have implemented from these principles, its
technical features, its architecture and its user
interface. Section 4 presents an example study in
which we have used this tool to create models of
lane change on motorways from activity traces
generated with an instrumented car. The meth-
od is then summarized in the conclusion.

2. Modelling activity traces

The notion of activity traces is widely used in the
human behaviour literature, and we cannot
attribute its origin to a specific author. Only
more specific-related notions can be identified,
such as pattern languages, as reviewed by Dear-
den and Finlay (2006), or grammar representa-
tions (Olson et al., 1994). Despite the wide usage
of the term activity trace, we could not find a
definition of it, which led us to propose the
following definition:

An activity trace is a meaningful inscription, from
the viewpoint of an analyst, of the flow of what has
happened, from the viewpoint of a subject.

With this definition, we want to highlight that
an activity trace always implies two viewpoints,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2 Expert Systems c! 2011 Blackwell Publishing Ltd

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

situated in two different moments. It implies
the subject’s viewpoint, when he or she was
performing the activity, and the analyst’s view-
point, when he or she is analysing the activity
trace. Indeed, an activity trace cannot be an
inscription of all that happened (if that had any
sense), because an activity only concerns what
relates to the subject’s perspective, goals and
intentions. Thus, inevitably, the analyst has to
make assumptions about what is meaningful to
the subject when the analyst sets up the tracing
mechanism. In addition, the activity trace de-
pends on what activity aspects interest the analyst
and what makes sense to her according to her
previous knowledge and to her analysis goals.
Because an activity trace depends on the ana-

lyst’s knowledge and assumptions, it can only be
modelled in an iterative way, each iteration pro-
ducing new knowledge leading to new hypotheses
for the next iteration. Ericsson and Simon (1993)
described this iterative nature of analysing human
behaviour: ‘In designing our data-gathering
schemes, we make minimal essential theoretical
commitments, then try to use the data to test
stronger theories’ (p. 274). Moreover, none of the
iterations can produce knowledge that could be
proven to be true in an absolute sense, but only
knowledge that is more efficient and useful with
regard to the analyst’s goals and that is more
convincing to the analyst’s community than the
knowledge from the previous iteration. More
broadly, this conception of knowledge relates to
a pragmatic epistemology (James, 1907) and an
evolutionist epistemology (Popper, 1972).
These pragmatic and evolutionist aspects are

crucial when defining a methodology and a tool
for activity trace modelling. By fully acknowl-
edging these aspects, we have designed a tool that
facilitates and accelerates the evolutionist model-
ling process. The tool helps formulate a series of
micro-hypotheses of possibly useful symbols, pos-
sibly useful transformation rules to transform the
low-level data into higher-level data and possibly
useful representations of the activity trace based
on the micro-hypotheses. If the obtained repre-
sentation does not help the analyst understand the
activity better, then she rejects these micro-
hypotheses; if it helps, then she keeps them.

The tool is designed to shorten this formula-
tion=usage=validation-or-rejection loop. This
process leads to the construction of a set of
micro-hypotheses that are validated by the ana-
lyst. This set constitutes a formalization of the
analyst’s knowledge about how to understand
the activity. The tool stores this knowledge,
helps the analyst keep track of it and helps the
analysts’ community discuss and question it.

The next section details how the tool reaches
this goal by helping the analyst define sequences
at the right level of abstraction and simulta-
neously identify interesting subsequences, define
them precisely and query the whole trace in
search for their occurrences.

2.1. Collecting a symbolic trace

A raw activity trace can be made of any kind of
data describing a subject’s activity flow and
intended for an analyst’s usage. In a broad
sense, it can range from video or audio record-
ing to computer logs. The only common point is
that the data are temporally organized, meaning
that each data piece is associated with a time-
stamp referring to a common time base. The
first abstraction step consists of converting these
raw traces into sequences of symbols. We refer
to this step as the discretization of the raw trace
into a symbolic trace. The symbols in the sym-
bolic trace have to be meaningful to the analyst,
and they are chosen on a pragmatic and evolu-
tionist basis, in compliance with a pragmatic
and evolutionist epistemology introduced above
(introduction of Section 2). The discretization
process can be manual, semi-automatic or auto-
matic. The definition of the symbols may evolve
in parallel with the implementation of the dis-
cretization process. This is because the later
interpretation of the symbols may differ from
the meaning initially intended by the analyst
when she specifies the discretization algorithm.

For example, in a study of car driving, we
have used the classical mathematical curve ana-
lysis method to generate symbols of interest
from numerical values of the vehicle speed, the
steering wheel angle and the pedal positions. In
this case, the symbols correspond to threshold

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

c! 2011 Blackwell Publishing Ltd Expert Systems 3

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

crossing, local extremum and inflexion points.
Figure 1 illustrates this discretization process.
In Figure 1, the curves represent the vehicle

speed in km=h and the brake pedal position in
percentage of range. Symbols of interest are
shown on these curves as circles (threshold
crossings, inflexion points, local extremums).
The symbols are merged into the symbolic trace
that is represented at the bottom of Figure 1.
The figure also shows a derivative value as an
example property of interest associated with a
symbol generated by a brake pedal threshold
crossing. The analyst specifies the way to gen-
erate these symbols so that they correspond to
meaningful events that describe the activity. In
this example, the threshold crossing indicates
the extent of the braking action and the deriva-
tive value indicates the abruptness of this action.
Notably, while creating these symbols, the ana-
lyst claims the existence of the events that these
symbols represent. By so doing, the analyst
defines an ontology of the activity.
Our experience has taught us that the system

must maintain a connection between the raw
trace and the symbolic trace, and provide
parallel displays of both of them. The analyst
needs to tune many parameters of the discretiza-
tion algorithms, like the threshold values or
noise filters. The analyst validates the chosen
symbols and algorithms by comparing the
symbolic trace to the raw trace and ensuring
that the symbolic trace represents what is hap-
pening. While she defines and validates these
symbols, the analyst also supports her claim

that the events represented by these symbols
‘exist’. This support arises because the method
to generate these symbols from the recorded
data is formally specified and explained by the
analyst. In this example, after we fully specified
the discretization algorithm in accordance to
our specific modelling goals, the discretization
algorithm could then compute the symbols
fully automatically.

2.2. Modelling the symbolic trace

At the symbolic level, analysts most often want
to focus on relations between events. Indeed,
events are not meaningful by themselves, but
they become meaningful in the context where
they relate to each other (Sanderson & Fisher,
1994). Examples of such relations include a
‘sequence following within a certain period
of time’, ‘co-occurrence within a certain period
of time’ and ‘causality with regard to a certain
explanative theory’. Building and understanding
these relations between events is a part of the
analysing process. By definition, a set of ele-
ments connected through relations is a graph.
Therefore, we model the symbolic traces with a
graph structure.
More precisely, our trace graph structure has

two parts: a sequence and an ontology. The
sequence is a part of the graph that is made
of event instances and of relation instances
between event instances. The ontology is a part
of the graph that is made of event classes and of
relations between event classes. Figure 2 illus-
trates this graph structure with a simplified
example taken from the car-driving study.
The sequence is represented in the bottom

part of Figure 2 and the ontology in the top
part. In the sequence graph, event instances are
represented as circles and triangles. Relation
instances between event instances are repre-
sented as solid arrows between these circles and
triangles. Example properties of event instances
are represented with grey dashed arrows point-
ing to their value at the bottom of the figure (e.g.
the duration of an eye movement and accelera-
tion value associated with an inflexion point of
the speed curve).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Time

Trace

Speed
Brake

Local extremum

Threshold

Inflections

Figure 1: Discretization of analogical traces.

4 Expert Systems c! 2011 Blackwell Publishing Ltd

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

Our tool displays the sequence in a similar form
as shown in Figure 2; the exact form is shown in
Figure 4. This display uses two axes: the time axis
and the ‘abstraction’ axis. That is, the events’
time-code attributes determine their x coordinates
and the analyst specifies their y coordinates when
she configures these event’s class in the ontology.
The analyst can use the y coordinate to express
different meanings; our recommendation is to use
it to express an idea of abstraction level related to
a specific analysis. In this example, the lowest
level (circles) represents the events obtained from
the discretization process; the intermediary level
represents events that describe the activity in
usual driving terms: accelerate, glance, turn signal
on=off (blinker); and the higher level represents
events describing lane-change behaviour: indica-
tor of intention to change lane and index of lane
change. This example expresses the analyst’s
assumption that the conjunction of an accelera-
tion and a glance to the left rear mirror can
generate an indicator of the driver’s intention to
change lane (L.C. Indicator).
In the ontology graph, the nodes represent

event classes and the edges represent the relation
‘sub-class of’ (dashed black arrows). The analyst
defines the ontology during the modelling pro-

cess. For example, the ‘Collected events’ class
includes all the event classes that come from the
discretization process. The ‘Driving descriptors’
class gathers the intermediary event classes
that describe the activity in usual driving terms.
The ‘Lane change descriptors’ class gathers the
most abstract event classes describing lane
changes. The dotted grey arrows in the figure
represent the relation ‘type of’ going from event
classes defined in the ontology to event instances
in the sequence.

Again, like most ontologies, this ontology is
made by the analyst on a pragmatic basis. It is
likely that two analysts will create two different
ontologies. While the software cannot demon-
strate that one is better than the other, it does
help the analysts formalize and discuss them.
This discussion leads to the construction of a
language for describing the activity that repre-
sents an agreement about the terms that can be
used to describe the activity. In addition, the
ontology also supports the analysts’ agreement
about how the trace should be visualized, be-
cause the visualization properties of the symbols
are stored in the ontology.

This trace formalism enables the analyst to
conduct a hierarchical analysis of the activity.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Ontology

Sequence

Event

Collected events Driving descriptors Lane Change descriptors

Eye track L.C. IndexSpeed Accelerate Glance L.C. IndicatorBlinker

Abstraction

Time

Eye left duration: 0.2s Speed acceleration: 1.1ms–2

Superclass of

Type of

Inference

Properties

Figure 2: Activity trace modelled in a knowledge engineering system.

c! 2011 Blackwell Publishing Ltd Expert Systems 5

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

Event instances form a hierarchywhere higher-level
events are temporal patterns of lower-level events.
The ontology also defines a hierarchy because some
event classes are sub-classes of others. Notably,
these two hierarchies are different because lower-
level event instances do not necessarily belong to a
sub-class of the class of higher-level event instances.

3. System implementation

We have implemented a prototype system based
on an assemblage of open-source knowledge
engineering tools: an ontology editor, an infer-
ence engine, visualization facilities and docu-
mentation facilities. This system is named
ABSTRACT (Analysis of Behavior and Situa-
tion for menTal Representation Assessment and
Cognitive acTivity modelling). Figure 3 illus-
trates this assemblage.
The system can be split into three levels: a

lower level, at the bottom of the figure, which is
the collection system; a core level, in the centre of

the figure, which is the symbolic trace system
itself; and a higher level, on the top of the figure,
which is a documentation level.

3.1. The collection system

The collection system integrates tools to help the
analyst prepare the symbolic trace. We call these
tools collection agents. Collection agents may be
automatic when specified once by the analyst or
may require the analyst’s intervention. Auto-
matic collection agents can be tools for prepro-
cessing sensor data or computer logs, as in the
example of Section 2.1. Semi-automatic collec-
tion agents can be tools for helping the analyst
take notes, record interviews or transcript video
data. As noted, this discretization cannot be
done blindly, but must be driven by the analyst.
Hence, this level requires visualization facilities.
We use Microsoft Excel with specific Visual
Basic Application (VBA) macros as a visualiza-
tion tool for the collection system. In this
visualization, each event of the symbolic trace

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Collection System

Visualization
system

Collection
agents

Collected
 trace

Videos Notes,
Interviews

Logs Sensors

Symbolic-Trace-System

Visualization
system

Transformation
engine

Ontology
editor Modeled Trace

Ontology

Inferences

Style-
sheets

Documentation System

Transfor-
mations

Models

Explanations

Figure 3: The architecture of the ABSTRACT activity analysis system.

6 Expert Systems c! 2011 Blackwell Publishing Ltd

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

is displayed as a line in the spreadsheet. The
lines are coloured according to the event’s type
and the event’s properties are organized in
different columns. We have implemented a spe-
cific video player and analogical data player that
triggers VBA macros that automatically scrolls
down the spreadsheet in synchronization. Some
of these facilities are also available in commer-
cial quantitative data analysis tools such as
MacShapa (Sanderson et al., 1994) and NVivo.
These facilities allow the analyst to check and
validate or reject the symbolic trace, that is,
refine the discretization algorithm and its di-
verse parameters until she gets a satisfying and
meaningful symbolic trace including appropri-
ate properties of interest.

3.2. The symbolic trace system

The symbolic trace system is the knowledge
engineering system itself. At this level, the traces
are modelled as described in Section 2.2. In
addition, they are associated with a set of
inference rules and a set of style sheets. A style
sheet is a specification for displaying the trace
on the screen. It specifies how semantic proper-
ties of the events that are defined in the ontology
should be converted into visualization proper-
ties, such as shape and position. Style sheets also
implement particular time scales, and particular
filters to display only the interesting aspect of
the trace for a particular analysis. They corre-
spond to different ways of looking at the trace
according to different modelling goals.
The inference rules produce inferred symbols

from patterns of previously existing symbols.
The principle is to query the graph in the search
for sub-graphs that match certain patterns, and
to attach new nodes and arcs to the matching
sub-graphs. These new nodes represent the in-
ferred symbols and the new arcs represent the
inference relations. The usage of this inference
mechanism is further described in Section 3.5.
Technically, the sequence part of the activity

traces is encoded as resource description frame-
work (RDF) graphs. We choose RDF because it
is the most widely used specification for graph
encoding. We use XML as a serialization of

RDF to store sequences, because XML makes
RDF graphs easy to share with other applica-
tions. The ontology is encoded as RDF schema
(RDFS), because RDFS is the simplest ontology
language based on RDF. We use Protégé as a
graphical ontology editor. That is, an installa-
tion of Protégé is embedded in our tool, and the
analyst uses it to define the ontology of his
traces. The graphical displays of our traces are
encoded under the scalable vector graphic
(SVG) specification. Because Firefox natively
supports SVG, we use it as a visualization tool,
and we have implemented most of the tool as a
web application in PHP. We use extensible
stylesheet language (XSL) as a transformation
language for transforming RDF traces into
their SVG graphical representation. We use
SPARQL as a query language for graphs, as we
will explain in Section 3.5.

3.3. The documentation system

Analysts using our symbolic trace system ex-
pressed the need for a higher system layer provid-
ing a way to both index and attach documentation
to episodes of interest. We implemented this by
associating the symbolic trace system with aWiki.
As we have made the choice of implementing
ABSTRACT as a web application, analysts can
reference each episode of interest by their URL,
and easily paste this URL into a Wiki page.
Moreover, some new Wiki implementations, like
Semantic MediaWiki,1 include semantic facilities.
We are still investigating how these semantic
facilities can be used to merge the ontology editor
with the documentation system into a single
semantic documentation system.

3.4. System usage

The user interface is accessible as a web page
in any browser that supports SVG, such as
Firefox. This interface is illustrated in Figure 4.
It has four tabs: the Open tab that allows the
analyst to select a trace in a list; the Info tab that
displays general information about the selected
trace, such as its creation date and its version,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 1http://semantic-mediawiki.org

c! 2011 Blackwell Publishing Ltd Expert Systems 7

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

http://semantic-mediawiki.org

and the management of stylesheets; the View tab
that displays graphical visualizations of the trace;
and the Edit tab that allows the analyst to write
queries to transform the trace. The interface also
provides a link to the ontology editor, Protégé.
The View tab shown in Figure 4 provides the

following functionalities (noted with numbered
boxes):

1. Unique ID of the analysis, including aspects
of the trace file and analyses done.

2. Selection of different visualization style
sheets in drop-down lists. Different visuali-
zations can be displayed simultaneously on
the screen and their time code is synchro-
nized.

3. Time code: this value corresponds to the
cursor position in the visualization modules
(vertical red line). The analyst can enter a
time code and click Go to to focus on it.

4. Visualization sample with a time span of
10 s. The analyst can scroll the trace left and

right with the mouse. This visualization
example corresponds to the simplified de-
scription given in Figure 2.

5. Visualization sample of an entire trace
(20min), with only the high-level symbols
displayed. These trace examples come from
our car-driving study and are further ex-
plained in Section 4.

6. The analyst can show the symbols’ proper-
ties by clicking on the symbols.

7. The system can synchronize with a video
player. When this box is checked, the system
gives the time-code control to the video
player and automatically follows it.

3.5. The transformation mechanism

The analyst uses the Edit tab to write queries
that infer higher-level symbols from patterns of
lower-level symbols. For instance, Table 1 illus-
trates a query to infer the Lane change indicator
symbol shown in Figure 2, which indicates that a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Figure 4: ABSTRACT user interface.

8 Expert Systems c! 2011 Blackwell Publishing Ltd

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

lane change is about to happen. In this example,
the analyst wants to test the hypothesis that this
indicator can be inferred from a conjunction of
an accelerate event with an acceleration value
Z1m=s2, followed by a glance event pointing to
the left mirror (generated by an eye-tracker),
both within 1 s of each other.
The graph elements, either from the sequence

or the ontology, are handled as triples [node, ed-
ge, node]. A query consists of a selection clause
(WHERE) and a CONSTRUCT clause. The
selection clause specifies a pattern of triples that
should match the graph, and the CONSTRUCT
clause specifies a pattern of triples that should
be added to the graph wherever a pattern
matches the selection clause. In addition, match-
ing patterns can be restricted by a FILTER
clause. The syntax shown in Table 1 has been
simplified for clarity.2

In this query, ?r1, ?r2, ?d1, ?d2 and ?v1
represent variables. Each of them must match
the same graph element each time they appear in
the query. The sequence function tests that the
time codes ?d1 and ?d2 occur in order and within
the parameter of 1 s of each other.
In our implementation, the analyst has to

know SPARQL to specify queries on the trace.
To make it simpler, however, we have imple-

mented a template mechanism that prepares
skeletons of queries. We have also added some
customized functions in our implementation of
SPARQL, such as the sequence function pre-
sented above. These functions facilitate the
specification of queries that compare time codes
of events, and make it easier to specify temporal
constraints. In so doing, we are implementing
semantics of time, for example, the semantics of
the relation of co-occurrence and of sequential
ordering. In the future, we plan to add options
to let the analyst specify these queries from a
graphical interface based on the visualization of
the trace.

The Edit tab allows the analyst to visualize the
resulting trace in a similar way as the View tab,
but it also allows her to reject the trace if she is
not satisfied by the result. This feature helps the
analyst refine the query in search for the best
symbols and inference rules she can get to
describe the activity from the actual data. Our
system returns the number of times the pattern
has matched in the trace. This number indicates
the number of new symbols added. The system
also provides an export function to a text file
that can be imported into other tools like
Microsoft Excel for further statistical computa-
tions. Queries are saved as independent files and
the tool helps the user reference them. The
database of queries associated with the ontology
constitutes a representation of the analyst’s
understanding about how to make sense of the
activity trace.

4. Example activity model

We report here an example activity modelling
analysis taken from a car-driving study (Hen-
ning et al., 2007). Another example analysis – in
a study of non-state political violence – is
reported by Georgeon et al. (2010). Figure 5
shows a 10 s section of a car-driving activity
trace focusing on a lane change on a motorway.
The legend is presented in Figure 6.

In Figure 5, the ‘Button’ is an index signal
from the experimenter recorded during the
experiment, the start thinking event comes from

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table 1: Simplified inference query to infer a
lane change

CONSTRUCT
(?r1, infer, Indicator_Symbol)
(?r2, infer, Indicator_Symbol)
(Indicator_Symbol, type, Lane_Change_Indicator)
WHERE
(?r1, type, Accelerate)
(?r2, type, Left_Mirror_Glance)
(?r1, time-code, ?d1)
(?r2, tine-code, ?d2)
(?r2, Acceleration_Value, ?v1)
FILTER
(?v1> 1)
(sequence(?d1,?d2,1)) # in order, within 1 second

2The complete SPARQL syntax can be found in the
SPARQL documentation, http://www.w3.org/TR/rdf-
sparql-query/

c! 2011 Blackwell Publishing Ltd Expert Systems 9

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

a verbal signal given by the driver in a video-
based post-experiment interview, and the
lane crossing event is the moment when the left
front wheel crosses the lane, manually encoded
from the video. The representation of the driv-
ing episode given in Figure 5 is then automati-
cally generated with the inference rules defined
by the analyst.
Using the trace querying facilities of AB-

STRACT on this driving data set, we could
identify two categories of lane changes that we
explain by the performance of two strategies
(Figures 7 and 8). In these descriptions, the lower
part is a representative trace episode from our
database, while the upper part is drawn by hand as
an abstract description of the strategies. This
upper part also shows the car trajectory in the
lanes, respecting the scale ratio length=width:
about 300m of 4m wide lanes.
The strategy displayed in Figure 7 is character-

ized by beginning in a situation where the subject
is impeded by a slow vehicle. In this case, the
subject starts accelerating [1] almost at the same
time as he looks at his left mirror [2]. Then, if

there is no vehicle coming from behind, he starts
looking at the left lane [3], he switches his blinker
on [4] and he performs the lane change [5]. In this
situation, the acceleration associated with a
glance to the left mirror appears as a good
predictor of the lane change. It occurs more than
1 s before the subject switches the blinker on.
In the situation of Figure 8, no slow vehicle

impedes the subject and he performs the lane
change ‘on the fly’. In this case, we can find no
behavioural sign of his intention to change lane
before the blinker is switched on [1]. Nevertheless,
the blinker appears to be a sufficient predictor in
that case, because it is switched in anticipation of
the lane change, several seconds before the man-
oeuvre: looking to the left lane [2], looking to the
left mirror [3] and starting steering [4].
In parallel to searching and identifying these

categories of situations and strategies, we define
symbols to represent them and inference rules to
generate these symbols. Finally, we have named
the first strategy Lane_change_delayed and
represented it with white triangles, and the second
strategy Lane_change_anticipated represented

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Figure 5: Example of lane change on a motorway (screenshot with text labels added at the top).

First level of abstraction

Second level of
abstraction

Backwards Leftwards Rightwards Frontwards Stable

Relation of inference

Steering Speed Eye Blinker Gas Brake Obstacle

Time

Figure 6: Legend of car driving symbolic trace.

10 Expert Systems c! 2011 Blackwell Publishing Ltd

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

with white squares. Figure 9 shows that these two
types of event occur four times in a representative
20-min motorway ride of a subject.
Figure 9 displays only the symbols that are

useful to see the lane changes: the index button
pressed by the experimenter (blue circles), the
blinker (orange triangles up and down), the accel-
erations (ochre triangles to the right), the left
mirror glances (grey triangles to the left), main
junctions on motorways given by the GPS posi-
tion (green square and triangles on the bottom
of the display) and the lane change category
symbols (white triangles and squares). In this
example, one lane change (marked by the verti-
cal cursor line in the figure) was not categorized.
The uncategorized cases would require further
study to understand their specificity. Once the
analyst has finished her analysis, she can export
the abstract traces into a spreadsheet to com-
pute and report the statistics of the occurrences
of events of interest.
Despite the extensive existing studies of car

driving (e.g. Groeger, 2000) and on lane change

manoeuvres (e.g. Salvucci & Liu, 2002), we could
find no representation of the driving activity that
could compare to ours in terms of comprehen-
siveness of the data and capacity to support
higher-level understanding. In the case of lane
changes, this innovative description helped us
discover different strategies that have not been
reported in the literature before. In so doing, this
study shows how our principles and tool have
addressed the needs set out in the introduction:
our prototype tool helped us generate compre-
hensive symbolic representations of the activity at
an appropriate abstraction level to discover pre-
viously unknown knowledge about the activity. It
also helped us explain, report and back up our
models with the collected traces.

5. Related work

In this section, we situate our work in relation to
two research areas: the area of qualitative data

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Figure 8: Lane change anticipated without acceleration (Lane_change_anticipated).

Figure 7: Lane change with acceleration (Lane_change_delayed).

c! 2011 Blackwell Publishing Ltd Expert Systems 11

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

analysis and the area of trace-based reasoning
(TBR).
In the area of qualitative data analysis, many

software tools address the need for supporting the
transcription of rawdata into sequences of encoded
events, for example, Dismal (Ritter & Larkin,
1994; Ritter &Wood, 2005), NVivo, INTERACT,
InfoScope, MORAE,MarShapa (Sanderson et al.,
1994) and MacVisSTA. As such, these tools relate
to our collection system as described in Section 3.1.
Among these tools,MacVisSTA (Rose et al., 2004)
particularly relates to this aspect of our work in
that it supports merging multi-modal data into a
common timeline.
At the symbolic level – also called the transcript

level in some studies – tools like Theme (Magnus-
son, 2000) support the automatic discovery of
temporal patterns based on statistical properties.
We consider our tool complementary to these tools
because our tool helps find the symbolic pattern
based on the meaning they have to the analyst
rather than on their statistical properties. In the
car-driving example, our symbols of interest are
not particularly frequent or infrequent nor do they
obey pre-assumed statistical laws.
HyperRESEARCH appears to be the only

qualitative data analysis tool that supports the
validation of hypothetic theories through rule-
based expert system techniques (Hesse-Biber
et al., 2001). We find HyperRESEARCH’s un-
derlying principles for theory building very
similar to ours. It, however, does not focus on
temporal semantics and does not offer symbolic
timeline visualization facilities to support activ-
ity modelling. Its rule engine also does not
exploit elaborated hierarchical semantics de-
fined in an ontology, as opposed to our solution
based on SPARQL and RDFSs.

The other related research area, TBR (Cordier
et al., 2009), comes from the domain of knowledge
representation, and more precisely from case-
based reasoning (CBR) (Aamodt & Plaza, 1994).
CBR consists of helping users solve new problems
by adapting solutions that have helped them solve
previous problems. TBR extends CBR to retrieve
useful cases as episodes from the stream of an
activity trace (Mille, 2006). Our work relates to
TBR because both address the question of model-
ling and representing a stream of activity for
future usage. In particular, we pull lessons from
the work of Settouti et al. (2009) that implemented
a trace-based system to support the management
and the transformation of traces. TBR has been
used to implement companions that provide assis-
tance to the user based on previous usage (e.g.
Cram et al., 2008) or to support reflexive learning
by providing the users with a dynamic display of
his passed activity (Ollagnier-Beldame, 2006). As
opposed to these works, our work helps a user (the
analyst) understand the activity of another user
(the subject). In so doing, our work brings princi-
ples of qualitative data analysis to TBR and brings
TBR techniques to address problems of quantita-
tive data analysis.

6. Conclusion

We have defined the principles of a methodology
and a software tool to help an analyst create
models of activity from activity traces in an
iterative and interactive fashion. These principles
relate to the notion of abductive reasoning in
that they consist of helping analysts form, orga-
nize and test micro-hypotheses to explain and
represent the activity. Specifically, they help

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Figure 9: Categorization of lane changes between Lyon and airport (20min long).

12 Expert Systems c! 2011 Blackwell Publishing Ltd

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

investigate what concepts and semantics describe
the activity the best and represent these concepts
in an ontology and apply this semantics through
a rule engine. These principles are summarized in
Figure 10.
In Figure 10, the collected raw data are repre-

sented as curves along the activity axis. The first
analysis step consists of collecting this raw trace.
The second step consists of producing a symbolic
trace (symbols represented by circles) through the
discretization of the raw trace. The third step
consists of modelling the symbolic trace by infer-
ring more abstract symbols (represented as
squares and triangles) and organizing these sym-
bols in an ontology (hierarchy of white rectangles).
The fourth step consists of producing explained
models of activity (round-angled rectangles) that
are backed up by the abstract trace. During the

modelling process, the analyst formalizes her un-
derstanding of the activity in the form of transfor-
mation rules, ontology and documentations that
are stored in the system, which allows capitalizing
on the analyst’s knowledge across studies.

To illustrate these principles, we have imple-
mented a prototype software tool through an
assemblage of open-source knowledge engineer-
ing software modules. With this tool, we have
modelled car-driving activity traces collected
with an instrumented vehicle. This analysis
allowed us to identify and describe two strate-
gies of lane change on motorways. This example
shows that our knowledge engineering approach
of activity modelling from activity traces offers
answers to the needs for tools to help analysts
understand better an observed activity, create
models of this activity, report and back up these
models with the observational data.

The abstract activity traces that we have con-
structed constitute a model of the car driver in
their own, in that the analysts can use our tool to
query these traces to answer new questions they
may have about the driving activity. Our future
developments will consist of simulating the activ-
ity, for instance, in the field of car driving,
generating realistic driving behaviour in a driving
simulator, based on our abstract activity traces.

Acknowledgements

We would like to acknowledge support for this
project from the European Commission through
the HumanIST Network of Excellence. Partial
support for this report was provided by ONR
(contracts N00014-06-1-0164 and N00014-08-1-
0481). We also thank Jean–Marc Trémeaux for
his participation in the software implementation,
and Matthias Henning for his contribution to the
car-driving experiment. We appreciate the com-
ments on this report from Jonathan Morgan and
Ryan Kaulakis.

References

AAMODT, A. and E. PLAZA (1994) Case-based reasoning:
foundational issues, methodological variations, and
system approaches, AI Communications, 7, 39–59.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1. Raw trace

2. Symbolic trace

3. Modeled trace

4. Activity models

Activity

Analysis

Figure 10: Activity modelling from activity
traces

c! 2011 Blackwell Publishing Ltd Expert Systems 13

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

CORDIER, A., B. MASCRET and A. MILLE (2009) Extend-
ing case-based reasoning with traces, Grand Chal-
lenges for Reasoning from Experiences, Workshop at
IJCAI, Pasadena, CA, pp. 23–32Q1 .

CRAM, D., B. FUCHS, Y. PRIÉ and A. MILLE (2008) An
approach to user-centric context-aware assistance
based on interaction traces, Modeling and Reasoning
in Context, Human Centered Processes, Delft, The
NetherlandsQ2 .

DEARDEN, A. and J. FINLAY (2006) Pattern languages in
HCI: a critical review, Human–Computer Interac-
tion, 21, 49–102.

ERICSSON, K.A. andH.A. SIMON (1993)Protocol Analysis:
Verbal Reports as Data, Cambridge, MA: MIT Press.

GEORGEON, O., J. MORGAN, J. HORGAN and K. BRAD-

DOCK (2010) Process modeling for the study of non-
state political violence, 19th Annual Conference on
Behavior Representation in Modeling Simulation,
Charleston, NC, Brims Society, pp. 240–247Q3 .

GROEGER, J. (2000) Understanding Driving, Hove, UK:
Psychology Press.

HENNING, M.J., O. GEORGEON and J.F. KREMS (2007)
The quality of behavioral and environmental indica-
tors used to infer the intention to change lanes, 4th
International Driving Symposium on Human Factors
in Driver Assessment, Stevenson, Washington, USA,
pp. 231–237Q4 .

HESSE-BIBER, S., P. DUPUIS and S. KINDER (2001)
Testing hypotheses on qualitative data: the use of
HyperRESEARCH computer-assisted software,
Social Science Computer Review, 18, 320–328.

HILBERT, D.M. and D.F. REDMILES (2000) Extracting
usability information from user interface events,
ACM Computing Surveys (CSUR), 32, 384–421.

JAMES, W. (1907) PragmatismQ5 .
MAGNUSSON, M.S. (2000) Discovering hidden time

patterns in behavior: T-Patterns and their detection,
Behavior Research Methods, Instruments and Com-
puters, 32, 93–110.

MILLE, A. (2006) From case-based reasoning to traces-
based reasoning, Annual Reviews in Control, 30,
223–232.

OLLAGNIER-BELDAME, M. (2006) Traces d’interactions et
processus cognitifs en activité conjointe: Le cas d’une
co-rédaction médiée par un artefact numérique,
CNRS – LIRIS, Lyon, Université Lumière Lyon 2.

OLSON, G.M., J.D. HERBSLEB and H.H. REUTER (1994)
Characterizing the sequential structure of interactive
behaviors through statistical and grammatical tech-
niques, Human–Computer Interaction, 9, 427–472.

POPPER, K. (1972) Objective Knowledge, Oxford, UK:
Oxford University Press.

RITTER, F.E. and J.H. LARKIN (1994) Developing pro-
cess models as summaries of HCI action sequences,
Human–Computer Interaction, 9, 345–383.

RITTER, F.E. and A.B. WOOD (2005) Dismal: a spread-
sheet for sequential data analysis and HCI experi-

mentation, Behavior Research Methods, Instruments,
and Computers, 37, 71–81.

ROSE, R.T., F. QUEK and Y. SHI (2004) MacVisSTA: a
system for multimodal analysis, International Con-
ference on Multimodal Interfaces, State College, PA,
pp. 259–264.

SALVUCCI, D.D. and A. LIU (2002) The time course of a
lane change Q6: driver control and eye-movement beha-
vior, Transportation Research, F, 123–132.

SANDERSON, P.M. and C.A. FISHER (1994) Exploratory
sequential data analysis: foundations, Human–Com-
puter Interaction, 9, 251–317.

SANDERSON, P.M., M.D. MCNEESE and B.S. ZAFF (1994)
Handling complex real-word data with two cognitive
engineering tools: COGENT and MacSHAPA, Be-
havior Research Methods, Instruments, and Compu-
ters, 26, 117–124.

SETTOUTI, L.S., Y. PRIÉ, J.-C. MARTY and A. MILLE

(2009) A trace-based system for technology-
enhanced learning systems personalisation, the 9th
IEEE International Conference on Advanced Learn-
ing Technologies, Riga, pp. 93–97 Q7.

The authors

Olivier L. Georgeon

Olivier L. Georgeon is a research associate in the
LIRIS department at the Claude Bernard Uni-
versity (Lyon, France). He previously had a 12-
year industrial experience as a software engineer,
developer and project manager in the domain of
automatization of industrial processes. He re-
ceived a PhD in cognitive psychology from the
Université Lumière (Lyon, France) in 2008. His
research interests are in learning through activity.
His work both produces practical applications
and addresses epistemological questions concern-
ing learning from and about an activity.

Alain Mille

Alain Mille has been a professor at the Claude
Bernard University (Lyon, France) since 2000.
He is a scientific director in the LIRIS depart-
ment (UMR 5205 CNRS), and leads the
research group Supporting Interactions and
Learning through Experience. After a first career
as a computer engineer and a project manager
(Hospices Civils de Lyon), Alain Mille was

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

14 Expert Systems c! 2011 Blackwell Publishing Ltd

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

asked to build a computer science department in
a college of engineering (CPE-Lyon). In this
latter position, he created a research team on
case-based reasoning. The main topics were
decision helping and complex tasks assistance.
Alain Mille is on several national and interna-
tional conference programme committees, and
on the editorial board of Intellectica (a cognitive
sciences journal). He is specifically interested in
dynamic modelling of knowledge during com-
puter-mediated activities.

Thierry Bellet

Thierry Bellet has been a researcher at the
Ergonomics and Cognitive Sciences Laboratory
of IFSTTAR (Institut Français des Sciences et
Technologies des Transports, de l’Aménage-
ment et des Réseaux) since 1999. His main areas
of research concern human activity analysis and
cognitive processes modelling (e.g. situational
awareness, decision making, cognitive schemas).
His research has produced computational simu-
lations of mental activities of the car driver (e.g.
COSMODRIVE: COgnitive Simulation MOdel
of the DRIVEr).

Benoit Mathern

Benoit Mathern is a PhD student in computer
science. He first worked as a computer engineer at

the Ergonomics and Cognitive Sciences Labora-
tory of IFSTTAR (Institut Français des Sciences
et Technologies des Transports, de l’Aménage-
ment et des Réseaux), and then he started his PhD
work in collaboration with the LIRIS department
of the Claude Bernard University (Lyon, France).
His main research interests focus on knowledge
engineering, knowledge discovery and human–
machine interaction. His work is applied to cog-
nitive science in the field of transportation.

Frank E. Ritter

Frank E. Ritter is one of the founding faculty of
the College of IST, an interdisciplinary aca-
demic unit at Penn State, to study how people
process information using technology. Frank
Ritter’s current research is in the development,
application and methodology of cognitive mod-
els, particularly as applied to interface design,
predicting the effect of behavioural moderators
and understanding learning. He edits the
Oxford Series on Cognitive Models and Archi-
tectures, is associate editor of Cognitive Systems
Research, editorial board member of Human
Factors, and the Journal of Educational Psychol-
ogy and technical programme co-chair for the
BRIMS 2009, 2010 and 2011 conferences and
the associated special issues in Computational
and Mathematical Organizational Theory.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

c! 2011 Blackwell Publishing Ltd Expert Systems 15

EXSY 584

(B
W

U
K

 E
X

SY
 5

84
 W

eb
pd

f:=
02

/1
1/

20
11

 0
4:

46
:2

6
55

13
55

 B
yt

es
 1

5
PA

G
ES

 n
 o

pe
ra

to
r=

) 2
/1

1/
20

11
 4

:4
6:

31
 P

M

Author Query Form

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary
changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the
proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

Journal EXSY
Article 584

Query No. Description Author Response

Q1
 AUTHOR: Please provide date of workshop for reference Cordier et al. (2009).

Q2
 AUTHOR: Please provide further details for reference Cram et al. (2008).

Q3
 AUTHOR: Please provide date of conference for reference Georgeon et al. (2010).

Q4
 AUTHOR: Please provide the date of symposium for reference Henning et al. (2007).

Q5
 AUTHOR: Please update the reference James (1907) with further details.

Q6
 AUTHOR: Please provide volume number for reference Salvucci and Liu (2002).

Q7
 AUTHOR: Please provide the date of conference for reference Settouti et al. (2009).

Olivier
July 11 2009

Olivier
March 21-24 2010

Olivier
July 9-12, 2007

Olivier
Unmarked définie par Olivier

Olivier
Transportation Research part F, 5(5 is the volume number)

Olivier
July 15-17 2009

Olivier
Cram, D., Fuchs, B., Prié, Y. and Mille, A. (2008, 8-12 June 2008). An approach to User-Centric Context-Aware Assistance based on Interaction Traces. Fifth International Workshop on Modeling and Reasoning in Context., Delft, The Netherlands, TELECOM Bretagne, pp. 89-101.

Olivier
JAMES, W. (1907) Pragmatism.
Re-edition: Pragmatism (Philosophical Classics)
Publisher: Dover Publications (1995)
New York
ISBN-10: 0486282708
128 pages

Olivier
Please also change the citation in page 3 to (James, 1907/1995) if you think that fits the journal's standards.

Page 1 of 3

USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required Software
Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs.
Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html

Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it
does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar
looks like this:

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a
preference setting in order to edit.

In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and
change the setting “PDF/A mode:” to “Never”.

Note Tool — For making notes at specific points in the text
Marks a point on the paper where a note or question needs to be addressed.

Replacement text tool — For deleting one word/section of text and replacing it
Strikes red line through text and opens up a replacement text box.

Cross out text tool — For deleting text when there is nothing to replace selection
Strikes through text in a red line.

How to use it:

1. Right click into area of either inserted
text or relevance to note

2. Select Add Note and a yellow speech
bubble symbol and text box will appear

3. Type comment into the text box

4. Click the X in the top right hand corner
of the note box to close.

How to use it:

1. Select cursor from toolbar

2. Highlight word or sentence

3. Right click

4. Select Replace Text (Comment) option

5. Type replacement text in blue box

6. Click outside of the blue box to close

How to use it:

1. Select cursor from toolbar

2. Highlight word or sentence

3. Right click

4. Select Cross Out Text

http://www.adobe.com/products/acrobat/readstep2.html

Page 2 of 3

Approved tool — For approving a proof and that no corrections at all are required.

Highlight tool — For highlighting selection that should be changed to bold or italic.
Highlights text in yellow and opens up a text box.

Attach File Tool — For inserting large amounts of text or replacement figures as a files.
Inserts symbol and speech bubble where a file has been inserted.

Pencil tool — For circling parts of figures or making freeform marks
Creates freeform shapes with a pencil tool. Particularly with graphics within the proof it may be useful to use
the Drawing Markups toolbar. These tools allow you to draw circles, lines and comment on these marks.

How to use it:

1. Click on the Stamp Tool in the toolbar

2. Select the Approved rubber stamp from
the ‘standard business’ selection

3. Click on the text where you want to rubber
stamp to appear (usually first page)

How to use it:

1. Select Highlighter Tool from the
commenting toolbar

2. Highlight the desired text

3. Add a note detailing the required change

How to use it:

1. Select Tools > Drawing Markups > Pencil Tool

2. Draw with the cursor

3. Multiple pieces of pencil annotation can be grouped together

4. Once finished, move the cursor over the shape until an arrowhead appears
and right click

5. Select Open Pop-Up Note and type in a details of required change

6. Click the X in the top right hand corner of the note box to close.

How to use it:

1. Click on paperclip icon in the commenting toolbar

2. Click where you want to insert the attachment

3. Select the saved file from your PC/network

4. Select appearance of icon (paperclip, graph, attachment or
tag) and close

