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Abstract--The use of support pairs associated with the facts and rules of a knowledge base of an expert 
system to capture various aspects of inductive reasoning is discussed. The concept of semantic unification 
is introduced with reference to fuzzy sets theory. In this respect a probabilistic interpretation for this 
semantic unification is described using a population voting model. Examples are discussed including 
default reasoning using support logic. 

INTRODUCTION 

In this paper the use of support pairs associated with Prolog type clauses to capture various aspects 
of inductive reasoning will be discussed. This represents a support logic programming system and 
it has been implemented in the form of the language Fril [1]. Fril can operate as a pure Prolog 
system if no uncertainties are involved. False facts, equivalent statements and a true logic negation 
can be used. 

Fill is being used on a variety of applications involving reasoning with uncertainty. These include 
AI applied to scene analysis, medical and fault diagnosis, expert systems in command and control, 
analogical reasoning, probabilistic grammars, program evaluation etc. 

Support logic programming [2-5] is an evidential reasoning system which, rather than proving 
theorems, collects evidence to support an hypothesis and also to support the negation of the 
hypothesis. These supports do not have to add up to unity. If no evidence is available then a support 
pair (0 1) is returned corresponding to zero support for and zero support against, i.e. total 
uncertainty. A logic of support has been studied under various names by different people. 
Koopman called it a logic of intuitive probability and Carnap a theory of confirmation [6]. These 
and other theories are based on a single number representing the supports and some are 
comparitive only. 

Zadeh's fuzzy sets theory forms a basis for a possibility theory [7]. Bellman made contributions 
to the analytical formalism of the theory of fuzzy sets [8]. Support logic programming uses this 
theory. Fuzzy sets can be used as the referents of concepts and semantic unification is used to match 
two fuzzy terms which are syntactically different but which semantically have something in 
common. An interpretation of fuzzy sets which shows how semantic unification can be given a 
probabilistic interpretation, necessary for support logic programming, is given below. The calculus 
of Fril is consistent with probability theory and this supposes that all propositions are true or false, 
although it may not be possible to acquire evidence which will allow a probability of 1 or 0 to be 
obtained. 

Expert systems and other knowledge engineering systems such as vision understanding and 
speech recognition programs must be able to cope with knowledge bases with incomplete 
information. Incomplete information can be of two types: one type concerns lack of data and the 
other, lack of concept definition. 

For example, in a vision system only part of the object may be in view because of occlusion. 
This gives rise to uncertainty concerning what the object may be since the part that can be seen 
could belong to several different objects. Possible extensions of the part of the object will give rise 
to different interpretations and each extension will have a probability associated with it. This 
probability is assessed from other evidence picked up from other parts of the picture and may not 
be able to be assessed with complete accuracy. It may be possible to assess its value as being 
contained within a certain interval. 

On the other hand, the whole object may be in complete view but it is still difficult to say exactly 
what it is. For example, if the object in total view was a bushy tree like object, no complete support 

105 



106 J.F. BALDWIN 

could be given for it being a tree or for it being a bush, simply because of a lack of precise definition 
for bush and tree. Most concepts which we use in our daily lives are of this nature. For example 
we cannot prescribe sufficient and/or necessary conditions for classifying what we mean by a 
"humane society", "a good business venture", "a comfortable seat", "a well-structured program", 
"a stable system", "a reliable system" etc. Even accepting that these definitions are context 
dependent, we will still have difficulty in giving exact definitions within a given context. 
Furthermore, the relevant context may again be a border line decision. 

In law, cases are often looked at by considering similar cases from the past where the judgements 
are known. The present case may not precisely fit any of the historical ones but only have 
similarities with each. The judgement on the present case will then be influenced in some form by 
the combination of those judgements of similar past cases. What form this so called combination 
should take is not at all obvious. 

Heuristics used by experts are probabilistic in nature. Truth is not guaranteed when certain 
conditions hold. Difficulties of entailment when true propositions are replaced by highly probable 
propositions are well-known. Contraposition is valid for deductive entailments but does not hold 
for high probabilities. Deductive entailment is transitive but strong inductive support is not. More 
importantly the following valid argument of deductive logic does not carry over into the inductive 
case. If A entails B then A AND C entails B. In fact if Pr(B [A) is high, this provides no constraint 
on the value of Pr(B I A, C) since 

Pr(C 1,4, B). Pr(B I A) 
Pr(B I A, C) = 

Pr(CIA) 

This, of course, is obvious from sample space considerations. All relevant criteria must be 
considered when giving supports to predicates as suggested by Hempel's maximum specificity 
conditions [9]. 

Causal connections are important in expert systems. Any sensible theory of causation is 
probabilistic. Frequent conjunctions often occur, constant conjunctions rarely [10], The modelling 
of causality is also discussed in Ref. [11]. 

Probabilistic reasoning can be viewed as constraint reasoning in which the various probabilistic 
statements given provide evidence to constrain the probability of another statement to be contained 
within a certain interval. 

If we know that: 

Pr(P --~ Q) = 2/3, 

Pr(P) = 4/5, 

what can we conclude about Pr(Q)? A point value probability cannot be determined since the 
above two probabilistic statements gives insufficient information for this. The statements constrain 
the interval which contains Pr(Q). Three possible cases must be analysed, since the case 
corresponding to NOT(P--.  Q) AND (NOT P) is not possible because of the inconsistency of the 
two statements. 

Case 1 Case 2 Case 3 

P--*Q NOT(P---~ Q) P.--*Q 
P P NOT P 

Q NOT P World I: Q 
World 2: NOT Q 

Q: {1,1} Q: {0,0} Q: {0,1} 
XI X 2 X 3 

where xt is Pr(case i) and {a, b} means that NEC(Q)=  a, POS(Q) = b, where a = 0 if NEC(Q) is 
false and 1 if it is true, and b = 0 if POS(Q) is false and 1 if it is true. NEC and POS are modal 
logic operators. Then since 

Xl + X2+X3---- l, 

X I + X 2 ~--- 4/5, 
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since P r (P )=  Pr(P AND P---.Q)+ Pr(P AND NOT (P---.Q)) 

x l+x3=2/3 ,  

since Pr(P---*Q)= Pr(P--*Q AND P ) +  Pr(P---~Q AND NOT P) so that 

x1=7/15, x2=1/3, x3=1/5. 

Hence Pr(NEC Q) = 7/15 and Pr(POS Q) = 7/15 + 1/5 = 2/3. From Pr(NEC Q) ~< Pr(Q) ~< 
Pr(POS Q) it follows that Pr(Q) lies in the interval [7/15, 2/3]. 

This interval can be determined using linear programming formulations and this is discussed in 
Ref. [5]. 

SUPPORT PAIRS 

The theory of uncertainty which forms the basis of support logic programming is based on the 
association of support pairs with Horn clauses as used in Prolog. 

Any proposition P is assumed to be true or false. A two valued logic is assumed. There is no 
mention of truth values lying between 0 and 1. Furthermore any valid formula of first order logic, 
F say, will be such that there is support of 1 for and 0 against. 

Evidence, E, is used to assign a necessary support, Sn(P J E) for, and a necessary support, 
Sn(NOT P I E) against any proposition P being true. Possible supports Sp(P I E) and Sp(NOT PIE)  
are defined as 

Sp(P I E) = 1 - Sn(P I E); Sp(NOT PIE)  = 1 - Sn(NOT PIE).  

These can be further interpreted in terms of the modal logic necessity and possibility operators, 
namely 

Sn(P I E) = Pr(NEC PIE);  Sp(P I E) = Pr(POS PIE),  

where modal operators are to be understood in the context of possible world semantics. 
The belief that the truth value 1 can be assigned to P using evidence E, Pr(P I E), lies in an interval 

determined by the necessary and possible supports for P: 

Pr(P [E) lies in [Sn(P I E), Sp(P [E)]. 

It is necessarily true that 

S n ( P A N D N O T P ) = 0  and Sp(P AND NOT P) -- 0, 

Sn(P OR NOT P ) =  I and Sp(P OR NOT P ) =  I. 

SUPPORT LOGIC P R O G R A M M I N G  

A support logic program consists of a sequence of support clauses. 
A support clause is a clause with an associated support structure. 
A clause is a list of one or more atoms. 
An atom is an atomic formula which is a list whose first element is apredicate symbol or a relation 

and the remaining elements are terms. 
A term is a number, constant, variable or list. 
The elements of a list are terms. 
A support structure can be a single support pair or a list of two support pairs. 
A support pair is a list of two elements; the first element being called the necessary support and 

the second element the possible support. 
Variables, constants, numbers and lists have their usual meaning. 
Support clauses can be further divided into simple support clauses and compound support 

clauses. 
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An example of a simple support clause is: 

((coml2 is a large senate committee)):(0.6 0.8), 

which could mean that the degree of belief that coml2 is a large senate committee is some number 
in the interval [0.6 0.8]. The doubt expressed by using this interval arises because of the imprecise 
definition of large. This support pair could be determined by asking a large representative sample 
of university members to vote whether they accepted that senate committees of various sizes were 
large. The vote could be "yes", "no" or "abstain" for each size presented. The proportion who 
vote "yes" for a given size would represent the necessary support for it being a large committee. 
This number plus the number of abstentions would give the possible support. The number of"no's" 
would give the necessary support against and this with the abstentions would give the possible 
support against. Of course, the doubt could also arise because of the uncertainty in the actual 
numbers on a committee. The final support pair used must take account of both these cases of 
uncertainty and this could be done using more rules to determine the support pair. 

An example of a compound statement with a single support pair is: 

((committee C contains a professor) 
(C is a large senate committee)):(0.9 1), 

which says that at least 90% of large senate committees contain a professor. In other words the 
conditional probability Pr(committee C contains a professor lC is a large committee) lies in the 
interval [0.9 1]. In Prolog terms this corresponds to a fact. 

The simple clause 

((p)): (0 0) 

says that p is false. 
An example of a compound statement with two support pairs is: 

((performance X good) 
(engineers_report X ok) 
(efficiency X near_optimal)): ((0.9 1) (0 0.2)), 

which says that if the body of the rule, in this case the conjunction of the two atoms 
(engineers_report X ok) and (efficiency X near_optimal), is true then the probability that the 
performance of X is good lies in the interval [0.9 1], while if the body is false this probability lies 
in the interval [0 0.2]. 

A special case of this rule, namely 

((p)(q)):((l 1)(0 0)) 

says that p is equivalent to q. 

THE CALCULUS OF SUPPORT LOGIC 

The calculus used in support logic programming is fully described in Ref. [5]. We will not repeat 
this here but discuss a simple example to illustrate the main points of the calculus. 

Since propositions are assumed to be either true or false, assuming one accepts the scoring 
argument of De Finetti and Lindley [12] then if the support pairs correspond to single numbers, 
a probability calculus must be used. The calculus for the support pairs is then easily determined 
since probabilities are contained within intervals determined by the support pairs. A unique 
probability is not determined and a simple constrained optimisation problem gives the required 
support pair for any compound statement in terms of the support pairs of its parts. 

Consider the following example in which we know that 

Pr(alq)=0.5,  Pr(aINOT q)=0.4,  

Pr(a Is) = 0.8, Pr(a LNOT s) = 0.4, 

Pr(q) = 0.7, 

Pr(s) = 0.175, 
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then we can determine Pr(a) in two ways, namely 

Pr(a) = Pr(a Iq)" Pr(q) + Pr(a tNOT q). Pr(NOT q) = 0.47, 

Pr(a) = Pr(a Is). Pr(s) + Pr(a I NOT s). Pr(NOT s) = 0.47. 

If the answers in each case had been different, we would have concluded that the knowledge base 
was inconsistent. 

The problem expressed in Fril is: 

((a) (q)):((0.5 0.5)(0.4 0.4)), 
((a) (s)):((0.8 0.8)(0.4 0.4)), 
((q)) :(0.7 0.7), 
((s)):(0.175 0.175), 

and the query 

yields the solution 

qs((a)), 

(0.47 0.47). 

Fril uses the two proof paths to provide the answer to the query and gives the answer (0.47 0.47) 
in each case. These intervals are intersected to give (0.47 0.47) as the final solution. 

We will now consider a modified problem in which the point probabilities are not precisely 
known. 

Pr(a Jq) is in [0.45, 0.55], 
Pr(a Is) is in [0.75, 0.85], 
Pr(q) is in [0.65, 0.75] 
Pr(s) is in [0.1, 0.2] 

Pr(a I NOT q) is in [0.35, 0.45], 
Pr(a INOT s) is in [0.35, 0.45], 

yields the solution 

and the query 

((a)) (q)):((0.45 0.55)(0.35 0.45)), 
((a) (s)):((0.75 0.85)(0.35 0.45)), 
((q)):(0.65 0.75), 
((s)):(0.1 0.2), 

qs((a)), 

(0.38 0.545). 

The basic rule used to combine support pairs from different proof paths is the intersection rule. 
An alternative method of combining proof paths is available in Fril and corresponds to using a 
Dempster type rule [13]. This should only be used when the proof paths correspond to independent 
viewpoints. In this case conflicts can occur and the Dempster rule is one way of resolving the 
conflicts. If the user has some other way he wishes to combine solutions from different viewpoints 
he can express this as a rule in Fril. 

Nothing has been said about finding the support pairs of a conjunction or disjunction when given 
support pairs for each atom. The rules used for Fill are consistent with probability theory. 

We can use the theorem of total probability as before to obtain P(a) but we must use interval 
arithmetic. The two methods give [0.38, 0.57] and [0.355, 0.545], respectively for Pr(a). Any point 
in the final interval containing the point probability Pr(a) must lie in both these intervals using 
a consistency argument. Therefore we must intersect the intervals to obtain the final interval. This 
defines the rule of how solutions are combined from different proof paths in Fill. For this case 
the final answer for Pr(a) is that it is contained in the interval [0.38, 0.545]. 

The Fril program for this case is 
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D E F A U L T  R E A S O N I N G  

Consider the Fill program: 

((live_.another_five_years X) 
(english X) 
(age X 30) 
(not suffers_from_lung_cancer X)):(0.9 l) 

((live_another_five_years X) 
(english X) 
(age X 30) 
(suffers_from_lung_cancer X)):(0 0.1). 

If  we do not know anything about the health of a 30-year old English person, these two rules will 
use ((suffers.from_lung_cancer person)):(0 1) and conclude (0 l) as the support pair for (live an- 
other_five_years person). Intuitively we may feel that an answer something like (0.85 1) should 
have been given, since we know that most 30-year old Englishmen do live another five years. We 
could therefore add the additional rule to our program: 

((live_another_five_years X) 
(english X) 
(age X 30)):(x y), 

where x and y are chosen appropriately. What is appropriate? Strictly (x y) = (0 1) to be consistent 
with the other two rules. But this would not satisfy the reason we are introducing this rule. We 
will choose (x y ) =  0.85 1). 

If  nothing is known about the health of the person then Fril will use each of the rules, obtaining 
(0 1) from the first two and (0.85 1) from the last giving the answer (0.85 1). If  the second rule 
is applicable then rules 2 and 3 will give inconsistent answers. Fill recognizes this and because the 
body of rule 3 is contained in the body of rule 2, ignores rule 3 and uses the first two rules only. 
This is a consequence of the maximum specificity requirement. 

Non-monotonic logic is used to avoid problems like this but these logics have inconsistencies 
[14]. By using Fril there is no reason to introduce these various additional logics and default 
reasoning. In the case of the standard problem that "all birds can fly", "a penguin is a bird . . . .  a 
penguin cannot fly" it is, of course, false to say that all birds can fly. Most birds can fly so that 
if all that is known is that X is a bird there is a high probability that it can fly. This will not be 
the case if X is a penguin and is treated as the above problem. Details of this and similar problems 
can be found in Refs [3, 5]. 

A recursive definition of a concept "tall", for example, can be written in Fill. This uses the fact 
that if you remove a little height from a tall man there is still a high support, but not a certain 
support, for him still being tall. Details can be found in Refs [1, 4]. 

VOTING MODEL I N T E R P R E T A T I O N  OF A FUZZY SET 

A fuzzy subset f with respect to the set F is defined by means of a membership function 
M f: F--~ [0, 1 ]. In other words an element, e, of the set F belongs to the fuzzy subset f with a degree 
of membership Mf(e). How can we interpret this membership level in more specific terms which 
will give some justification to its actual value and also its existence and use? 

One possible interpretation is in terms of the voting behaviour of a population P, say, of  persons, 
all of whom have their own understanding of the meaning o f f  We all use the term "tall" in relation 
to a person's height without having a precise understanding of what it means. When we use the 
word in ordinary conversation, we assume others will be able to interpret it in more or loss the 
same way as ourselves. It is certainly true that there is a set of heights which everyone would accept 
as satisfying the concept of "tall height" and there is a set of heights which every one would accept 
as not satisfying this concept. The difficulty arises for the set of heights in between these two sets. 
If  this intermediate set is null then we have an exact definition for "tall" but otherwise we do not. 
Each member of this intermediate set can have a degree of membership in the set of heights 
representing "tall", but how do we choose the actual degree? 
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Consider a set F and l e t fbe  a fuzzy subset of this set. Let each person belonging to a population 
P vote on whether to accept or reject the membership of a given element e of set F as belonging 
tof .  Each person must accept or reject, agree or not agree to the elements membership. Abstentions 
and partial agreements are not allowed. Mf(e) is equated to the proportion of  persons who vote 
for accepting e as a member o f f .  Similarly (1 - Mf(e)) is the proportion of  persons who reject e 
as belonging to f so that this is the membership level for e not belonging to f .  Each individual will 
have a threshold level such that if his doubt in an element e belonging to f increases above this 
level he will reject its membership, otherwise he will accept it. It is similar to a member of  a jury 
having to say guilty or innocent for the person on trial. The evidence presented at the trial may 
not be conclusive but the person must still make a final judgement. If  people are alowed to abstain 
we return to an analogue with support pairs. 

Example 
Let F be the set of positive integers {50 55 60 65 70 75} and f be defined by the following 

membership function 

Mf(55) = 0.2, Mf(60) = 0.5, Mf(65) = 0.8, Mf(70) = 1, Mf(50) = Mf(75) = 0. 

The fuzzy set f can therefore be represented as 

f =  5510.2 + 6010.5 + 6510.8 + 701 I. 

I f  we take P as made up of 10 people then the voting pattern to give consistency with this definition 
could be 

Person 

1 2 3 4 5 6 7 8 9 10 

70 70 70 70 70 70 70 70 70 70 
65 65 65 65 65 65 65 65 
60 60 60 60 60 
55 55 

The integers given are those integers which the person accepted as satisfying f .  Therefore person 
1 accepts {70, 65, 60, 55} as satisfying f while person 7 only accepts {70, 65}. 

This interpretation assumes that persons who vote yes for 55 also vote yes for 60 and for 65. 
Similarly it assumes persons who vote yes for 60 vote yes for 65. The assumption that this 
interpretation uses is that a person who votes for an element h in the set F with membership value 
Mf(h) as belonging to f will also vote for any other element of F satisfying f if it has a higher 
membership value than Mf(h). We will call this the constant threshold model since it corresponds 
to each person having a threshold level for acceptance of an element of F i n fwh ich  does not vary 
with the element of F chosen. 

An alternative interpretation could be: 

Person 

1 2 3 4 5 6 7 8 9 10 

70 70 70 70 70 70 70 70 70 70 
65 65 65 65 65 65 65 65 
60 60 60 60 60 

55 55 

Other possible interpretations can be given but the one which intuitively seems more reasonable 
is the constant threshold model. 

I N T E R S E C T I O N  AND UNION OF FUZZY SETS 

Consider two fuzzy sets f l ,  f2 ,  with membership functions Mfl ,  Mf2, both defined as fuzzy 
subsets of the set F. 
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Consider an element h of F. The proportion of persons of population P who vote for h satisfying 
both the concepts defined by f l  and f 2  is contained in the interval 

Iconj = [max{Mfl(h) + M f2 (h ) -  1,0}, min{Mfl(h), Mf2(h)}]. 

If we use the constant threshold model then one assumes that the threshold levels of the persons 
P stay constant for judging different concepts. This means that if a person votes yes for one concept 
when having a certain degree of doubt, that person will also vote yes for another concept if faced 
with the same degree of doubt. In this case we assume that those people who voted yes for the 
concept with the lower membership value will also have voted yes for the other. Thus for this 
assumption the membership value for element h for the intersection of f l  and f2  will be 
min{Mfl(h), Mf2(h)}. 

Similarly for the union o f f l  and f2  the membership value for element h will lie in the 

Idisj = [max{Mfl(h), Mf2(h)}, min{Mfl(h) + Mf2(h), 1}]. 

With the same assumption as above, the minimum number of persons would vote yes for the union, 
so that the membership level for element h belonging to the union o f f l  and f 2  is max{Mfl(h), 
Mf2(h)}. 

This is the assumption we make in Fril for fuzzy sets and is the usual definition for fuzzy 
conjunction and disjunction. 

More generally we can define a mapping T 

T: [0, 1].[0, 1]--,[0, 1] 

The mapping 

S: [0, 1]*[0, 1]--~[0, 1]. 

satisfies the same axioms as for T except that (l) is replaced by (l') where 

(1') S ( a  O) = a. 

Examples of instances of S conorms corresponding to the T norms (1)-(3) above are respectively 

(1) S(a b ) =  max{a b}, 
(2) S(a b ) = a  +b - a . b ,  
(3) S(a b) =min{a + b  1}. 

Assumptions can be made about the voting model to obtain each of these answers. For example, 
if it is assumed that no preference can be made for any possible voting pattern for P in relation 
to f l  or f2,  then all possible distributions must be allowed. For each pai~ of distributions the 
proportion of those persons voting for both and the proportion of those persons voting for at least 
one can be determined. This gives the values of the conjunction and disjunction, respectively for 
this pair of distributions. This is repeated for all possible pairs of distributions and the values for 
the conjunction and disjunction determined in each case. If it is assumed that any pair of 

which satisfies the axioms 

(1) T(a, 1) = a, 
(2) T(a, b) = T(b, a), 
(3) T(a,b)>tT(e ,d)  if a> i c  and b>id,  
(4) T(a, T(b, c)) = T(T(a, b), c). 

T is called a T-norm and generalizes the AND corresponding to conjunction 
Examples of instances of T are 

(1) T(a, b) = rain{a, b}, 
(2) T(a, b) = a .b, 
(3) T(a, b) = max{a + b - 1, 0}. 

A dual norm, called the T-conorm, S, exists which generalizes disjunction. For any T-norm T there 
exists a dual norm S such that 

S(a, b) = 1 - T((1 - a), (1 - b)). 
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distributions is as likely as any other, then the expected values for the conjunction and disjunction 
will be equal to Mfl (h). Mf2(h) and M fl (h) + M f2(h) - Mfl  (h). Mf2(h), respectively. 

SEMANTIC U N I F I C A T I O N  

Let f l ,  f 2  be two fuzzy subsets of the set F and suppose that each of these can be associated 
with some object X. Then we can ask the question, what is the probability of  "X i s f l "  given that 
we know that "X is f2" .  

Consider the more specific case in which we know that John is between 5 ft 10 in. and 6 ft. Then 
the probability that John is over 5 ft 10 in. is 1. The probability that John is below 5 ft 9 in. is 0. 
The probability that John is between 5 ft 9 in. and 5 ft 11 in. lies between 0 and 1. This is so since 
John's actual height could belong to the interval [5 ft 10 in., 5 ft 11 in.] which would give a 
probability of 1 of John being between 5 ft 9 in. and 5 ft 11 in., but it could also belong to [5 ft 
11 in., 6 ft] which would give zero probability. The first can occur with a probability x~ and the 
second case with a probability x2. If all that we know about x~ and x2 is that both are non-negative 
and they sum to one, then the probability of John being between 5 ft 9 in. and 5 ft 11 in. lies 
anywhere in the interval [0, 1]. If  we can estimate x~ and x~ then 

Pr(John is between 5 ft 9 in. and 5 ft 11 in.) = x~. 

If an equally likely distribution is assumed over the interval 

[5ft 10in. ,6f t ]  then Xl=1/2.  

This example illustrates the non-fuzzy version of the situation posed above, with respect to the 
fuzzy subsets f l  and f2.  We can ask a similar question for the fuzzy case. What is the probability 
that John is tall given that we know that John is a little above average height? We should be able 
to arrive at an answer using a similar approach to that used for the non-fuzzy case but taking into 
account that not every height has membership level of 1 or 0 in the sets "tall" and "a little above 
average height". 

SEMANTIC 

We will now return to the example above 
actual definitions for f l ,  f 2  and F. 

The Pr(X is f l  [ X is f2)  can be interpreted 
X is f2).  Now 

Now 

Therefore 

U N I F I C A T I O N  AND POPULATION VOTING MODEL 

of determining Pr(X is f l  I X is f2)  when we are given 

in this voting model as Pr(P accepts X is f l  I P is told 

Pr(P accepts X is f l  I P is told X is f2)  

= SUM {Pr(P accepts X is f l  I P accepts X is h, P is told X is f2). 
h 

Pr(P accepts X is h I P is told X is f2)} 

= SUM {Pr(P accepts X i s f l  IP accepts X is h). 
h 

Pr(P accepts X is h I P is told X is f2)}.  

Pr(P accepts X i s f l  [P accepts X is h ) =  Pr(h is accepted a s f l )  
= M f l  (h ) .  

Pr(P accepts X is f l  I P is told X is f2)  

= SUM Mfl (h) .Pr (P  accepts X is h IP is told X is f2). 
h 

Pr(P accepts X is h I P is told X is f2)  

= SUM Pr(person i chooses X is h IX is f2). 
i 
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If person i is told that X is f2 ,  then this person has an interpretation for the label f 2  in the form 
of  a set of  acceptable values. If  h is not one of  these values Pr(person i chooses X is h l X  is f2 )  --- 0. 
If  the set of  values consists only of  h then Pr(person i chooses X is h IX is f2)  = 1. If  the set contains 
more than one value including h then probabilities must be assigned to each value. All that is known 
about  these probabilities is that they sum to 1. 

Example  

Consider 

then P interprets f 2  as 

f l  = 5510.2 + 6010.5 + 6510.8 + 7011, 

f 2  -- 5511 + 6010.2, 

F = {50, 55, 60, 65, 70, 75}, 

Pfrsou 

1 2 3 4 5 6 7 8 9 10 

55 55 55 55 55 55 55 55 55 55 
60 60 

so that 

Pr(P accepts X is 551P is told X is f2)  = 4/5 + x .  1/5, 

Pr(P accepts X is 601P is told X is f 2 ) =  (1 - x ) .  1/5 

following optimization problem 

max/min z = 0 . 2 x  I q- 

subject to 

xl + x 2 ~  < 1, 

x2 ~< 0.2, 

X 3 = 0 ,  

X 4 ~--- 0 ,  

X 1 " ~ ' X 2 " ~ X 3 " 3 t - X 4  ~- 1, 

0.5x2 + 0.8x3 + lx4, 

subject to 

for the constant threshold model used for interpreting f2.  
If  all possible distributions corresponding to interpretations of  f 2  are considered then the 

following optimization model results 

max/min z ffi 0.2xl + 0.5x2 + 0.8x3 + 1X4, 

xl~<l,  

x2 ~< 0.2, 

X 3 "~- 0 ,  

x 4 = 0 ,  

xl + x2 + x3 + x4 = 1. 

where 0 ~< x ~ 1. 

This follows since persons 3-10 accept X is 55 as this is the only value they can choose. Persons 
1 and 2 have a choice and x represents their probability of  choosing 55. 

Therefore 

Pr(P accepts X is f l  IP is told X is f2)  = 0.2(0.8 + 0.2x) + 0.5,0.2(1 - x); 0 ~ x ~< 1, 

so that Pr(P accepts X is f l  I P is told X is f2)  lies in the interval [0.2, 0.26]. 
We thus conclude that Pr(X is f l  IX is f2)  is in [0.2, 0.26]. This is equivalent to solving the 
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In both cases: min z gives lower bound and max z gives upper bound for Pr(X is f l  IX is f2).  
In this example the support pair is the same whatever interpretation is used for f2.  The next 

example will yield different results for different interpretations. 

A MORE COMPLEX EXAMPLE 

F =  {el, e2, e3, e4, eSe6}, 

f l  = ell0.1 +e210.3 +e310.5 +e410.7e511, 

f2  = e l  10.2 + e2J 1 + e310.7 + e410.1, 

Pr(X is f l  IX is f2)  lies in [z rain, z max], where z rain and z max are determined by solving one 
of the following optimization models. 

(l) Using constant threshold model: 

min/max z = 0.1x~ + 0.3x2 + 0.5x3 + 0.7x4 + xs, 

subject to 

Therefore 

Thus 

x4 ~< 0.I, 

xl + x4 ~ 0.2, 

xj + x3 + x4 ~< 0.7, 

xl + x2 + x3 + x4 = 1. 

z min = 0.1,0.2 + 0.3*0.8 = 0.26, 

z max = 0.7,0.1 + 0.5,0.6 + 0.3,0.3 = 0.46. 

Pr(X is f l  IX is f2)  lies in [0.26, 0.46]. 

(2) Allowing for all possible interpretations o f f 2  

min/max z = 0.1x~ + 0.3x2 + 0.5x3 + 0.7x4 + xs, 

subject to 

X4 ~<0.1 

xl ~< 0.2 

x3 ~ 0.7 

X2~<l 

X I " ~ - X 2 " ~ - X 3 " ~ - X 4  = 1. 

Therefore 

Thus 

z min = 0.1 *0.2 + 0.3*0.8 = 0.26, 

z max = 0.7,0.1 + 0.5,0.7 + 0.3,0.2 = 0.48. 

Pr(X is f l  IX is f2)  lies in [0.26, 0.48] 

RESTRICTION MODEL 

The generalization of the linear programming solutions for general fuzzy subsets f l  and 
f2 ,  defined on F, when X is f2  is given and Pr(X is f l I X  is f2)  is to be determined, is as 
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follows: 

Let 

F = { e , } ;  i = l . . . n ,  

f l  = SUM {e, lMfl(e~)}, 
ei 

f 2  = S U M  {e,[ Mf2(ei )} .  
el 

(1) Using the constant threshold model for f2:  

max/min z = SUM Mfl(e~)'Xei , 
ei  

subject to 

SUM Xk <. Mf2(ei); all el, SUM x~, = 1.  
{k: Mf2(k) ~< Mf'2(ei)} e i 

(2) Using all possible interpretations for f2:  

max/min z = SUM Mfl (e~)- xei, 
ei 

subject to 

xe, ~< Mf2(ei); all ei, SUM xei = 1. 
ei 

If z min, z max correspond to the min z and max z, subject to the given constraints, respectively 
then 

Pr(X is f l  I!X is if2) lies in [z min, z max]. 

This corresponds to interpreting membership functions of  fuzzy sets as possibility restrictions. For 
some element e~ in F, Mfl(e~) gives the upper bound to the possibility that ei belongs t o f l .  Mfl  
restricts the possibility that h belongs to f l  to Mfl  (e~). If  we know the probability distribution over 
the elements of  F consistent with the statement that X is f2 ,  i.e. we know Pr(X is e~lX is f2)  for 
all e i in F, then 

Pr (X is f l l X  is f2)  = SUM Mfl(ei)" Pr(X is e,[ X is f2).  
e i 

This uses a weighted sum of the conditional probabilities where the weights are the membership 
values of  the fuzzy set f l .  For the non-fuzzy case the characteristic values of  the characteristic 
function for f l  would be used. 

In fact we do not know what the values for {Pr(X is ei lX is f2)} are. All we know is that the 
value of  Pr(X is ei l X is f2)  will be constrained by the fact that X is f2 .  We will use one of  the 
following assumptions for the form that this constraint can take: 

(1) Using the constant threshold model for f2:  

Pr(X is one of Fs IX  is f2)  ~< max{Mf2(ei):e~ in Fs} for any subset Fs of F. 

(2) Using all possible interpretations for f2:  

Pr(X is e~lX is f2)  ~< Mf2(e~); all e~ in F. 

If  we put Pr(X is ei l X  is f2)  = x,,, then this gives the constraints given above for each of  the models. 
There is now no unique solution for Pr(X is f l  IX is ./2) so that we can find upper and lower 

bounds for this by maximizing and minimizing SUM{Mfl(e~).x,, } subject to the constraints on 
xe, given above. 
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Furthermore, as given below, this can be generalized once again to handle continuous 
membership functions. 

SPECIAL CASE 

We will consider the special cases of determining Pr(X is f i X  is f ) .  This often causes difficulty 
since the value of  this is not necessarily 1 as many seem to expect. We will consider an example 
and then justify this answer by using the population model for interpreting the results. 

Let 
F = {el, e2, e3, e4, es, e6, eT, es, eg, el0} 

and 

f =  el 10.1 + e210.2 + e310.3 + e410.4 + e510.5 + e610.6 

+ e710.7 + e810.8 + e910.9 + e~011.0, 

then 

(1) Using the constant threshold model: 

max/min z = 0.1xl + 0.2x2 + 0.3x3 + 0.4x4 + 0.5x5 + 0.6x6 + 0.7x7 + 0.8x s + 0.9x 9 + xi0 , 

subject to 

so that 

X I ~<0.1, 

Xl + X2 ~< 0.2, 

Xl + X2 + X3 

Xl +X2 +X3 + 

Xl + X2 + Xa + 

xl + x2 + x3 + 

X l + X 2 + X 3 + 

Xi 

Xi 

X1 

0.3, 

X4 ~< 0.4, 

X4 + X5 ~< 0.5, 

X4 + Xs + X6 <~ 0.6, 

X4 + Xs + X6 + XT <~ 0.7 

+ X2 + X3 + X4 + X5 + X6 + X7 + Xs ~ 0.8, 

+ X2 + X3 + X4 + X5 + X6 + XT + Xs + Xg ~ 0.9, 

+ X2 + X3 + X4 + X5 + X6 + Xy + Xs + X9 + Xlo ~ 1, 

z min = 0.1,(0.1 + 0 . 2 + 0 . 3 + 0 . 4 + 0 . 5 + 0 . 6 + 0 . 7 + 0 . 8 + 0 . 9 +  1 )=0 .1 ,5 .5  

= 0.55, 

z m a x =  1.1 = 1. 

Therefore using the constant threshold model 

Pr(X is f i X  is f )  = [0.55, 1]. 

We might note that if we had chosen f to be 

f = et l0 + e210.1 + e310.21 + e410.3 + e~10.4 + e610.5 + e710.6 + esl0.7 + e910.8 + et0[0.9, 

then Pr(X is f i X  is f )  would lie in [0.45, 1]. 
(2) Using all possible interpretations for f :  

max/min z = 0.1xl + 0.2x2 + 0.3x3 + 0.4x4 + 0.5x5 + 0.6x6 + 0.7x7 + 0.8x s + 0.9x9 + xl0, 
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subject to 

so that 
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xl ~<0.1, 

x2 ~< 0.2, 

x 3 ~ 0.3, 

x4 ~< 0.4, 

x~ ~<0.5, 

x6 ~< 0.6, 

x7 ~< 0.7, 

xs ~<0.8, 

x9 ~ 0.9, 

X~o ~< 1, 

z min = 0.1,0.1 + 0.2,0.2 + 0.3,0.3 + 0.4,0.4 = 0.3, 

z max = 1, 

Pr(X is f i X  is f )  lies in [0.3, 1]. 

We might note that if we had chosen f to be 

f =  el 10 + e210.1 + e310.21 -{- e410.3 -t- e5t0.4 + e610.5 -q- e710.6 + esl0.7 + e910.8 -{- ej010.9, 

then 

Pr(X is f i X  is f )  would lie in [0.4, 1]. 

It is quite easy to justify this result using the population voting model. If  the population P is 
told that X is f then P will interpret this. There will be some elements of the set F which some 
members of P, but not all, will accept as possible values for X. When asked if X is f these  members 
of  P will choose these values with a certain probability as possible values for X, but not all members 
of P will choose these values. 

Consider the situation that the population is told that John is tall. Some members of the 
population know that other members accept heights corresponding to tall which they do not. 
Therefore these members know that there is a probability that John's height will be a value which 
is unacceptable to them as representing tall. Therefore the probability that John is tall when the 
population is told that John is tall cannot be 1 since some members of the population will not vote 
yes for certain. 

CONTINUOUS CASE 

The above is easily generalized to the continuous case. 

CONCLUSIONS 

A theory of reasoning with uncertainties applicable to expert systems and other AI applications 
has been described. It is being applied to many applications and evidence to date indicates that 
it is relatively easy to apply. Fril is a powerful AI systems language and ideal for writing expert 

system shells. 
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