
Behavior Research Methods, Instruments, & Computers
/988, 20 (2), 255-262

A rule-based expert system for music perception

JACQUELINE A. JONES, BENJAMIN O. MILLER, and DON L. SCARBOROUGH
Brooklyn College of the City University of New York, Brooklyn, New York

We describe an expert system written in Pascal to simulate part of Lerdahl and Jackendoffs
(1983) theory of music perception. This program, a production system based on a Hearsay II ar
chitecture (Nii, 1986), illustrates a number of techniques, including program modularity, com
plex data structures, and simulated parallelism using operating system concepts.

People perceive structure in the music they hear. Con
sider the simple song "Row, Row, Row Your Boat."
Asked to sing this melody, most people would, without
thinking about it, stress certain syllables, breaking the
melody up into sections corresponding to the following
lines:

ROW row row your boat
GENT ly down the stream
MER ri ly mer ri ly mer ri ly mer ri ly
LIFE is but a dream,

in which italicized syllables are stressed, capitalized syl
lables more than lowercase. The stresses are not random
or idiosyncratic. The song divides into rhythmically simi
lar halves, each consisting of two lines, with two stressed
notes per line, equally spaced in time. This pattern of
stresses is the metricstructure. The division into lines is
the grouping structure, also an important part of music
perception. Listeners also perceive the tonality of the
piece-the key it is in. After listening to a little bit of
"Row, Row," a listener knows what chord to expect to
end the piece. These are the kinds of intuitions that
Lerdahl and Jackendoff (1983) formalized in A Genera
tive Theory ofTonal Music (GTTM). The theory does this
by means of four stages of analysis, each of which is em
bodied in a set of rules. This theory is, to our knowledge,
the most comprehensive formal theory of music percep
tion published to date.

We are building a computer simulation of GTTM to
test the theory. The basic framework of the simulation
is in place and currently consists of about 10,000 lines
ofcode. Turbo Pascal was chosen for initial development
of our simulation because of the many strengths of the
language (see Jones & Harrow, 1986; Kaplan, 1985) and
because it is a language that we know well. There are,
however, problems with using Pascal for a large project
with several programmers.

The authors are listedalphabetically. All contributedequally to this
work. This researchwassupportedin part by a National ScienceFoun
dation Graduate Fellowshipawarded to Miller, and by a PSC-CUNY
Research Award to Jones. We thank Hollis Scarborough for help in
preparing the figures. Requestsfor reprints should be sent to Jacque
lineA. Jones, Department of Computer andInformation Science, Brook
lyn College,Brooklyn, NY 11210, or to DonScarborough, Department
of Psychology, Brooklyn College, Brooklyn, NY 11210.

First, standard Pascal (and dialects such as Version 3.01
of Turbo Pascal that we have been using) provides limited
support for modular development oflarge programs. All
subprocedures are nested within the main procedure,
and there is no separate compilation of subprocedures.
Thus, if a line of code is modified, the entire program
must be recompiled. Although compilation is fast with
Turbo Pascal, the size of our program makes this time
consuming.

More important, standard Pascal does not allow a sub
program to define static variables-that is, variables that
are allocated permanent memory locations for the life of
the program. Thus it is often necessary to use global
variables-that is, variables declared in the main
procedure-for this purpose. However, with global vari
ables, modifying a piece of code anywhere in the pro
gram may affect other aspects of the program in unantic
ipated ways. Also, name conflicts arise when several
programmers are defining global variables for different
subprograms.

To minimize such problems, we adopted several strate
gies for program development. First, we borrowed a Mod
ula 2 approach (Wirth, 1985) to implementing the sys
tem. Each module of the program is split into two separate
source files: a definition file (with a DEF file extension)
and an implementation file (with an IMP file extension).
The DEF file contains all the global variables whose
values must be retained between calls to that module; these
global variables take the place of static variables. The IMP
file contains the actual implementation code for the mod
ule. To minimize name conflicts, we adopted a conven
tion of prefixing all true global type definitions and global
variables with an underbar. The names of global variables
that mimic static variables-that is, variables that exist
only for the use of the module in which they are defined
are preceded by the initials of the name of the module
in which they are defined.

A small main source file defines the overall program
structure. This file contains global type definitions and
variable declarations that must be shared by all parts of
the program. The main file then specifies the DEF files
that are to be "included" in this file in a special step dur
ing compilation. Collectively, then, the main ftle and the
DEF files specify the entire global environment of the pro
gram. The main file next specifies the IMP files as an

255 Copyright 1988 Psychonomic Society, Inc.

256 JONES, MILLER, AND SCARBOROUGH

additional set of "include" files to be brought into the
main file during compilation. Finally, the main file con
tains a short main procedure that calls an initialization
subroutine and then passes control to the scheduling rou
tine described below.

A RULE-BASED EXPERT SYSTEM

Although we considered implementing GTIM as a neu
ral network (e.g., Grossberg, 1980; Rumelhart & McClel
land, 1986; Schneider, 1987), and hope to do so eventu
ally, there are several problems with the connectionist
approach that led us to reject this approach for now. First,
simulation of connectionist networks requires powerful
computational resources for anything but the smallest net
works. Second, the high degree of interaction between
system components in a neural network makes modular
development difficult. Third, many properties of these
systems are not well understood. Fourth, many aspects
of GTIM are not well specified or articulated. To attempt
to implement a complex and incompletely specified rule
based theory (GTIM) in terms of a complex, interactive,
nonsymbolic neural network is to risk chaos. Thus, our
first goal is to see whether the theory can be adequately
implemented at the symbolic level at which it is cast.
However, as noted below, some parts of the simulation
are easily cast into a connectionist framework.

We chose to develop this system as a rule-based expert
system because (1) GTIM is expressed in terms of rules;
(2) the technology for rule-based systems is developing
rapidly, and there are many available techniques to call
upon; and (3) a rule-based approach supports implemen
tation of a modular system.

Although GTTM is expressed as a set of rules, many
of the rules cannot be translated directly into simula
tion rules because, in general, the rules are not statements
about how a piece of music should be analyzed, but
rather are constraints that such an analysis should satisfy.
A big hurdle in implementing GTTM lies in discovering
psychologically plausible procedures that can produce
analyses satisfying such constraints. We want the simu
lation to be plausible as a real-time implementation of the
psychological processes underlying music perception. To
this end, we chose to implement the theory as a rule-based
production system (Newell & Simon, 1972; Winston,
1984), using a blackboard type of architecture (Nii,
1986).

Blackboard systems have been popular in psychologi
cal modeling (e.g., McClelland & Rumelhart, 1981). A
blackboard system has three basic components: (1) a
global data structure called the blackboard; (2) a set of
knowledge sources (KSs), each of which encapsulates
knowledge about some aspect of the problem; and (3) a
control structure that monitors and controls which KSs
are active. Our current implementation of GTIM in terms
of these components is described below.

ARCIDTECTURE OF THE SYSTEM

The Blackboard
The blackboard stores all the input data about a problem

as well as information accumulated as the analysis pro
ceeds. A blackboard is generally divided into several
levels, each representing a different type of information.
In our implementation, the lowest level of the blackboard
contains data about the individual notes in the music. Other
levels of the blackboard represent information about the
analysis of the piece, including levels for grouping infor
mation, metric information, and tonality information, and
levels based on higher level combinations of this infor
mation. In our implementation, information within each
of these levels is stored in linked lists. Pointers between
levels of the blackboard provide appropriate linking and
synchronization between levels.

Our blackboard data structure had to be suitable for
representing musical input. This representation had to be
compact, because musical notation is very dense, contain
ing thousands of notes, each supplying many different
kinds of information. For this project, we assumed that
the basic elements of a listener's experience include such
information as pitch, note duration, dynamic level, and
timbre. Thus, it seemed reasonable to build the simula
tion assuming this level of knowledge as a starting point,
an assumption also made by Lerdahl and Jackendoff
(1983). Input to the simulation program is a symbolic
representation of such information, which forms the
lowest level of the blackboard and represents what the
listener hears.

We needed to represent the timecontinuum of the music
as well as the multiple events taking place at each time,
with some notes continuing to sound as others begin and
others end. We used a matrix in which each row represents
a different instrument (or voice) and the sequence of notes
it plays, and each column represents the notes played by
all instruments at a specific time.

A simple array representation would not be practical,
given the limited memory of most personal computers,
because it would be a "sparse" matrix (Tenenbaum &
Augenstein, 1986), with far more storage occupied by
blank information than by actual information. Suppose we
wanted to represent piano music. At any moment, up to
10 notes may be played (more, if we consider sustained
notes and cases where a-finger plays 2 notes), so we might
use an array with 10 rows, representing 10 possible notes
at any time, and with columns representing successive
notes in time. However, usually fewer than 10 notes are
actually played at any time. An example of this, taken
from Schubert, is illustrated schematically in Figure la.
The passage begins with an 8-note chord held for two time
intervals, followed by a sequence of 14 single notes. This
general pattern is repeated eight times in the music. If
we used an array of 10 rows and 16 columns to store the
music, then in each occurrence of this rhythmic pattern

AN EXPERT SYSTEM FOR MUSIC PERCEPTION 257

we would have an array with 160 cells, but 130 would
be empty.

To avoid this problem, we used a sparse matrix im
plemented as a linked list. A linked list is a dynamic data
structure that contains only those pieces of information
that are necessary at any given time. An element of a
linked list, known as a node, is a record that can contain
several different kinds of data at the same time. An array
exists in storage from the moment it is declared, whether
it is used or not, but nodes in a linked list are allocated

only as needed. The nodes are linked by pointers.
Pointers-graphically represented as arrows-point to
places where data are stored. One node can point to the
next node or to the previous node, allowing us to create
a list.

Figure 1b shows the same Schubert example as a sparse
matrix using linked lists. Here, the top line represents
nodes that simply mark off successive events in the music.
Each box that is linked to an event is itself a node that
stores information about an actual note. In this represen-

(a)

~O
-

0 0 0 0 0 0 0 0 0 0 0 0

2 0 0
- ~- --- ---- ---

3 I

6 10 o

o
o

o
r-----f--+_~r__+_-._+_-_+_--l--+--_+_--_t_-+_~;-_+_-_+_-_+_--

o

III
II)

'0 7z

! 4
c..
CI 5
c
'il
.Q

8 0

9 0

10 0

--t--f---I--.-+----+-- 1---- I-------+--+--f--.-+--l

2 34567 8 9 10 11 12 13 14 15 16

lime ~

(b)
TIme -~

Events

I
c
0.
CI
c
'il
.Q

~....
oz

Figure 1. (a) Example of a "sparse" array with many empty cells. (b) A linked-list representation of (a).

258 JONES, MILLER, AND SCARBOROUGH

tation, each occurrence of the Schubert pattern requires
46 nodes, compared with 160 entries in the array im
plementation. A further advantage of the linked-list
representation is that it requires no prior commitment as
to the number of notes that can be represented at any time
or the number of notes per measure.

To simplify computation, the blackboard is a single
global data structure that integrates all four facets of the
simulation: the score, the metric structure, the grouping
structure, and the tonality analysis. The "backbone" of
the blackboard data structure is called the notochord. This
consists of a doubly linked list of nodes corresponding
to successive events in the score. Each of these nodes,
called event nodes, contains only one piece of informa
tion about the piece: the offset (time) from the beginning
of the previous event to the beginning of the current event.
An event node also stores pointers connecting it to nodes
containing actual note information, as well as to the group
ing and metric representations.

Note that the event nodes themselves contain no score
information. This is reserved for the note nodes, each of
which is a record of all the information about a single note
in a score. In addition to this information about each note,
a note node contains a set of pointers that link it to other
notes and to the notochord. The information in note 1 of
"Row, Row" is shown in Figure 2 in simplified
schematic form. (Note that there is no next voice because
this is monophonic input. Assume that the soprano sings
the melody.)

The Knowledge Sources
The GTTM rules represent sources of knowledge about

how a piece should be analyzed. Where possible, we im
plemented each GTTM rule as a separate KS. A KS can
be thought of as an "if-then" production rule; that is,
a KS is a rule that specifies an action (or consequent) that
applies whenever certain conditions (the antecedents or

event

"if' parts) occur. An example of one of the simpler
GTTM rules (Grouping Preference Rule 3d) is as follows:

IF ntn2nJ14 is a 4-note sequence,
and n, and n, differ in duration,
and n, and n2 have equal durations,
and n, and 14 have equal durations,

THEN there is evidence of a grouping boundary be
tween n, and nJ'

In the GTTM simulation, such a rule is implemented
as a KS module containing two parts: (1) a pattern match
ing procedure that looks at the blackboard for the speci
fied antecedent pattern; and (2) a consequent procedure
that makes appropriate changes to the blackboard.

To create a uniform interface between different KSs,
we adopted a limited form of "object oriented program
ming" (Jacky & Kalet, 1987). Each KS is treated as an
"object" that controls certain data structures, and that
contains a set of methods for operating on these data struc
tures. The KS operates on the data structure when it is
sent a message specifying an operation to perform. We
designed our KSs so that each responds to a limited set
of messages (e.g., Initialize, Evaluate, Execute), thus
facilitating a modular design that makes it fairly easy to
add and replace KSs.

The Control Structure
The production rules (the KSs) operate under control

of a scheduling procedure that monitors the activities of
the KSs and the state of the blackboard. The scheduling
mechanism reflects, in part, the fact that the simulation
must be run on a serial von Neumann type of computer,
where only a single KS can be active at anyone time.
However, the scheduling mechanism can also represent
changes in attention and focus as the analysis of the piece
proceeds. Furthermore, when appropriately implemented,
the scheduler can simulate parallel concurrent activity of

node

pre vi ous
note for

this voice
(ni 1)

/

voice = soprano
pitch = C in 3rd octave
duration = dotted quarter
loudness = mf
articulation = normal
offset from p r e v. note a

next voice
(ni 1)

/

next
note
(note 2)

Figure 2. Schematic representation of the first note node for "Row, Row, Row Your Boat."

AN EXPERT SYSTEM FOR MUSIC PERCEPTION 259

many KSs. The key to this aspect of our simulation lies
in the window that specifies the portionof the blackboard
that is "visible." A KS can examine only the portion of
the blackboard within the window.

The window represents the capacity of short-term
memory, which applies to music as well as to verbal
material (Dowling& Harwood, 1986). In contrast, Ler
dahl and Jackendoff(1983) offeredanalyses that assumed
unlimited memory. Clearly, though, the perception of
notes currently being heard is affected by how much a
listener retains of the previous events. Therefore, our
simulationis organizedaround the concept of a temporal
window, so that in running the simulation we can vary
parametrically the amount of prior input and analysis
available at any point.

Initially, the program reads a file of informationabout
a piece of music and builds the notochord data structure
with the linked note lists to represent the piece. An initial
portion of the notochord is then marked off by the win
dow. The portion of the piece within the window
represents what a listener first hears. This might be any
thing from 1 note to the entire piece, although currently
we are working with a window size of 6 to 10 notes.

The scheduling proceduremaintains a task table, which
is an array of records, one record per KS. The array en
try for a KS provides the scheduler withinformation about
the status of the KS, such as whether it is currently run
nable and its priority. A KS can run if the conditions it
requires are currently met. The scheduler selects a KS
on the basis of which KSs are runnable and the priority

blackboard

assigned to each. It then copies the task table entry for
that KS to a global variable, where it is accessibleto the
KS, and then sends the KS a message specifyingthe ac
tion to be performed (e.g., Modify blackboard). The KS
can modify entries in its task table entry to tell the
scheduler about changes to its status and/or the actions
it has performed. An outline of the system is shown in
Figure 3, which also shows the Message Manager mod
ule that controlsall outputmessages sentby the scheduler
and the KSs.

This general framework for controlling execution lends
itself to several scheduling algorithms. In round-robin
scheduling, the schedulersimplygoesdown the list of en
tries in the task table, giving each runnable KS a chance
to execute within the current window. Then the window
is advanced (the new window may overlap the old and
may excludeearlier events), and the schedulercalls each
KS so the KS may evaluate its applicability to the new
window. The schedulerthencalls the runnable KSsagain.
A more complex algorithm schedules KSs on the basis
of priority. In this method, the schedulermaintainsa list
of runnable KSs in order of priority and always calls the
KS with the highest priority.

This scheduling procedure simulates parallelexecution
of the KSs in much the same way that multiuser operat
ing systemssuch as UNIX produce apparent parallel ex
ecutionof severaltasks: The scheduler, whichkeepstrack
of all the tasks in the system, selects a task and allocates
a small amountof time to it, and then selectsanother task
for execution whenthe firstone has useditsallocated time,

to flIes,
prInter,
console

window 1
KSl

KS2

I KS' I() KSj
param~ters I

KSn

KS
task
table

--@
InactIve

knowledge
80urcetr

Figure 3. Control Structure for the simulation. KS = Knowledge structure.

260 JONES, MILLER, AND SCARBOROUGH

finished, or blocked itself because of some other limita
tion (Deitel, 1983). In our simulation, the scheduler does
not directly control the amount of time that a KS has for
execution. Rather, the size of the window determines how
much data a KS has to work with, and this in turn deter
mines how long it will execute before running out of in
put data. With a small window, the effect is that all KSs
appear to be executing concurrently and no KS can get
very much ahead of or behind any other KS.

Scheduling permits more complex control if priorities
are changed dynamically during analysis. Changing pri
orities is one way in which the system can incorporate
a top-down component in the analysis: On the basis of
earlier events in the piece, the system can learn which
KSs are probably most appropriate, and this can be
reflected in the priorities. As we develop the simulation,
we will explore more complicated scheduling procedures.
For example, the order in which several KSs are allowed
to modify the blackboard can have important effects if
the blackboard information is "nonmonotonic" (Rich,
1983), that is, if blackboard information does not simply
accumulate, but can be removed or revised. In this con
text, we may explore other variations in blackboard ar
chitectures (e.g., Hayes-Roth, 1985).

Grouping Analysis
Grouping preference rules and subrules identify possi

ble grouping boundaries in the score on the basis of such
qualities as scale distance between notes, duration of time
between notes, length of notes, and articulation of notes.
Our prototype has KSs so far for two of the seven group
ing preference rules, which comprise about nine subrules.
Each subrule routine determines whether it finds a group
boundary. If a subrule determines that it has found a
boundary between two notes, a grouping node is created
and added to the list of boundaries produced by that rule.
Different grouping preference rules identify different
boundaries, with varying amounts of evidence in their
favor. This state of affairs must eventually give way to
a single well-formed hierarchy of boundaries based on

GPR3d-note length

GPR3c - artlculatlon

GPR3a - pltdl

GPR2b - attaok point

GPR2a - Blur/relt

Notochord

the strength of the evidence. This distillation will be car
ried out by higher level rules operating on the data struc
ture(s) built by the grouping rules.

Each grouping KS creates a separate linked list of nodes
running parallel to the notochord, one node for each can
didate boundary it hasfound. Each grouping node is linked
to the appropriate event in the notochord, as well as to
the next grouping node created by the same KS, and to
any other nodes produced by other grouping rules that
have also identified a boundary at the same event. Link
ing all nodes supporting a boundary at a particular event
makes it easy for a higher level rule to evaluate all the
evidence for a particular boundary. This is illustrated in
Figure 4, which shows the grouping analysis for "Row,
Row." The boundary markers, attached to the note fol
lowing the boundary, show results that replicate what we
obtained by applying the rules by hand. The appropriate
set of weights applied to the rules will select the conjunc
tion of candidate boundaries between notes 11 and 12 (af
ter "stream") as the most important. This boundary di
vides the piece into two half-songs. The boundaries
between notes 5 and 6 (after "boat") and between notes
23 and 24 (after the last "merrily") will be selected as
the second most important. As noted in the introduction,
these boundaries also correspond to our intuitive feeling
that the music divides into lines at these points.

Metric Analysis
The metric rules of GTTM cannot be translated directly

into algorithms. That is, whereas the grouping rules them
selves constitute parsing algorithms, the metric rules
specify only what the metric hierarchy ought to look like
when the analysis is finished. For this reason, we carry
out the metric analysis in a single pass with a collection
of routines that embody a single algorithm. The output
of this algorithm conforms to the requirements ofGTTM,
but the algorithm itself is not taken directly from the
GTTM rules. Instead, our approach is an adaptation of
the grid theory of Povel (1984; Povel & Essens, 1985).
Briefly, grid theory works by trying to fit different-sized

Row. row, row your boat. gen-tly down thestream-- M..- ~ 1)4 mer- rf- Iy. mer- rf- Iy. mtr- rf- Iy, Ute II but Q dreclm.

Figure 4. Grouping analysis of "Row, Row, Row Your Boat." GPR = grouping preference rule.

AN EXPERT SYSTEM FOR MUSIC PERCEPTION 261

J
J.
J.

11 ne
half-song

song

,-.

J. J. J JJ -rJ J'J JJ. J '1mmmmJ JJ JJ...

Figure 5. Metric analysis of "Row, Row, Row Your Boat." The number of dots indicates the relative rhythmic
salience of the notes.

grids of equally spaced marks (grid ticks) to the musical
events and then determining the degree of stress, or good
ness of fit, between each of the grids and the events. We
have modified the procedures of grid theory in several
ways. For instance, only those grids suggested by the in
tervals in the music are considered. Each grid that fits
corresponds to a metric level in the GTTM hierarchy. Our
use of the grid stress is not to identify the one best grid,
but rather to eliminate from the hierarchy those levels that
least fit the music, that is, levels not heard by a listener.

The representation of metric structure is analogous to
that outlined above for the score. Metric nodes contain
information about the metric hierarchy at each beat, as
well as pointers to other items and to the notochord. Here
again, the linked-list structure saves space. Ifa metric hi
erarchy were represented by a two-dimensional array it
would be quite sparse. By allocating a node for each beat
rather than for each beat-by-level combination, the linked
list of metric nodes wastes no space. The metric analysis
of "Row, Row" is shown in Figure 5.

Tonality Analysis
Listeners can identify the key of a piece, and this can

affect both meter and grouping. For example, strong beats
in the metric structure generally fallon the important
pitches of the key, as is clear in the "Row, Row" exam
ple, in which the accents generally coincide with the notes
C, E, and G. On a piano keyboard, there are 12 black
and white keys in each octave, representing the chromatic
scale. In anyone piece of music, some of these notes are
more important than others, reflecting the key in which
the piece is written. Thus, "Row, Row," which is in the
key of C major, contains 25 notes, but only 5 (C, D, E,
F, and G) of the possible 12 chromatic notes occur. C
occurs eight times, E occurs five times, and G occurs five
times. Thus, the notes C, E, and G account for 18 of the
25 notes, reflecting the fact that C, E, and G form the
C major chord, which is the fundamental (tonic) chord
for the key of C major.

Lerdahl and Jackendoff (1983) did not discuss how
listeners extract the tonality of a piece, but the example
just given suggests a simple algorithm: If we count the
frequency of the notes of the chromatic scale, the most
common notes will generally identify the key of the piece,
as Simon (1968) has shown. Bharucha (1987) adapted this
general idea to a network model, and we have followed
a similar approach. In our implementation, each note of

the chromatic scale is represented by a pitchnode.These
pitch nodes are connected to chordnodes; each chord node
receives input from just three pitch nodes. Finally, sets
of three chord nodes (representing the tonic, sulxlominant,
and dominant chords of a particular key) are connected
to keynodes. As the analysis of a piece progresses, pitch
nodes are activated to the degree that their notes occur
in the input. These pitch nodes in tum activate the chord
nodes, which in tum activate key nodes. The activation
level of each node is also affected by a decay parameter,
so the activity of a node dies down if input to that node
is not sustained, thus defining a different sort of temporal
window. The most active key node at any point in the
piece defines the perceived key at that point.

This tonality extraction mechanism is implemented as
a single KS that is triggered by the appearance of new
notes in the window. The tonality KS posts the current
best hypotheses about the tonality on the blackboard by
creating tonality nodes, with each new input event lead
ing to the creation of a new tonality node when this KS
is run.

DISCUSSION

Our research program addresses basic questions about
music perception, but it also illustrates a number of
programming techniques that should be of interest to psy
chologists working in many areas, especially in the study
of speech perception, reading, and other types of tem
poral pattern perception. First, organizing a simulation
in the manner of a multitasking operating system allows
the simulation of parallel processing within the context
of a highly modular program structure. This permits easy
experimentation with a minimum of reprogramming. Sec
ond, the use of linked lists permits a data structure that
efficiently stores information about temporal patterns in
which the number of potential events far exceeds the num
ber of actual events. In effect, linked lists take the sparse
ness out of a sparse matrix. Third, an input window is
essential for simulating processes in which stimulus pat
terns exceed the span of the psychological present, be
cause a program that has access to all the data is not a
reasonable psychological model. Finally, the program
ming language must be equal to the task. We chose a
powerful, widely known language that supports the com
plex data structures and sophisticated programming tech
niques that are essential in projects of this kind.

262 JONES, MILLER, AND SCARBOROUGH

REFERENCES

BHARUCHA, J. J. (1987). MUSACT: A connectionist model ofmusi
cal harmony. In Program of theNinthAnnualConference of the Cog
nitive Science Society (pp. 508-517). Hillsdale, NJ: Erlbaum.

DEITEL, H. M. (1983). An introduction to operating systems. Reading,
MA: Addison-Wesley.

Dowuxo, W. J., &; HARWOOD, D. L. (1986). Music cognition. Orlando,
FL: Academic Press.

GROSSBERG, S. (1980). How does the brain build a cognitivecode? Psy
chologicalReview, 87, I-51.

HAYES-RoTH, B. (1985). A blackboard architecture for control. Artifi
cial Intelligence, 26, 251-321.

JACKY, I., &; KALET, I. (1987). An object-oriented programming dis
cipline for standardPascal. Communications of theACM,30, 772-776.

lONES, I. A., &; HARROW, K. (1986). Problem solving usingTurbo Pas
cal. Englewood Cliffs, NI: Prentice-Hall.

KAPLAN, H. (1985). Design decisionsin a Pascal-basedoperant system.
Behavior Research Methods, Instruments, & Computers, 17, 307-318.

LERDAHL, F., &; JACKENDOFF, R. (1983). A generative theoryof tonal
music. Cambridge, MA: MIT Press.

MCCLELLAND, I., &; RUMELHART, D. (1981). An interactive model of
context effects in letter perception: Part I. An account of basic find
ings. Psychological Review, 88, 375-407.

NEWELL, A., &; SIMON, H. A. (1972). Human problemsolving. Engle
wood Cliffs, NI: Prentice-Hall.

NIl, H. (1986). Blackboardsystems:The blackboardmodel of problem
solving and the evolution of blackboard architectures. Artificial In
telligence Magazine, 7(2), 38-53.

POVEL, D.-I. (1984). A theoretical framework for rhythm perception.
Psychalogical Research, 45, 315-337.

POVEL, D.-I., &; EssENS, P. (1985). Perception of temporal patterns.
Music Perception, 2, 411-440.

RICH, E. (1983). Artificialintelligence. New York: McGraw-Hill.
RUMELHART, D., &; MCCLELLAND, I. (1986). Parallel distributed

processing: Explorations in the microstructure of cognition. Cam
bridge, MA: MIT Press.

ScHNEIDER, W. (1987). Connectionism: Is it a paradigm shift for psy
chology?Behavior Research Methods, Instruments, & Computers, 19,
73-83.

SIMON, H. A. (1968). Perceptiondu pattern musicalpar AUDITEUR.
Sciences de l'Art, V-2, 28-34.

TENENBAUM, A., &; AUGENSTEIN, M. (1986). Data structures using Pas
cal. Englewood Cliffs, NI: Prentice-Hall.

WINSTON, P. (1984). Artificialintelligence (2nd ed.). Reading, MA:
Addison-Wesley.

WIRTH, N. (1985). Programming in Modula-Z (3rd ed.). New York:
Springer-Verlag.

