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In manufacturing industries, it is well known that process variation is a major source of poor quality 
products. As such, monitoring and diagnosis of variation is essential towards continuous quality improve- 
ment. This becomes more challenging when involving two correlated variables (bivariate), whereby 
selection of statistical process control (SPC) scheme becomes more critical. Nevertl~eless, the existing tra- 
ditional SPC schemes for bivariate quality control (BQC) were mainly designed for rapid detection of 
unnatural variation with limited capability in avoiding false alarm, that is, imbalanced monitoring per- 
formance. Another issue is the difficulty in identibing the source of unnatural variation, that is, lack of 
diagnosis, especially when dealing with small shifts. In this research, a scheme to address balanced mon- 
itoring and accurate diagnosis was investigated. Design consideration involved extensive simulation 
experiments to select input representation based on raw data and statistical features, artificial neural net- 
work recognizer design based on synergistic model, and monitoring-diagnosis approach based on two- 
stage technique. The study focused on bivariate process for cross correlation function, p = 0.1-0.9 and 
mean shifts, p = k0.75-3.00 standard deviations. The proposed two-stage intelligent monitoring scheme 
(2s-IMS) gave superior performance, namely, average run length, ARLl= 3.18-16.75 (for out-of-control 
process), ARLO = 335.01-543.93 (for in-control process) and recognition accuracy. RA = 89.5-98.5%. This 
scheme was validated in manufacturing of audio video device component. This research has provided 
a new perspective in realizing balanced monitoring and accurate diagnosis in BQC. 

2014 Elsevier Ltd. All rights reserved. 

1. Introduction 

In manufacturing industries, when quality feature of a product 
involves two correlated variables (bivariate), an  appropriate SPC 
charting scheme is necessary to monitor and diagnose these 
variables jointly. Specifically, process monitoring refers to  the  iden- 
tification of process condition either in a statistically in-control or 
out-of-control, whereas process diagnosis refers to the identifica- 
tion of the  source variable(s) for out-of-control condition. In 
addressing this issue, the traditional SPC charting schemes for BQC 
such as x2 (Hotelling, 7947), multivariate cumulative sum 
(MCUSUM) (Crosier, 1988), and multivariate exponentially 
weighted moving average (MEWMA) (Lowly. Woodall, Champ, & 
Rigdon, 1992; Prabhu 8 Rungel-, 1997) are known to be effective in 
monitoring aspect. Unfortunately, they are merely unable to provide 
diagnosis information, which is greatly useful for a quality practi- 
tioner in finding the root cause error and solution for corrective 
action. Since then, major researches have been focused on diagnosis 
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aspect. Shewhart-based control charts with Bonferroni-type control 
limits (Alt, 1985), principle component analysis (PCA) (Jacltson, 
1991), multivariate profile charts (Fuchs & Ben,jamini, 1994), r2 
decomposition (Mason, Tracy, & Young, 1995) and Minimax control 
chart (Sepulveda & Nachlas. 1997), among other, have been investi- 
gated for such purpose. Further discussions on this issue can be 
found in Lowry and Montgomery (1995), I<ourti and MacCregor 
(1996), Mason, Tracy, and Young (1997) and Bcrsimis, Psaraltis, 
ancl Panaretos (2007). 

In the related study. development in soft computing technology 
has motivated researchers to  explore the use of machine learning 
(ML) technology for automatically recognizing SPC chart patterns 
towards improving capability in monitoring and diagnosis. Identifi- 
cation ofthese patterns coupled with engineering Imowledge of the 
process would lead to more specific diagnosis information. Expert 
systems (ES) (Chih 8 Kollier, 1994; Chih & Kollier, 1995), Fuzzy 
inference system (FIS) (Wang & Chen, 2001), artificial neural net- 
work (ANN), decision tree learning (DT) (Guh 8, Shiue, 2005), and 
support vector machine (SVM) (Cheng 8 Cheng, 2008) methods. 
among others, have been studied in designing the advanced SPC 
pattern recognition schemes. Extensive literature review revealed 
that most of the proposed schemes were developed based on 
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research i n  ANN models such as an integrated bivariate SPC-ANN 
(Chen & Wang, 2004; Nial<i & Abbasi, 2005: Yu, Xi, & Zhou, 2009), 
novelty detector ANN (Zorriassatine, 7'anuoclt, & O'Brien. 2003), 
modular ANN (Guh, 2007), ensemble ANN (Yu &Xi, 2009), multi- 
module-structure ANN (El-Miclany, El-Baz, & Abcl-Elwahecl, 2010), 
hybrid learning ANN (Salehi, Bahreininejad, & Nalthai, 201 I ) ,  an 
integrated ANN-SVM (Salehi, Kazemzadeh, 8 Salmasnia, 2012), 
and feature-based ANN (Masood & Hassan, 2013). 

The integrated bivariate SPC-ANN schemes combined the tradi- 
tional SPC chart(s) with an ANN model. The traditional SPC chart(s) 
role for monitoring the existence of unnatural variation in bivariate 
process, whereas an ANN model roles for diagnosing the sources of 
variation. In  that case, an ANN model is utilized only when neces- 
sary, that is,  when an out-of-control signal is triggered. Inversely, 
the other schemes such as novelty detector ANN consist of fully 
ANN or fully ML-based model for monitoring and diagnosing simul- 
taneously. In that case, an ANN model is continuously utilized, that 
is, for triggering out-of-control signal and then, for identifying the 
sources of variation. Further discussion on these schemes can be 
found in (Masood & Hassan, 2010; Hachicha & Ghorbel. 2012). 

1.1. Problem situation and solution concept 

When dealing with monitoring and diagnosis of bivariate pro- 
cess variation in mean shifts, based on process monitoring view- 
point, an effective bivariate SPC scheme should be able to 
identify out-of-control condition as quicltly as possible at the 
shortest ARL1 (average run length for out-of-control process. ARL, - 
+ 1). Concurrently, it should be able to maintain small false alarm 
at  the longest ARL (average run length for in-control process. 
ARLO > 200). Nevertheless, the existing traditional SPC schemes 
were mainly designed by focusing on rapid detection of out-of- 
control condition (ARL, * I )  but it has limited capability in avoid- 
ing false alarm (ARL < 200). Fig. 1 illustrates the concepts of 
imbalanced monitoring vs. balanced monitoring as the central 
theme for this investigation. 

Based on diagnosis viewpoint, an effective bivariate SPC scheme 
should be able to identify the source variable(s) of out-of-control 
condition a s  accurate as possible. Nevertheless, it is difficult to cor- 
rectly recognize when dealing with small shifts ( ~ 1 . 0  standard 
deviation). Chih and Rollier (1994). Chih and Rollier (1995), 
Zorriassatine, Tannock, and O'Brien (2003), Chen and Wang 
(2004) and Yu and Xi (2009). for examples, have reported less than 
80% accuracy for diagnosing mean shifts at 1.0 standard deviation. 
Among others, only Guh (2007) and Yu et al. (2009) reported the 
satisfied results ( >90% accuracy). 

The imbalanced monitoring and lack of diagnosis capability as 
mentioned above need further investigation. In order to minimize 
erroneous decision making in BQC, it is essential to enhance the 
overall performance towards achieving balanced monitoring (rap- 
idly detect process variationlmean shifts with small false alarm as 
shown in Fig. 1) and accurate diagnosis (accurately identify the 
sources ofvariation/mean shifts). Additionally, the BQCapplications 
are still relevant in today's manufacturing industries. In solving this 
issue, a two-stage intelligent monitoring scheme (2s-IMS) was 
designed to deal with dynamic correlated data streams of bivariate 
process. This paper is organized as follows. Section 2 describes a 
modeling of bivariate process data streams and patterns. Section 3 
presents the frameworlc and procedures of the 2s-IMS. Section 4 
discusses the performance of the proposed scheme in comparison 
to the traditional SPC. Section 5 finally outlines some conclusions. 

2. Modeling of bivariate process data streams and patterns 

A large amount of bivariate samples is required for evaluating 
the performance of the 2s-IMS. Ideally, such samples should be 

tapped from real world. Unfortunately, they are not economically 
available or too limited. As such, there is a need for modeling of 
synthetic samples based on Lehman (1977) mathematical model. 
Further discussion on data generator can be found in Masood 
and Hassan (201 3). 

In bivariate process, two variables are being monitored jointly. 
Let Xl-i=(Xl.I,. . .,XI-24) and X2-i=(X2.1.. . . .XZ.~~) represent 24 
observation samples for process variable 1 and process variable 2 
respectively. Observation window for both variables start with sam- 
ples i = (1,. . . -24). It is dynamically followed by (i + I) ,  (i + 2) and so 
on. When a process is in the state of statistically in-control, samples 
from both variables can be assumed as identically and indepen- 
dently distributed (i.i.d.) with zero mean (po = 0) and unity standard 
deviation (go = 1). Depending on process situation, the bivariate 
samples can be in low correlation ( p  = 0.1 -0.3), moderate correla- 
tion ( p  = 0.4-0.6) or high correlation ( p  = 0.7-0.9). Data correlation 
(p)  shows a measure of degree of linear relationship between the 
twovariables. Generally, this data relationship is difficult to be iden- 
tified using Shewhart control chart as shown in Fig. 2. On the other 
hand, it can be clearly indicated using scatter diagram. Low corre- 
lated samples yield a circular pattern (circular distributed scatter 
plot), moderate correlated samples yield a perfect ellipse pattern, 
whereas high correlated samples yield a slim ellipse pattern. 

Disturbance from assignable causes on the component variables 
(variable-1 only, variable-2 only, or both variables) is a major 
source of process variation. This occurrence could be identified 
by various causable patterns such as mean shifts (sudden shifts), 
trends, cyclic, systematic or mixture. In this research, investigation 
was focused on sudden shifts patterns (upward and downshift 
shifts) with positive correlation ( p  > 0). Seven possible categories 
of bivariate patterns were considered in representing the bivariate 
process variation in mean shifts as follows: 

N (0,O): both variables XI-i and X2-i remain in-control. 
US (1,O): shifted upwards, while X2.i remains in-control. 
US (0.1): X2.i shifted upwards, while remains in-control. 
US (1, l ) :  both variables Xl.i and X2.i shifted upwards. 
DS (1,O): shifted downwards, while X2.i remains in-control. 
DS (0, l ) :  X2.i shifted downwards, while remains in-control. 
DS (1,l):  both variables X1.i and X2.i shifted downwards. 

Reference bivariate shift patterns based on mean shifts f3.00 
standard deviations are summarized in Fig. 3. Their structures 
are unique to indicate the changes in process mean shifts and data 
correlation. The degree of mean shifts can be identified when the 
center position shifted away from zero point (0,O). 

3. Two-stage intelligent monitoring scheme 

As noted in Section I ,  an integrated MSPC-ANN was combined in 
a single-stage monitoring scheme (direct monitoring-diagnosis) as 
proposed in Chen and Wang(2004). Niaki and Abbasi (2005). and YLI 
et al. (2009). The other schemes based on fully ANN-based models as 
proposed in Zorriassatine, Tannocli, and O'Bricn (2003), C u h  (2007). 
Yuand Xi (2009) and El-Midany et al. (2010) also can be classified as 
a single-stage monitoring scheme. In this research, two-stage mon- 
itoring scheme was investigated by integrating the powerful of 
MEWMA control chart and Synergistic-ANN model for improving 
the monitoring-diagnosis performance. Framework and pseudo- 
code (algorithm) for the proposed scheme are summarized in Figs. 4 
and 5 respectively. It should be noted that an initial setting as fol- 
lows needs to be performed before it can be put into application: 

Load the trained raw data-ANN recognizer into the 
system. 
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1 Perfect balanced: able to detect process mean shifts as soon as possible (ARLI = 1) 1 I . .  
1 w~tllout tnggenng any false alarm (ARLO = m) 1 
L ~ ~ 

Fig. 1. Current state and desired state towards balanced monitoring. 

Set the values of means (p01,po2) and standard deviations 
(nol.ao2) of bivariate in-control process (for variables and 
X2.i). These parameters can be obtained based on historical or 
preliminary samples. 
Perform in-process quality control inspection until 24 observa- 
tion samples (individual or subgroup) to begin the system. 

Recognition window size is set to 24 observation samples (for 
variables Xl-i and X2_i) since it provided sufficient training results 
and statistically acceptable to represent normal distribution. Preli- 
minary experiments suggested that a smaller window size (<24) 
gave lower training result due to insufficient pattern properties, 
while a larger window size (>24) does not increase the training 
result but burden the ANN training. 

Rational to integrate the MEWMA control chart and the 
Synergistic-ANN model are based on preliminary experiments. 
Generally, the MEWMA control chart is ltnown to be effective for 

detecting bivariate process mean shifts more rapidly compared 
to the x2 control chart. Furthermore, it is very sensitive when deal- 
ing with small shifts (G1.00 standard deviations). Unfortunately, 
based on one point out-of-control detection technique, it gave lim- 
ited capability to avoid false alarm (ARb 6 200). This becomes 
more critical when the variables are highly correlated. In the 
related study, pattern recognition scheme using a Synergistic- 
ANN model gave better capability in avoiding false alarm 
(ARL,, > 200). As such, it can be concluded that process identifica- 
tion based on recognition of process data stream patterns 
(Synergistic-ANN model) is more effective compared to detection 
of one point out-of-control (MEWMA control chart). Nevertheless, 
different techniques should have their respective advantages in 
terms of pointlpattern discrimination properties. In order to fur- 
ther improve the monitoring performance (ARLl =. l, ARLO >> 200), 
it is useful to combine both discrimination properties (MEWMA 
control chart and Synergistic-ANN recognizer) by approaching 
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Fig. 2. Shewhart control charts and its respective scatter diagrams. 

two-stage monitoring and diagnosis. In the first stage monitoring, 
the MEWMA control chart is used for triggering bivariate process 
mean shifts based on 'one point out-of-control' as per usual. Once 
the shift is triggered, the Synergistic-ANN recognizer will perform 
second stage monitoring and diagnosis through recognition of pro- 
cess data stream patterns that contain one of several out-of-control 
points. This approach is suited for 'recognition only when neces- 
sary' concept, that is, it is unnecessary to perform recognition 
while the process lies within a statistically in-control state. 
Besides, recognition is only necessary for identifying patterns sus- 
pected to a statistically out-of-control state. Besides producing 
smaller false alarm, this approach will also reduce computational 
efforts and time consumes for pattern recognition operation. 

3.1. MEWMA control chart 

The MEWMA control chart developed by Lowry ct al. ( 1992) is a 
logical extension of the univariate EWMA control chart. In the 
bivariate case, the MEWMA statistics can be defined as follows: 

[U:(EWMAI, - 1 1 ) '  + u j ( E W M A z i  - p 2 j 2  -2u: , (EWMAl;  - p , ) ( E W M A z i  -@,j ]n  
M E W M A ,  = 

(u:.: - u:,, 

Covariance matrix of MEWMA: 

h 

M E W M A  

The standardized samples (Zli, Zzi) with cross correlation func- 
tion ( p )  were used. Thus, a1 = a2 = 1 ; 012 = p. Notations L and i rep- 
resent the constant parameter and the number of samples. The 
starting value of EWMA (EWMAo) was set as zero to represent 
the process target (/A,,). The MEWMA statistic samples will be 
out-of-control if it exceeded the control limit (H). In this research, 
three sets of design parameters (A, H: 0.05, 7.35; 0.10, 8.64; 0.20, 
9.65) as reported in Prabhu and Runger (1997) were investigated. 

3.2. Synergistic-ANN model pattern recognizer 

Synergistic-ANN model as shown in Fig. (5 was developed for 
( 1 )  pattern recognizer. It is a parallel combination between two 
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Fig. 3. Summary o f  bivariare shi f t  patterns for p = 0.1, 0.5 and 0.9 

individual ANNs that are: ( i )  raw data-based ANN, and (ii) statisti- recognizers can be combined using simple summation: 01, = 

cal features-ANN as shown in Fig. 7. X(ORD-~,OF-~), where i = (1,. . . .7) are the number of outputs. Final 
Let  OR^ = (ORD-i,. . . , ORD.7) and OF = (OF.l,. . . , OF.7) represent decision ( 0  ,,,,,,) was determined based on the maximum value 

seven outputs from raw data-based ANN and statistical features- from the c o m b i n e d ~ ~ u t ~ u t s :  
ANN recognizers respectively. Outputs from these individual Osynergy = max(O/l, . . . ,017) (5) 
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Fig. 3 (continued) 

Multilayer perceptrons (MLP) model trained with back-propa- 48 neurons, while statistical features input representation 
gation (BPN) algorithm was applied for the individual ANNs. This requires only 14 neurons. The output layer contains seven neu- 
model comprises an input layer, one or more hidden layer(s) and rons, which was determined according to the number of pattern 
an output layer. The size of input representation determines the categories. Based on preliminary experiments, one hidden layer 
number of input neurons. Raw data input representation requires with 26 neurons and 22 neurons were selected for raw 
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Fig. 3 (continued) 

data-based ANN and statistical features-ANN. The experiments did not improve the training results but provided poorer results. 
revealed that initially, the training results improved in-line with These excess neurons could burden the network computationally, 
the increment in the number of neurons. Once the neurons reduces the network generalization capability and increases the 
exceeded the required numbers, further increment of the neurons training time. 
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Fig. 4. Frameworlc for the 2s-IMS. 

3.3. lnput representation 

lnput representation is a technique to represent input signal 
into ANN for achieving effective recognition. There are various 
approaches could be used to represent input signal. Raw data 
(standardized samples) is the basic approach (Zorriassatine, 
Tannock, & O'Bricn. 2003). Besides raw data, feature-based 
approach that involves extracted features from raw data is one of 
the successful technique in image processing (Br~~nzcll & 
Eriltsson, 2000: I<losgen Q Zytkow, 2002). This approach has also 
been applied in the area of univariate quality control (UQC), which 
is aim to improve accuracy for recognizing univariate control chart 
patterns (i.e., normal, upward shifts, upward trends, downward 
shifts, downward trend, and cyclic) by reducing network size, corn- 
putational efforts and training time of an ANN (Gauri & 
Chaltraborty, 2006: Gauri & Chaltraborty, 2008: Guh. 2010; 
Hassan, Nabi Baltsh, Shaharoun, 5 Jamaludin, 2003; Pham B 
Wani, 1997). Pham and Wani (1997) firstly investigated nine shape 
features. Then, it was improved by Cauri and Chaltraborty (2006) 
and Gauri and Chaltraborty (2008). In the related study, Hassan 

ct al. (2003) proposed six statistical features comprising of mean, 
standard deviation, skewness, mean-square value, autocorrelation, 
and last value of CUSUM. Guh (2010) proposed another six statis- 
tical features comprising of mean, standard deviation, sltewness, 
Iturtosis, slope, and Pearson correlation coefficient. More recently. 
Masood and Hassan (2013) proposed another set of statistical 
features for BQC. 

A few researchers have combined features and raw data in a 
serial form, i.e.. x2-statistics with raw data (Guh, 2007) and statis- 
tical features with raw data (Yu & XI, 2009; Yu et al., 2009), for 
strengthening pattern properties in BQC. Nevertheless, this 
approach has increased network size, computational effort, and 
training time. This becomes more difficult to implement in a 
complex case. 

The other approach in UQC is using multi-resolution wavelet 
analysis (MRWA) for denoising or filtering raw data through 
several decomposition levels without changing the network size 
(Al-Assaf, 2004; Assalch & Al-Assaf, 2005), concurrent pattern rec- 
ognition (Chcu, Lu, & Lam, 2007), and image processing (Wang, 
I ~ L I O ,  & Qi, 2007). The MRWA has played a crucial role for process 
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Step 1: Invut samples (bivariatel. Window size = 24, starting observation samples are: XI., = (Xi. 

,,.., and X2~; = (%.I ,.. ., X2.24). It is followed by (ilh + I ) ,  (iIh + 2) and so on. 

Slep 2: Samples standardizalion. Rescale observation samples inlo a slandardized range wlthi~i 

[-3, +3]: ZI = (XI -~I,,~)/OO~ and Z2 = (X* -p,JJ/q,2 

Input samples (original) and standardized samples can be represented graphically using 

Shewhart control charts and scatter diagram. 

Step 3: First stage monitoring (MEWMA coi~trol cha~t): 

Standardized samples (ZJ. 2:) are converted into MEWMA statistics (?n,J;rrw,,). 

Decision rulc: If' T'MElr.orx < Upper control limit (11) 

Proceed to the next samples 

else 

Proceed to the second stage monitoring. 

md 

Stcp 4: Input revresentation. 

(i) Raw data-based input representation: ZI.PI, Z2~~.,, . . . , ZI.I.?<, Z2.P24 
(ii) Statistical features input representation: 

- Fealure extraction: the slaiidardized samples (21, Z?) are converted inlo statistical 
featul-es, namely, the last value of exponentially weighted moving average 
(LEWMAJ with h = (0.25, 0.20, 0.15, 0.10), mean (11). inultiplication of meall with 
standard deviation (MSI)), and multiplication of mean with mean square value 
(MMSV). 

- Fou~tlieen extracted features are represented as follows: (LEWMAI,I,_pl, 
LEWMAo.zo-rl, LEWMAO.IS_PI, LEWMAUIU_PII IPI, MSDPI, MMSVrj, 
LEWMAO.IS_PI, LEWMAo,zo_r2, LEWMAo I S - ~ 2 .  L E W A O  I O - P ~ I  prr, M S b ,  
MMSV,,). Number of salnplcs is  dcnoted by P. 

Step 5 :  Second staee monitorins and d~amlosis (svnereistic-ANN recoenizer): 

Decision mle: y Maximum output of ANN belongs to N(0,O): 

Process is "in-control"; proceed to the next samples 

else Process is "out-of-control"; identify the sourccs of 

lnean sliiits; perform diagnosis, troubleshooting; renew 

setting and return to Step 1 (out of scopes of this research). 

end 

Fig. 5. Pseudo-code for the 2s-IMS. 

I 
I ANN-based Combina t ion  of the ! 

ORD.I 
OKII-2 

- ,  ta- OXI>.~ Raw data- own.. Kaw a a  

based 

Statistical 

Features Features- OF.S 

I I 

Fig. 6. Synergistic-ANN model. 

controlling or monitoring. Insufficient denoising will distort recognizer for improving pattern discrimination capability. Raw 
waveforms and introduce errors. Inversely, excessive denoising data input representation consists of 48 data, i.e., 24 'consecutive 
will over-smooth the sharp features of underlying signals by standardized samples of bivariate process (Z1.P1l Z1.p2,. . . .Z24.P1. 
recognizing them as noise or outliers. Z24.P2). Statistical features input representation consists of last 

In this research, raw data and improved set of statistical features value of exponentially weighted moving average (LEWMA]) with 
were applied separately into training of the Synergistic-ANN A =  [0.25,0.20,0.15,0.10], mean (p),  multiplication of mean with 
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Fig. 7. Individual ANN recognizer. 
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standard deviation (MSD), and multiplication of mean with mean 
square value (MMSV). Each bivariate pattern was represented by 
14 data as follows: LEWMA0.25-~~, LEWM&.20-P1, LEWM&.15.Pl, 
LEWMAO.IO-PI, ,&I, MSDPI. MMSVpi, LEwMAo.25-~2, LEWMAo.2o-p2. 
LEWMAO.IS-P~. LEWMAO.IO-PZ~ PPZ, MSDPZ, MMSVp2. 

LEWMAn features were talten based on observation win- 
dow = 24. The EWMA-statistics as derived using Eq. (6) incorpo- 
rates historical data in a form of weighted average of all past and 
current observation samples (Lucas cF Saccucci. 1990): 

W L W  - L w  ~ L w  
(14 
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05 
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Xi represents the original samples. In this study, the standardized 
samples (Zi) were used instead of Xi so that Eq. (6) becomes: 

where 0 < A ,< 1 is a constant parameter and i = [ I ,  2, .  . . ,241 are the 
number of samples. The starting value of EWMA (EWMb) was set 
as zero to represent the process target (PO). Four value of constant 
parameter (A = 0.25,0.20,0.15,0.10) were selected based on a range 
within [0.05,0.40] recommended by Lucas and Saccurci (1990). 
Besides resulting longer ARLO, these parameters could influence 
the performance of EWMA control chart in detecting process mean 
shifts. Preliminary experiments suggested that the EWMA with 
small constant parameter ( A  = 0.05) were more sensitive in identify- 
ing small shifts ( ~ 0 . 7 5  standard deviations), while the EWMA with 
large constant parameter (A = 0.40) were more sensitive in identify- 
ing large shifts (>2.00 standard deviations). The MSD and MMSV 
features were used to magnify the magnitude of mean shifts 
( P ~ ~ P Z ) :  

where (,u1,p2), (a l ,02)  (,uf,p:) are the means, standard deviations 
and mean square value respectively. The mathematical expressions 
of mean and standard deviation are widely available in textbook on 
SPC. The mean square value feature can be derived as in Hassail 
ct al. (2003). Further discussion on selection of statistical features 
can be found in Masood ancl Hassan (2013). 

3.4. Recognizer training and testing 

Partially developed shift patterns and dynamic patterns were 
applied into the ANN training and testing respectively since these 
approaches have been proven effective to suit for on-line process 

situation (Gi~h, 2007). Detail parameters for the training patterns 
are summarized in Tablcs 1 ancl 2. 

In order to achieve the best training result for overall pattern 
categories, the amount of training patterns were set as follows: 
(i) bivariate normal patterns = [I500 x (total combination of data 
correlation)] and (ii) bivariate shift patterns = 1100 x (total combi- 
nation of mean shifts) x (total combinations of data correlation)]. 
In order to improve discrimination capability between normal 
and shift patterns, a huge amount of N (0,O) patterns was applied 
into ANN training. The US ( 1 , l )  and DS ( 1 , l )  pattern categories also 
require a huge amount of training patterns since it contain a more 
complex combination of mean shifts compared to the other bivar- 
iate shifts pattern categories. 

Guh (2007) reported that the utilization of partially developed 
shift patterns in ANN training could provide the shorter ARLl 
results. In order to achieve the best ARLl results for this scheme, 
different percentage of partially developed shift patterns were 
utilized for different range of mean shifts as shown in Table 2. 
The starting points of sudden shifts (SS) were determined empiri- 
cally. The actual value of data correlation is dependent to the var- 
iability in the bivariate samples. The simulated values ( p  = 0.1,0.3, 
0.5, 0.7. 0.9) as shown in Table 1 could only be achieved when the 
process data streams are in fully normal pattern or in fully devel- 
oped shift pattern. Input representations were normalized to a 
compact range between [-1,+1]. The maximum and the minimum 
values for normalization were talcen from the overall data of train- 
ing patterns. 

Based on BPN algorithm. 'gradient decent with momentum and 
adaptive learning rate' (traingdx) was used for training the MLP 
model. The other training parameters setting were learning rate 
(0.05) learning rate increment (1.05). maximum number of epochs 
(500) and error goal (0.001), whereas the network performance 
was based on mean square error (MSE). Hyperbolic tangent func- 
tion was used for hidden layer, while sigmoid function was used 
for an output layer. The training session was stopped either when 
the number of training epochs was met or the required MSE has 
been reached. 

4. Performance results and discussion 

The monitoring and diagnosis performances of 2s-IMS were 
evaluated based on average run lengths (ARLo,ARLl) and recogni- 
tion accuracy (RA) as summarized in Table 4. The ARLs results were 
also compared to the traditional multivariate statistical process 
control (MSPC) charting schemes such as X2 (Hotelling, 1947). 
MCUSUM (Pignatiello & Kunger, lf)90), and MEWMA (Lowry 
et dl., 1992), as reported in the literature. 

In order to achieve balanced monitoring and accurate diagnosis, 
the proposed 2s-IMS should be able to achieve the target perfor- 
mances as follows: 
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Table 1 . . Parameters for the training patterns. 

Pattern category Mean shift ( in  standard deviations) Data correlation ( p )  Amount of training patterns 

N (0,o) XI : 0.00 0.1, 0.3, 0.5, 0.7, 0.9 1500 x 5 = 7500 
X2: 0.00 

US (1,o) X l :  1.00, 1.25,. . ..3.00 100 x 9 x 5=4500 
X2: 0.00, 0.00,. . .,o.oo 

US ( 0 , l )  X2: 0.00, O.OO,.. ..O.OO l O O x 9 x 5 = 4 5 0 0  
Xl: 1.00, 1.25,. . ..3.00 

us (1.1) Xl: 1.00, 1.00, 1.25, 1.25,. ..,3.00 100 x 25 x 5 = 12.500 
X2: 1.00, 1.25, 1.00, 1.25. . .  ..3.00 

DS (1.0) X l :  -1.00, -1.25.. . ., -3.00 l O O x 9 x 5 = 4 5 0 0  
X2: 0.00, o.oo,.. ..o.oo 

DS (0,1) X2: 0.00, 0.00 ,..., 0.00 lOOx9x5=4500 
Xl : -1.00, -1.25,. . . , -3.00 

0s (1,1) Xl: -1.00, -1.00, -1.25, -1.25,. . .,-3.00 100 x 25 x 5 = 12,500 
X2: -1.00, -1.25, -1.00, -1.25,. . ..-3.00 

Table 2 
Parameters for the partially developed shift patterns. 

Range of mean shifts (in standard deviations) Amount of partially developed shift patterns Starting point of sudden shift (SS) 

Sample 9 th  
Sample 13th 
Sample 17th 

Table 3 
Summary of monitoring-diagnosis capabilities. 

Traditional MSPC 2s-IMS 
Effective in monitoring (to identify out-of-control signal) 
Limited to avoid false alarm (ARLO r 200) 
Unable to identify the sources of variation (mean shifts) 

Comparable to the traditional MSPC in monitoring aspect 
Capable to maintain smaller false alarm (ARLO >> 200) 
High accuracy in identifying the sources of variation (mean shifts) 

(i) ARI, >> 200 to maintain small false alarm in monitoring 
bivariate in-control process. 

(ii) Short ARLl (average ARLl 6 7.5 for shifts range k0.75-3.00 
standard deviations) to rapidly detect bivariate process 
mean shifts. 

(iii) High RA (average RA 2 95% for shifts range 20.75-3.00 stan- 
dard deviations) to accurately identify the sources of mean 
shifts. 

4.1. Monitoring performance 

In monitoring aspect. the ARb represents the average number 
of natural observation samples of in-control process before the first 
out-of-control process signal exist as a false alarm. In other word, 
the ARLO measures how long a SPC scheme could maintain an in- 
control process running without any false alarm. On the other 
hand, the ARLl represents the average number of unnatural obser- 
vation samples before it is truly identified as out-of-control process 
signal. In other word, the ARLl measures how fast a SPC scheme 
could detect process mean shifts. Further discussion on this mea- 
sure can be referred to Montgoluery (2009). 

Ideally, a SPC scheme should provide ARLO as long as possible in 
order to minimize cost for investigating the discrepancy and trou- 
bleshooting while the process still within control. Meanwhile, it 
should provide ARLl as short as possible in order to minimize cost 
for reworlts or waste materials. Since the false alarm cannot be 
eliminated, the ARLO >> 200 is considered as the de facto level for 
balanced monitoring. 

In this research, the ARLs results of 2s-IMS were simulated based 
on correctly classified patterns. Generally, it can be observed that the 
smaller the mean shifts, the longer the ARLl values. This trend 
support the conclusion that process mean shifts with smaller 

magnitudes would be more difficult to detect. Specifically, the 
2s-IMS indicated rapid detection capability for large shifts 
(shifts = 3a.  ARL1 = 3.18-3.19) and moderate shifts (shifts = 2a, 
ARLl = 4.76-4.78) with short ranges of ARL1. It was also capable to 
deal with smaller shifts (shifts=Ilo.0.75a], ARL1= 
110.33-10.60,15.69-16.751). 

In comparison to the X2 charting scheme, detection capability as 
shown by 2s-IMS was faster for small and moderate shifts 
(shifts = 0.75-20). In comparison to the MCUSUM and the MEWMA, 
it was slightly comparable in rapid detection for large shifts 
(shifts = 2.50, ARL,: 2s-IMS = 3.80-3.81, MCUSUM = 2.91, 
MEWMA=3.51) and moderate shifts (shifts=1.5o. ARL,: 
2s-IMS = 6.41-6.52, MCUSUM = 5.23; MEWMA = 6.12). Similar 
trend can also be found when dealing with smaller shifts 
(shifts = la, ARLI: 2s-IMS = 10.33-10.60, MCUSUM = 9.28; 
MEWMA = 10.20). 

Meanwhile, based on the range of ARLO results ( p  = 0.1,0.5, 0.9; 
ARLo=335.01, 543.93, 477.45), the 2s-IMS was observed to be 
more effective in maintaining smaller false alarm compared to 
the traditional MSPC (ARb r 200). It should be noted that the 
results for medium and high correlation processes have exceeded 
370 as shown in the Shewhart control chart (Nels011, 1985; 
Shewhart, 1931). Overall, it can be concluded that the proposed 
scheme indicated balanced monitoring performance. 

4.2. Diagnosis performance 

In diagnosis aspect, the RA measures how accurate is a SPC 
scheme could identify the sources of mean shifts towards diagnos- 
ing the root cause error and conducting troubleshooting. Generally, 
it can be observed that the smaller the mean shifts, the lower the 
RA results. This trend supports the conclusion that diagnosis infor- 
mation for small process mean shifts (61.0 standard deviations) 
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Table 4 
. Performance comparison between the 2s-IMS and the traditional MSPC. 

Pattern category Mean shifts Average run lengths Recognition accuracv 

2s-IMS X2 UCL = 10.6 MCUSUM k = 0.50 h = 4.75 MEWMA I = 0.10 H = 8.66 2s-IMS 

XI X2 ARLO for p = 0.1. 0.5. 0.9 ARLO for p = 0.0 RA for p = 0.1, 0.5. 0.9 

N (0,o) 0.00 0.00 335.01. 543.93. 477.45 200 (0.005) 203 (0.0049) 200 (0.005) N A 

ARL, for p = 0.1, 0.5, 0.9 

us (1,O) 0.75 0.00 17.60. 18.34, 20.00 92.7. 90.4. 89.5 
US (0,l) 0.00 0.75 16.20, 15.99, 16.21 92.9. 89.3. 90.6 
US (1.1) 0.75 0.75 13.64. 13.28, 14.17 82.4. 94.8, 99.9 
DS (1,O) -0.75 0.00 16.31, 16.43, 17.35 92.3, 89.2. 89.4 
Ds (0, l )  0.00 -0.75 16.94, 17.44, 18.75 92.3. 87.8. 88.5 
DS (1.1) -0.75 -0.75 13.46. 13.37. 14.03 84.1. 96.1. 99.9 
Average 15.69, 15.81, 16.75 89.5, 91.3, 93.0 

us (1,o) 1 .OO 0.00 11.52. 11.57, 11.70 42-0.976 9.28-0.892 95.3, 93.1, 94.4 
us (0, l )  0.00 1 .OO 10.50, 10.22, 10.20 95.8. 93.5, 94.4 
Us (1, l )  1 .OO 1.00 9.1 6. 9.09. 9.66 90.0, 96.5, 100 
Ds (1.0) -1 .OO 0.00 10.99, 10.86, 11.06 95.3. 93.2. 92.3 
0 s  (0 , l )  0.00 -1.00 11.08, 11.12, 11.36 93.8, 92.1, 92.6 
Ds (1,1) -1.00 -1.00 9.15. 9.12. 9.63 89.5. 98.0. 100 
Average 10.40, 10.33, 10.60 93.3. 94.4. 95.6 

us (1,O) 1.50 0.00 7.02, 7.07, 7.03 15.8-0.937 5.23-0.809 97.4, 96.5, 97.1 
us (0,1) 0.00 1.50 6.54, 6.33, 6.40 97.1. 96.5. 96.2 
Us(1, l )  1.50 1.50 5.82, 5.73. 5.94 91.7. 97.9. 100 
DS (1,O) -1.50 0.00 6.81, 6.81, 6.92 97.4, 96.3, 95.5 
0 s  (0 , l )  0.00 -1.50 6.82, 6.80, 6.85 96.2. 95.8. 95.6 
0s (1,1) -1.50 -1.50 5.81. 5.69. 5.98 93.2. 99.0. 100 
Average 6.47, 6.41, 6.52 95.5. 97.0. 97.4 

us (1.0) 2.00 0.00 5.23, 5.15, 5.19 97.8, 97.1, 97.6 
Us (0.1) 0.00 2.00 4.80. 4.72, 4.70 97.7. 97.8. 97.1 
Us (1,1) 2.00 2.00 4.36, 4.32, 4.39 91.6, 98.4, 100 
DS (1,o) -2.00 0.00 5.04, 5.04. 5.02 96.8. 96.7. 96.6 
0 s  (0,1) 0.00 -2.00 4.97, 5.03, 4.98 96.5. 96.5. 95.6 
DS(1,l) -2.00 -2.00 4 29, 4.27 4 33 93.7. 98.9. 100 
Average 4.78. 4.76. 4.77 95.7, 97.6. 97.8 

Us (1,O) 2.50 0.00 4.10, 4.14, 4.12 98.0, 98.4, 98.0 
US (0.1) 0.00 2.50 3.83, 3.81, 3.81 97.3. 97.4, 97.0 
US (1.1) 2.50 2.50 3.54, 3.49, 3.53 93.2, 98.4, 100 
DS (1,O) -2.50 0.00 3.99. 3.96. 3.95 97.3. 97.3, 97.0 
0 s  (0 , l )  0.00 -2.50 3.97. 4.02. 3.98 96.5. 96.6. 97.0 
DS(1,l) -2.50 -2.5O 3.41.3.40. 3.46 94.9. 98.8. 100 
Average 3.81, 3.80, 3.81 96.2. 97.8. 98.2 

Us (1.0) 3.00 0.00 3.47, 3.46, 3.46 98.6, 98.3. 98.2 
Us (0.1) 0.00 3.00 3.20, 3.20. 3.21 97.8. 97.8, 98.0 
US (1 , l )  3.00 3.00 2.98, 2.93, 2.98 93.8. 98.4, 100 
DS (1,o) -3.00 0.00 3.31, 3.30. 3.27 98.0, 97.1. 97.6 
0 s  (0 , l )  0.00 -3.00 3.33.3.32, 3.32 96.7, 97.1, 97.1 
DS(1,l) -3.00 -3.0° 2.84. 2.85. 2.90 94.6. 99.1. 100 
Average 3.19, 3.18. 3.19 96.6. 98.0, 98.5 

Grand average +(0.75-3.00) 7.39, 7.38, 7.61 94.5. 96.0, 96.8 

Note: Design parameters for MEWMA control chart in 2s-IMS (1= 0.1, H =  8.64). 

would be more difficult to identify. Specifically, the 2s-IMS 
indicated accurate diagnosis capability for large shifts (shifts = 30, 
RA = 96.6-98.5%) and moderate shifts (shifts = 20, RA = 95.7- 
97.8%) with high ranges of RA. Although the results were slightly 

Flange Internal diametc 
degraded, it is still effective to deal with smaller shifts 
(shifts = [lo,0.75o], RA= [93.3-95.6%,89.5-93.0%]). It should be 1' 
noted that the RA results for medium and highly correlated pro- /' 

cesses were higher compared to low correlation process, which is i 
effective for practical case. Since the traditional MSPC charting i 1, n 
schemes were unable to provide diagnosis information, diagnosis \, 1" 
capability as shown by 2s-IMS was absolutely capable in solving \~ 

such issue. Overall, it can be concluded that the proposed scheme 
'> 

1. 

indicated accurate diagnosis performance. Table 3 summarizes the 
comparison of monitoring-diagnosis capabilities between the Groove & flange view Roller head 

2s-IMS and the traditional MSPC. Fig. 8. Functional features of roller head. 
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Extnision round bar Tuining to rough size Turning to size 

Honing inner diameters N~ckel electroplating Beal-ings assembly 

Fig. 9. Process plan for the manufacture of roller head. 

5. Industrial case study . 

Broadly, the need for BQC could be found in manufacturing 
industries involved in the production of mating, rotational or mov- 
ing parts. Investigation for this study was focused on the manufac- 
turing of  audio video device (AVD) component, namely, roller head. 
This investigation was based on the author's working experience in 
manufacturing industry in Johor, Malaysia. In an AVD, the roller 
head functions to guide and control the movement path of a film 
tape. Inner diameters of roller head (ID1 and ID2) as shown in 
Fig. 8 are two dependent quality characteristics (bivariate) that 
need for joint monitoring-diagnosis. In current practice, such func- 
tional features are still widely monitored independently using 
Shewhart control charts. It is unsure why the MSPC was not imple- 
mented. Based on the author's point of view, it could be due to lack 
of motivation, ltnowledge and sltills to adapt new technology. 

The process plan for the manufacture of roller head can be illus- 
trated in Fig. 9. Initially, an aluminium extrusion round bar was 
turned t o  rough size (rough cut machining). Then, it was turned 
to size (finish cut machining) to form functional features such as 
inner diameters, and groove and flange, among others. The 
machining of inner diameters was then extended into honing pro- 
cess to achieve tight tolerance for bearing assembly. Hard coated 
surface was also necessary. As such, the machined work-piece 
was electroplated using nickel alloy before assembly. 

rTool rRoller head 

<. ..-.---.-. ,./' 
Tool bluntness Loading error 

(Decrement in ID) (Increment in ID) 

Fig. 10. Process variation occurred in turning-to-size operation. 

automatically loaded into pneumatic chuck using a robotic system. 
Bluntness in the cutting tool will cause gradual decrement in both 
inner diameters (ID1 ,ID2) with positive cross correlation ( p  > 0). In 
another situation. such inner diameters could be suddenly 
increased simultaneously and yields positive cross correlation 
( p  > 0) due to loading error. 

Based on two examples of bivariate process variation, industrial 
process samples were simulated into the 2S-IMS for validating its 
applicability in real world. The first case study involves tool 
bluntness. The mean (p )  and standard deviation (o) of bivariate 

Bivariate process variation can be found in turning to size oper- in-control process were determined based on the first 24 samples 
ation due to tool bluntness and loading error as illustrated in (observations lst-24th). Tool bluntness begins between observa- 
Fig. 10. These disturbances will cause unnatural changes in the tion samples 41st-50th. Validation results are summarized in 
process data streams as shown in '1-able 5. The work piece is Table (5, whereby the determination of process status (monitoring) 

Table 5 
Sources of variation in machining inner diameters. 

Stable process Process noise N (0,O) Tool bluntness DS ( 1 , l )  Loading error US (1.1) 
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Table 6 
. - 

. Inspection results based on tool bluntness case. 

i Original samples Standardized samples Window range Monitoring-diagnosis decision 

Xi.1 (ID11 Xi-2 (ID2) 4 1  ((Dl) Zi-1 (ID2) 

1 7.9420 7.9428 0.3393 1.0790 
2 7.941 2 7.9420 -1.1414 -0.591 7 
3 7.9412 7.941 6 -1.1414 -1.4271 
4 7.9420 7.9428 0.3393 1.0790 
5 7.9412 7.9420 -1.1414 -0.5917 
6 7.9412 7.941 6 -1.1414 -1.4271 
7 7.9420 7.9428 0.3393 1.0790 
8 7.9424 7.9420 1.0797 -0.5917 
9 7.941 6 7.9420 -0.401 0 -0.591 7 
10  7.941 2 7.941 6 -1.1414 -1.4271 
11 7.941 6 7.9424 -0.401 0 0.2437 
12 7.9428 7.9432 1.8201 1.9144 
13  7.9420 7.9424 0.3393 0.2437 
14 7.941 6 7.9424 -0.4010 0.2437 
15 7.9424 7.9428 1.0797 1.0790 
16 7.9412 7.942 -1.1414 -0.5917 
17 7.941 2 7.9416 -1.1414 -1.4271 
18 7.9420 7.9424 0.3393 0.2437 
19  7.9428 7.9428 1.8201 1.0790 
20 7.9420 7.9424 0.3393 0.2437 
2 1 7.941 2 7.9416 -1.1414 -1.4271 
22 7.9424 7.9428 1.0797 1.0790 
23 7.9424 7.9424 1.0797 0.2437 
24 7.9420 7.9424 0.3393 0.2437 1-24 N 
25 7.941 2 7.941 6 -1.1414 -1.4271 2-25 N 
26 7.9424 7.9420 1.0797 -0.591 7 3-26 N 
27 7.9424 7.9428 1.0797 1.0790 4-27 N 
28 7.941 2 7.9420 -1.1414 -0.591 7 5-28 N 
29 7.9420 7.9428 0.3393 1.0790 6-29 N 
3 0  7.9420 7.9424 0.3393 0.2437 7-30 N 
3 1 7.9412 7.9420 -1.1414 -0.5917 8-31 N 
32 7.9420 7.9428 0.3393 1.0790 9-32 N 
33 7.9428 7.9424 1.8201 0.2437 10-33 N 
3 4  7.941 6 7.9424 -0.4010 0.2437 11 -34 N 
35 7.9424 7.9432 1.0797 1.9144 12-35 N 
36 7.9428 7.9424 1.8201 0.2437 13-36 N 
37 7.941 6 7.9420 -0.401 0 -0.591 7 14-37 N 
38  7.9420 7.9424 0.3393 0.2437 15-38 N 
39 7.9424 7.9420 1.0797 -0.5917 16-39 N 
40 7.941 6 7.9420 -0.4010 -0.5917 17-40 N 
41 7.9408 7.9412 -1.8818 -2.2625 18-41 N 
42 7.9408 7.9408 -1.8818 -3.0978 19-42 N 
43 7.9404 7.9408 -2.6222 -3.0978 20-43 N 
44 7.9404 7.9408 -2.6222 -3.0978 21-44 DS ( I  1)  
45  7.9404 7.9404 -2.6222 -3.9332 22-45 DS ( I  I )  
46 7.9400 7.9404 -3.3626 -3.9332 23-46 D5 (1 1)  
47 7.9400 7.9400 -3.3626 -4.7686 24-47 DS (1 1)  
48 7.9396 7.9400 -4.1029 -4.7686 25-48 DS (1 1) 
49 7.9396 7.9396 -4.1 029 -5.6040 26-49 DS ( I  I )  
50 7.9396 7.9396 -4.1 029 -5.6040 27-50 DS ( I  1)  

(pl ,pz) = (7.9417,7.9422): (g,,02) = (4.6687 x 10-~,4.2495 x 
Note: Observation samples highlighted in bold (41st-50th) represent out-of-control process. 

Table 7 
Outputs of the scheme for tool bluntness case. 

Reco~nition window (RW) 1-24 2-25 3-26 4-27 5-28 6-29 7-30 8-31 9-32 

P 
Decision based on MEWMA control chart 

RW 

P 
Decision based on MEWMA control chart 

RW 

P 
N 
US (I 0) 
US (01) 
us (1 1)  
DS (1 0) 
DS (01) 
DS (1 1 )  

Note: Bold value represents the maximum output of ANN that determines pattern category. 
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and sources of variation (diagnosis) are based on output of the 
scheme as shown in Table 7. 

In t h e  first 40 samples, this scheme was able to correctly recog- 
nize t h e  bivariate process data streams as in-control patterns (N). 
In this case, it was effective to identify bivariate in-control process 
without triggering any false alarm. Bluntness of the cutting tool 
begins a t  sample 41st, whereby this scheme was able to correctly 
recognize bivariate process data streams as Down-Shift patterns 
(DS (1 , I ) )  starting from sample 44th (at window range 
21st-44th). In overall diagnosis aspect, this scheme was observed 
to be effective to identify the sources of variation in mean shifts 
without mistalte. 

The second case study involves loading error. Similar as in the 
first case study, the mean ( p )  and the standard deviation (o) of 

bivariate in-control process were computed based on the first 24 
observation samples. Loading error exist between samples 40th- 
50th. Validation results and related output of the scheme are sum- 
marized in Tables S and 9 respectively. 

Based on the first 39 samples, this scheme is effective to cor- 
rectly recognize the bivariate process data streams as in-control 
patterns (N). In this situation, the process was running smoothly 
without false alarm. Improper condition of pneumatic chuck and 
robotic arm causes loading error between samples 40th-50th. In 
this situation, this scheme was able to correctly recognize the 
bivariate process data streams as Up-Shift patterns (US (1 , l))  start- 
ing from sample 40th (at window range: 17th-40th). In overall 
diagnosis aspect, this scheme is capable to correctly identify the 
sources of variation in mean shifts without mistalte. 

Table 8 
Inspection results based on loading error case. 

i Original sa~nples Standardized samples Window range Monitoring-diagnosis decision 

XILI ([Dl 1 x,.z (ID21 Z i ~ l  (ID1 ) zi-i (ID21 

1 7.941 6 7.9420 -0.2856 -0.5099 
2 7.9412 7.9428 -1.1424 1.3727 
3 7.9420 7.9424 0.5712 0.43 14  
4 7.941 2 7.941 6 -1.1424 -1.4512 
5 7.9420 7.9428 0.571 2 1.3727 
6 7.941 2 7.9420 -1.1424 -0.5099 
7 7.941 2 7.941 6 -1.1424 -1.4512 
8 7.941 6 7.9424 -0.2856 0.4314 
9 7.9424 7.9420 1.4279 -0.5099 
10 7.941 6 7.9420 -0.2856 -0.5099 
11 7.941 2 7.941 6 -1.1424 -1.4512 
12 7.9424 7.9428 1.4279 1.3727 
13 7.9420 7.9424 0.571 2 0.4314 
14 7.941 6 7.9424 0 . 2 8 5 6  0.4314 
15 7.9412 7.9416 -1.1424 -1.4512 
16 7.9424 7.9428 1.4279 1.3727 
17 7.941 6 7.9420 -0.2856 -0.5099 
18 7.9420 7.9424 0.5712 0.4314 
19 7.9412 7.9420 -1.1424 -0.5099 
20 7.9424 7.9424 1.4279 0.4314 
21 7.9420 7.9424 0.5712 0.4314 
22 7.9420 7.9424 0.5712 0.43 14  
23 7.941 2 7.9416 1 . 1  424 -1.4512 
24 7.9424 7.9428 1.4279 1.3727 1-24 N 
25 7.9420 7.9424 0.571 2 0.4314 2-25 N 
26 7.9412 7.9416 -1.1424 -1.4512 3-26 N 
27 7.9424 7.9420 1.4279 -0.5099 4-27 N 
28 7.9424 7.9428 1.4279 1.3727 5-28 N 
29 7.9412 7.9420 -1.1424 -0.5099 6-29 N 
30 7.9420 7.9428 0.5712 1.3727 7-30 N 
3 1 7.9428 7.9424 2.2847 0.4314 8-31 N 
32 7.9420 7.9424 0.5712 0.43 14  9-32 N 
33 7.941 2 7.9420 -1.1424 -0.5099 10-33 N 
34 7.9420 7.9428 0.5712 1.3727 11-34 N 
35 7.9428 7.9424 2.2847 0.43 14  12-35 N 
36 7.941 6 7.9424 -0.2856 0.4314 13-36 N 
37 7.9424 7.9428 1.4279 1.3727 14-37 N 
38 7.9416 7.9420 -0.2856 -0.5099 15-38 N 
39 7.9428 7.9424 2.2847 0.43 14  16-39 N 
40 7.9428 7.9432 2.2847 2.3140 17-40 US (1 1)  
41 7.9432 7.9428 3.1415 1.3727 18-41 US (1 1 )  
42 7.9436 7.9432 3.9982 2.3140 19-42 US (1 1)  
43 7.9428 7.9432 2.2847 2.3140 20-43 US (1 1)  
44 7.9432 7.9428 3.1415 1.3727 21 -44 US (1 1 )  
45 7.9436 7.9432 3.9982 2.3140 22-45 US (1 1 )  
46 7.9428 7.9432 2.2847 2.3140 23-46 US (1 1)  
47 7.9432 7.9428 3.1415 1.3727 24-47 US (1 1 )  
48 7.9428 7.9436 2.2847 3.2553 25-48 US(1 I )  
49 7.9428 7.9432 2.2847 2.3140 26-49 US (1 1)  
50 7.9436 7.9432 3.9982 2.3140 27-50 US(1 1 )  

(/L,,/L~) = (7.9417,7.9422); (u1.u2) = (4.6687 x 10-4,4.2495 x 
Note: Observation samples highlighted in bold (40th-50th) represent out-of-control process. 
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Table 9 
. - Outputs of t h e  scheme for loading error case. 

- - 

Window range (RW) 1-24 2-25 3-26 4-27 5-28 6-29 7-30 8-31 9-32 

P 0.6896 0.6910 0.8333 0.7723 0.7733 0.7822 0.7733 0.7234 0.7407 
Decision based on MEWMA control chart N N N N N N N N N 

RW 10-33 11-34 12-35 13-36 14-37 15-38 16-39 17-40 18-41 

P 0.7924 0.7753 0.7202 0.6941 0.7075 0.7254 0.6693 0.6973 0.7040 
N N N N N N N N 0.8220 0.4510 
US (1 0) 0.5067 0.6528 
US (01) 0.1 665 0.1370 
US (1 I )  0.9479 1.1855 
DS (1  0) 0.0985 0.0719 
DS (01) 0.1533 0.1453 
DS (1 1) 0.1257 0.1129 

RW 19-42 20-43 21-44 22-45 23-46 24-47 25-48 26-49 27-50 

P 0.7546 0.7504 0.7561 0.781 5 0.7806 0.7486 0.7258 0.7228 0.6886 
N 0.1775 0.1609 0.1053 0.0434 0.0403 0.0376 0.0313 0.0318 0.0200 
US (1 0) 0.7116 0.4926 0.5886 0.6606 0.4464 0.5521 0.3923 0.2824 0.3099 
US (01) 0.1184 0.1124 0.1317 0.1724 0.1631 0.1540 0.1762 0.1711 0.2213 
US (1 1) 1.4012 1.6147 1.5717 1.5235 1.6681 1.5983 1.7006 1.7666 1.7163 
DS (1 0) 0.0632 0.0852 0.0817 0.0766 0.0802 0.0970 0.1002 0.1142 0.1221 
DS (0 1) 0.1537 0.1508 0.1350 0.1830 0.2023 0.1735 0.1754 0.2060 0.2468 
DS (1 1) 0.1304 0.1144 0.0875 0.0636 0.0597 0.0384 0.0434 0.0493 0.0283 

Note: Bold value represents the  maximum output  of ANN that  determines pattern category. 

G.  Conclusions 

This paper proposed two-stage monitoring approach in moni- 
toring and diagnosis of bivariate process variation in mean shifts. 
Based on the frameworlc of 2s-IMS that integrates the powerful 
of MEWMA control chart and Synergistic-ANN recognizer, it has 
resulted in a smaller false alarm ( A R b  = 335.01-543.93), rapid 
shifts detection (ARL1 = 3.18-16.75), and accurate diagnosis capa- 
bility (RA = 89.5-98.5%) compared to the traditional SPC charting 
schemes for BQC. Since the monitoring and diagnosis performances 
were evaluated using modeling data, real industrial data were used 
for the purpose of validation. The case studies involved tool 
bluntness and loading error in machining operations, whereby 
the proposed scheme has shown an effective monitoring capability 
in identifying the bivariate in-control process without any false 
alarm. The scheme also effective in diagnosis aspect, that is, in cor- 
rectly identifying the sources of mean shifts when process 
becomes out-of-control. Based on the promising results, the 
2s-IMS could be a reference in realizing balanced monitoring and 
accurate diagnosis of bivariate process variation. In the future 
work, further investigation will be extended to other causable 
patterns such as trends and cyclic. 
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