
J. LOGIC PROGRAMMING 1989:163-178 163

METAINTERPRETERS FOR
EXPERT SYSTEM CONSTRUCTION

LEON STERLING AND RANDALL D. BEER

D We discuss the use of metainterpreters for building expert systems in
PROLOG. Three issues are covered. The first is a technique for mixing a
metainterpreter into an object program imbuing it with the functionality
specified by the metainterpreter. Mixing a metainterpreter into a PROLOG
program consists of two steps: partially evaluating the metainterpreter with
respect to the object program and pushing down the metaarguments of the
metainterpreter into the object program. The second issue is a classification
of metainterpreters into structural, contextual, and behavioral enhance-
ments. Examples are given of useful enhancements for building expert
systems. Finally, we discuss the combination of several metainterpreters
and how a programming environment for building expert systems could be
built based on the ideas in this paper. a

1. INTRODUCTION

Expert systems have been commonly decomposed into a knowledge base and
inference engine. This decomposition is not entirely appropriate for expert systems
written in PROLOG. Much of what an inference engine does is provided by
PROLOG itself; knowledge bases are executable. However, simple knowledge bases
written in PROLOG are generally insufficient as expert systems.

Three limitations of PROLOG for building expert systems are commonly cited.
There is no explanation capability, no mechanism for reasoning with uncertainty,
and an inflexible control regime. This paper discusses how metainterpreters can be
used to overcome these limitations.

Clark and McCabe [7] suggested adding features such as explanations or uncer-
tainty reasoning by modifying the PROLOG program constituting the knowledge

Address correspondence to Professor L. Sterling, Department of Computer Science, Case Institute of
Technology, Case Western Reserve University, Cleveland, Ohio 44106.

Received 10 July 1987; accepted 11 October 1987.

THE JOURNAL OF LOGIC PROGRAMMING

QElsevier Science Publishing Co., Inc., 1989
655 Avenue of the Americas, New York, NY 10010 0743-1066/89/$3.50

164 LEONSTERLINGANDRANDALLD.BEER

base. Extra arguments are added to each predicate to maintain the necessary
information-the uncertainty, for example, or a representation of the proof tree.
This approach retains the efficiency and structure of the knowledge base, but
sacrifices modularity and clarity. The entire knowledge base must be altered to
incorporate a new feature. Furthermore, a purely declarative program is altered to
include procedural concerns such as an uncertainty calculus. Blurring of tasks in
this way is generally confusing.

An alternative approach for adding extra features is based on metainterpreters
[24]. The knowledge base of the expert system is kept intact, and a metainterpreter
is written to specify how to associate the feature with the knowledge base. Meta
interpreters can also be used to express alternate control.

Solving a query with a metainterpreter rather than PROLOG is known in the
folklore to cost an order of magnitude. Some confirming statistics are presented in
[28] and [25]. One claim of this paper is that partial evaluation can be realistically
used to solve this problem.

The partial evaluation of metainterpreters has been discussed by Gallagher [9]
and Takeuchi and Furukawa [28]. It is a program transformation technique which
can be used to specialize a metainterpreter to a given object program in such a way
that the extra level of interpretation is removed while the functionality is retained.
Controlling partial evaluation is difficult in general. Here, by restricting our task to
removing the level of intepretation introduced by the metainterpreter, we avoid
many of these difficulties.

An important pragmatic issue in the use of metainterpreters for building expert
systems is their combination. For example, a user may wish to have both an
explanation capability and an uncertainty calculated for her program where both
capabilities are expressed as separate metainterpreters. Rather than writing an
entirely new metainterpreter, however, she should have some way to simply inte-
grate the functionality of the existing ones. In considering the ways in which various

metainterpreters can be combined, we have found a classification of their enhance-
ments to an object program into structural, contextual, and behavioral to be

indispensible.
We advocate a particular methodology for building expert systems in PROLOG.

The domain knowledge is cleanly separated from its use. The functionality of the
system is incrementally developed by selecting from a library of existing metainter-
preters, tailoring and combining them as required. Finally, the knowledge base is
imbued with the functionality of the combined metainterpreter via partial evalua-
tion, resulting in an efficient object level program.

This style of development, where the programmer assembles a system from
modular pieces, is reminiscent of the use of inheritance in the object-oriented
programming paradigm, especially the multiple inheritance of FLAVORS [6,19,30]. In
FLAVORS, the functionality of some base flavor may be enhanced by selecting from a
set of potential mix-ins. Consequently, we draw on the concepts and terminology of
object-oriented programming in describing our work.

In this paper we concentrate on metainterpreters for PROLOG. The discussion,
however, could be applied easily to metainterpreters for other logic programming
languages such as FCP [17]. Most comments referring to PROLOG would equally
apply to other languages.

This research continues the outline given in [24]. It is an application of general
work in the logic programming community on metainterpreters [8,11,18,21] and

METAINTERPRETERS FOR SYSTEM CONSTRUCTION 165

partial evaluation [3,13,14,28,20] to expert system construction. Implicit in our
research, but not addressed in this paper, are many interesting metalinguistic issues
such as those raised in [4] and [29].

An overview of the paper is as follows. The next section introduces the notion of
metainterpreters for PROLOG. Sections 3 and 4 discuss program transformation
techniques which remove the extra level of interpretation necessitated by a metain-
terpreter. We focus particularly on the use of partial evaluation and demonstrate
how the control of a general partial evaluator may be simplified in the context of
removing a level of interpretation. Section 5 presents a classification of the possible
ways in which a metainterpreter can enhance an object program. Section 6 considers
the problem of combining the functionality of several metainterpreters into a single
one and presents a program transformation technique which accomplishes the
combination for two of the three classes of enhancements considered in Section 5.
Finally, we conclude with a discussion of directions for future research.

2. METAINTERPRETERS AND FLAVORS

A metainterpreter for a language, sometimes called a metacircular interpreter [l], is
an interpreter for a language written in that language. It is a special case of a
metalevel interpreter where the object language and the metalanguage have been
amalgamated. For a discussion of amalgamation in logic programming see [4].

Many different metainterpreters can be written for a given language. An impor-
tant characteristic of a metainterpreter is the level of computational detail it makes
accessible. This characteristic is called granularity. The granularity is course if there
is little access, and jine if it is detailed.

Throughout the paper the predicate solve is used to denote a metainterpreter.
The arity of solve changes, however, depending on how the metainterpreter has been
enhanced. Conventions of Edinburgh PROLOG as laid out in [27] are used.

The simplest metainterpreter calls PROLOG directly. It is defined as

solve(Goal) :- Goal.

It corresponds to amalgamating object languages and metalanguages by making
them identical. The granularity of this metainterpreter is very coarse, allowing little
scope for enhancements other than alternative top level shells, as described in [27].

A far more useful metainterpreter is at the clause reduction level. The three
clause metainterpreter for pure PROLOG given below is well known. It makes
explicit the choice of clause being used to reduce a goal, and the choice of literal to
reduce in the resolvent. Unification and backtracking are handled implicitly, relying
upon the behavior of PROLOG:

solve(true).

solve((A,B)) :- solve(A),solve(B).

solve(A) :- clause(A,B), solve(B).

Metainterpreters can be written at finer levels of granularity than the clause
reduction level. For example, a metainterpreter can model backtracking by keeping
explicit stacks, or can perform unification. In our experience, the metainterpreter at
the clause reduction level has the granularity most suited for building expert
systems.

166 LEONSTERLINGANDRANDALLD.BEER

Our underlying motivation for discussing metainterpreters is how they can be
used to build complex programs for applications such as expert systems and
program development environments. Many uses of inheritance in the object-ori-
ented programming paradigm are essentially concerned with this issue [23]. Inheri-
tance allows a new object to inherit features of an existing one, supporting reusable
software components which minimize redundancy and encourage modularity. Multi-
ple inheritance is an especially powerful form of inheritance in which a new object
inherits features from several other objects. It has been most popularized by the
FLAVORS system, an object-oriented extension to LISP found on many LISP machines
[6,19,30]. Flavors allows the functionality of some base flavor to be modified or
enhanced by combining it with mix-in flavors selected from a library of potential
augmentations.

We claim that this style of development is also desirable for expert systems.
Where possible, a programmer should be able to pick and choose from a library of
stereotypic expert system features and integrate them into his knowledge base.
Consequently, we draw heavily on the concepts and terminology of FLAVORS,

speaking of “flavored” metainterpreters and of “mixing” a number of metainter-
preters into a knowledge base. Rather than intending this as simply a verbal
analogy, however, we believe that our use of metainterpreters shares many of the
fundamental concerns of inheritance in object-oriented programming. Such basic
questions as how one decomposes a given domain into a number of modular
components, how one expresses these components so that a given subset of them
may be integrated, and how one automates this integration are very much at the
heart of our work.

It should be noted that our use of the concepts of object-oriented programming
emphasizes different issues than previous work on the integration of logic program-
ming and object-oriented programming. Such work has tended to emphasize the
modeling of message passing and state [15,10,22,31], while we have focused on the
uses of inheritance to modularly develop complex software systems.

A flavor in the context of logic programming is a metainterpreter. Associated
with each flavor is the relation it computes, called its metagoal, and the program
used to compute it, called its theory. Flavors are represented accordingly as a
ternary relation, Jlauor(Nume, Metu Goal, Theory). For reasons that are probably
obvious the above metainterpreter is the vanilla flavor. Its metagoal is solue(Goul),
and its theory is the three clauses.

A flavor is enhanced to have greater functionality or extended performance. For
example, the prooftree flavor shown in Figure 1 builds a proof tree of the proof of
an object goal.

Throughout the remainder of this paper, we will make reference in our examples
to an expert system for evaluating credit requests to a bank [2]. Two clauses from
this expert system are shown in Figure 2.

flavor(prooftree, solve(Goal,Proof), ._
[solve(true,nil),

(sclve((A,B),(ProofA =d ProofB)) :- FIGURE I. hhnnrd flavor
solve(A,ProofA), solve(B,ProcfB)), tree.

(solve(A,(A if Pro&B)) :-
clause(A,B), solve(B,ProofB))]).

for hddina a nroof

METAINTERPRETERS FOR SYSTEM CONSTRUCTION 167

credit(Client,Answer) :-
ok_profile(Client),

collateral_rating(Cent,CRating),

financial_rating(CIient,FRating),

bank_yield(CIient,Yield), FIGURE 2. Credit evaluation expert
evaluate(profile(CRating,FRating,Yield),Answer).

financial_rating(Client,FRating) :-
system fragment.

financial_factors(Factors),
score(Factors,Client,O,Score),
calibrate(Score,FRating).

3. THE PARTIAL EVALUATION OF METAINTERPRETERS

3. I. Introduction

The use of partial evaluation to remove the extra level of interpretation necessitated
by a metainterpreter was first discussed by Gallagher [9] and developed by Take&i
and Furukawa [28]. Conceptually, the partial evaluation of a PROLOG program is
simple. A more general program is specialized for a specific use based upon partial
information concerning that use (such as partial instantiation of some of the
arguments). A metainterpreter may be specialized to a given object program by
combining the metainterpreter with the object program and partially evaluating the
combined program with respect to a given object goal.

The program transformations which are the basis of partial evaluation use
existing techniques. Komorowski [16] describes partial evaluation in PROLOG as

consisting of three methods: pruning, forward data structure propagation, and
backward data structure propagation. Pruning, the simplest, is essentially only
choosing the clauses of a program actually used in a computation, Forward data
structure propagation consists in propagating any partial argument instantiations of
a goal to its subgoals. Backward data structure propagation involves replacing any
calls to a deterministic goal with the body of its associated clause.

Our partial evaluator is similar to that of Takeuchi and Furukawa [28] in its use
of the techniques of pruning, forward data structure propagation, and selective
unfolding. The last is essentially a generalization of backward data structure
propagation in which the requirement of determinism is dropped and a clause
containing a goal to be unfolded is duplicated for each clause unifying with that
goal.

The result of partially evaluating the prooftree flavor and the credit evaluation
system with respect to the goal credit(Client,Answer) is shown in Figure 3.

3.2. Controlling Partial Evaluation

A general partial evaluator can be difficult to control, particularly with respect to
the decision whether or not to unfold a given goal. In general, our partial evaluator
takes advantage of the constraints imposed by the context of its intended use to
simplify its control. The primary goal is the removal of the extra level of interpreta-
tion necessitated by a metainterpreter. Rather than giving the user the ability to

168 LEON STERLING AND RANDALL D. BEER

solve(credit(Client,Answer),
credit(Client,Answer) if

(Proof1 and Proof2 and Proof3 and Proof4 and Proofs)) :-
solve(ok_profile(Client),Proofl),

solve(collateral_ratiing(Client, CRating),Proof2),

solve(financial_rating(Client,FRating),Proof3),
solve(bti_yield(Client,Yield),Proof4),

solve(evaluate@rofile(CRating,FRating,Yield),Answer),ProofS).

solve(financial_rating(Client,FRating),

financial_rating(Client,FRating) if

(Proof1 and Proof2 and ProoD)) :-
solve(financial_factors(Factors),Proofl),

solve(score(Factors,Client,O,Score),Proof2),
solve(calibrate(Score,FRating),ProoD).

FIGURE 3. Partially evaluating the credit system and the firooftree flavor.

control the partial evaluator with explicit declarations, we prefer to give a set of
general rules for removing the extra level of -interpretation from the combination of
object program and metainterpreter.

The top level relation for the partial evaluation is peual(ObjGoa1, Program,
NewProgram). This takes Program, which is the concatenation of the object
program and the metainterpreter, and partially evaluates it with respect to ObjGoal.
A new program is produced which is the specialized metainterpreter with the extra
level of interpretation removed, but the metaargument structure in place. A compat-
ibility issue immediately arises between the representation of object clauses and the
format expected by a metainterpreter. We represent object clauses as clause/:!
relations to be consistent with their representation in the database.

The first, and most important, control decision is whether or not to unfold a
given goal. One extreme would be to unfold every goal, essentially converting the
program to a set of ground facts. However, this is an exponential process and is
usually not desirable for very large programs. Our partial evaluator provides a
declaration, shou~d_unfoZd/l, which specifies that a given goal should be unfolded.
However, rather than intending that this declaration be provided by the user for
each partial evaluation, we have provided a set of them which seems to be sufficient
for removing the extra level of interpretation from the metainterpreters which we
have so far considered. For example, metainterpreter calls with conjunctive object
goals are unfolded. Figure 4 shows the should_unjold/l declarations we have found
sufficient to date.

A second control decision concerns the handling of infinite loops. A computation
which terminates at run time can still cause an infinite loop during partial evalua-
tion if an insuthcient number of arguments are instantiated. Our system maintains a
stack of pending goals, and detects an infinite loop whenever a goal to be partially
evaluated is an instance of a goal on the stack. The detection of an infinite loop
terminates partial evaluation and returns the goal itself.

Another important control issue is that of the evaluability of goals. The notion of
an evaluable goal is useful primarily for simplifying a program resulting from partial

METAINTERPRETERS FOR SYSTEM CONSTRUCTION 169

should_unfold(Goal) :-
functor(Goal,solve,N), arg(l,Goal,(A,B)).

should_unfold(Goal) :-
functor(Go&olve,N), arg(l,Goal,true)

should_unfold(Goal) :-
FIGURE 4. Should-unfold declara-
tions.

functor(Goal,solve,N), arg(l,Goal,A), system(A).
should_unfold(Goal) :-

system(Goal).

evaluation. For example, if enough arguments are instantiated in a call to append/3,
then that call may be performed during partial evaluation rather than at nmtime.
However, it is an open research issue to determine whether or not an arbitrary goal
is sufficiently instantiated to be completely evaluated. Further, while such evalua-
tions can produce more efficient and aesthetic programs, they are not strictly
necessary for removing the extra level of metainterpretation.

Because the goal evaluability issue is primarily a matter of aesthetics, we provide
no general mechanism for declaring a given goal to be evaluable. However, our
partial evaluator handles the evaluability of most system goals. evaluating for
example X is 0 + 1 and clause(solue(credit(Client, Answer), Tree), Body) without
any explicit declarations from the user.

A final control issue to be addressed by a general partial evaluator is that of open
programs. A program is open if some of the goals are left intentionally undefined at
partial evaluation time. This can be useful, for example, if data for an expert system
are to be provided at a later time.

We handle open programs by assuming that a goal which fails during partial
evaluation time will also fail at run time, that is, we assume that a system to be
partially evaluated is closed. This assumption is motivated by the fact that the
partial evaluator is intended to be used to assemble a final, efficient version of a
debugged system. However, we are currently examining ways to allow restricted
kinds of open programs without requiring an explicit declaration.

To conclude this section, a comparison is given between our partial evaluator and
the more general partial evaluator discussed by Takeuchi and Furukawa in [28].
Their approach on each of the four control issues is to provide explicit hooks in the
form of user-specified declarations. We look at the nature of the declarations used
for each control issue.

In [28], the default behavior is that every goal is unfolded unless a declaration,
inhibit_unfoIding(Goal), is present. The onus is on the user to know which goals may
cause trouble. Our basic assumption is the opposite. No goal is unfolded unless
there is a declaration should_unfold(Goal), and declarations sufficient to remove a
level of interpretation are provided in the system as given in Figure 4.

Infinite loops are detected in [28] by maintaining a stack of pending goals and
checking whether a goal being evaluated is an instance of a goal on this stack.
Unlike our approach, there is the possibility to nonetheless continue partial evalua-
tion. This is specified by the user with a declaration expand-loop (Goal)_ Being able
to recursively expand goals is irrelevant for our system, since we are only unfolding
one level of interpretation.

170 LEON STERLING AND RANDALL D. BEER

Another type of declaration is used in the partial evaluator of 1281 to specify
evaluability of goals, namely facts of the form type(GoaZ,e). A type fact is also used
to handle open goals. The declaration type(Goal, t) terminates the partial evaluation
of Goal. In our system, there is no classification of goals into types according to how
they should be handled by a partial evaluator.

Allowing declarations provides greater flexibility, but also demands more of the
user. Our system demonstrates that the necessary declarations can be specified
ahead of time, in the context of removing one level of interpretation. The expert
system builder need not be concerned with details of the partial evaluator.

4. PUSHING DOWN METAARGUMENTS

A metainterpreter can have two distinct effects upon a given object program. It can
affect the structure of the proof for, and indeed the eventual success of, a given
object goal, and it can add additional arguments to the proof. We consider each in
turn with respect to what needs to be done to mix a flavor into an object program.

The prooftree flavor of Figure 1 faithfully reflects PROLOG’s standard proof
structure. However, more complex proof structures are possible, such as a planner
which dynamically reorders conjunctive goals.

Other metainterpreters affect the provability of certain goals. The askable flavor,
based on the relation askable which will be introduced in the next section, for
example, prompts the user for a solution to a goal that would fail in the standard
PROLOG model of computation. The effects of metainterpreters on the structure of
the proof tree for a given object are made explicit by the process of partial
evaluation.

The other effect that a metainterpreter can have on an object program is
computing extra arguments while solving a given goal. Such arguments are called
metaarguments. Two flavors which compute a single metaargument are prooftree,
whose metaargument is the proof tree of the goal being solved, and count, whose
metaargument is the number of reductions used in solving a goal. The argument-
computing effects of a metainterpreter can be made explicit by “pushing down”
metaarguments into the object program.

The top-level relation which we use for pushing down the extra arguments in a
goal is pu.sh_down_meta_args(MetaGoal, MetaProg, ObjGoal, ObjProg). Input for
push_down_meta_args is a metaprogram such as Figure 3 and its associated metagoal,
in this case solue(credit(Client, Answer), Tree). The output is an object program and
object goal which no longer contain any explicit mention of the me&interpreter but
which have been augmented with any additional arguments that the flavor com-
puted. For simplicity, our system assumes that the first argument to every metainter-
preter is always the object goal. The result of pushing down the metaargument
computed by prooftree into the credit evaluation expert system fragment is shown in
Figure 5.

Partial evaluation followed by the pushing down of metaarguments makes
entirely explicit both effects of a given metainterpreter on an object program. The
result of this process is simply another object program, augmented by the function-
ality of the flavor.

METAINTERPRETERS FOR SYSTEM CONSTRUCTION 171

credit(Client,Answer, credit(Client,Answer) if
(Proofl and Proof2 and Proof3 and Proof4 and Proofs)) :-

ok_profile(CIient,Proofl),

colIateral_rating(CIient, CRating, Proof2),
tinancial_rating(CIient,FRating,Proof3),

bank_geld(CIient,Yield,Proof4),

evaluate(profile(CRating,FRating,Yield),Answer,ProofS).
FIGURE 5. Expert system
fragment with prooftree
mixed in.

financial_rating(CIient,FRating,

fmancial_rating(Client,FRating) if
(Proofl and Proof2 and Proof3)) :-
financial_factors(Factors,Proofl),

score(Factors,CIient,O,Score,Proof2),
caIibrate(Score,FRating,Proof3).

5. CLASSIFYING METAINTERPRETER ENHANCEMENTS

This section concentrates on how to enhance flavors, building complex flavors from
simple ones. The examples are presented to demonstrate the ease of enhancing
flavors in logic programming. More examples can be found in [27], with particular
emphasis on the application of enhanced flavors for building expert system shells
and program debuggers.

There are two ways of enhancing a flavor. Firstly arguments can be added to the
solve predicate, and secondly its behavior can be changed through the addition,
modification, or deletion of clauses or goals within a clause. These two forms of
enhancements correspond to the two effects a metainterpreter can have on a given
object program: adding extra arguments to the proof of a given goal and affecting
the structure of the proof itself.

Enhancements due to additional arguments are further of two kinds. The extra
arguments can be used as a structure to be computed while solving a goal, or can be
used as a context representing information needed during the computation. We
consider each of these three forms of enhancement.

DeJnition. A flavor solve, is a structural enhancement of a flavor solve, if (1) each
argument of solve, corresponds to an argument of solveM, (2) corresponding
arguments behave identically on identical inputs, and (3) arguments of solve,
not corresponding to arguments of solve, compute a structure as the goal is
being solved.

To facilitate specifying the correspondence, arguments in enhanced flavors are in
the same order as the simpler flavor. Additional arguments appear last. This will be
true also for contextual enhancements to be introduced below.

The prooftree flavor shown in Figure 1 is a typical structural enhancement. A
second example is the count flavor in Figure 6. Its metagoal so/ve(Goal, N) is true if
Goal requires N reductions to be solved. It is clear that the behavior of count in

172 LEON STERLING AND RANDALL D. BEER

solve(true,O)
solve((A,B),N) :-

solve(A,Nl), solve(B,N2), N is Nl + N2. FIGURE f ,.- ~~-_

solve(A,N) :- counting gc
0. xrucum.uy ennancea navor Ior
ml reductions.

clause(A,B), solve(B,Nl), N is Nl + 1.

solving a goal is identical to uanillu. The structure computed is the number of goal
reductions.

In general, structural enhancements can introduce arbitrary PROLOG code to
maintain the extra arguments, for example the arithmetic additions in Figure 6.

Structural enhancements are normally used to instantiate their extra arguments.
The count flavor, for example, would instantiate its second argument to the number
of goal reductions used in solving a particular goal. Note that the base fact of
counr, soZue(true,O), is ground. This is a typical feature of a structural enhancement.

The general metalevel predicate demo(Goa1, Proof) described by Bowen and
Kowalski in [4], where Proof is the proof of Goal, is a structural enhancement of the
metalevel interpreter demo. In fact, all additional arguments computed by structural
enhancements, such as the number of goal reductions, can be regarded as “alterna-
tive proofs.”

Dejnition. A flavor solve, is a contextual enhancement of a flavor solve, if (1) each
argument of solve, corresponds to an argument of solve,, (2) corresponding
arguments behave identically on identical inputs, and (3) arguments of solve,
not corresponding to arguments of solue, carry a context as the goal is being
solved.

A typical contextual enhancement of the vanilla flavor is given in Figure 7. The
flavor is called brunch, and its metagoal solve(GouZ,Context) is true if Goal is
solved; that is, Context has no declarative relationship with Goal. Its intended use is
to convey the search tree further in the program. All the flavor does is insist that the
associated search trees are logically consistent from one goal to another. The branch
flavor can form the basis of a why not explanation facility [26], for example.

The additional arguments for contextual enhancements must be instantiated to
an initial context; otherwise an error is likely. The initial context for the branch
flavor is the empty list. If the inital context is not instantiated, brunch will construct
an incomplete list.

The third class of enhancements are called behavioral enhancements. A behav-
iorally enhanced flavor extends the computation performed by the flavor being

solve(true,Context).
solve((A,B),Context) :-

solve(A,Context), solve(B,Context).
solve(A,Context) :-

FIGURE 7. Contextually enhanced flavor for
carrying the proof tree branch.

clause(A,B), solve (B,[A if B]Context]).

METAINTJZRPRETERS FOR SYSTEM CONSTRUCTION 173

solve(true).
solve((A,B)) :- solve(A), solve(B).
solve(A) :- clause(A,B), solve(B). FIGURE 8. Behaviorally enhanced flavor for querying

solve(A) :- system(A), A. the user.

solve(A) :- askable(ask(A).

enhanced. The metagoal of a behaviorally enhanced flavor remains the same.
Typically, extra clauses are included in the theory.

Definition. A flavor solve, is a behavioral enhancement of a flavor solve,,, if they
produce different proofs for identical object goals. A metainterpreter can poten-
tially be behaviorally enhanced by the addition, modification, or deletion of
clauses or goals within a clause. Any modification to a metainterpreter which is
not a structural or contextual enhancement is a behavioral enhancement. Behav-
ioral modification by side effects, for example tracing a computation on the
screen, we regard as a behavioral enhancement.

Figure 8 shows an example of a behavioral enhancement of vanilla. The metagoal
of askable is the same as that of vanilla. Its theory, however, contains two
additional clauses which handle system goals and ask the user if a given goal is true
if it can be proven in no other way. Behavioral enhancement can also arise from the
addition or modification of goals within a clause. In general, a behavioral enhance-
ment is any change to a metainterpreter which affects its proof of an object goal.

The forms of enhancement are by no means exclusive. Flavors can be enhanced
in several ways at once. For example, in the explanation shell for expert systems
described in [26], the metainterpreter for the why not component exhibits all three
enhancements. The argument constituting the contextual enhancement is a branch
of the proof tree, the argument constituting the structural enhancement returns the
proof tree, and the behavioral enhancement adds extra clauses so that the metainter-
preter always succeeds even if PROLOG fails.

6. COMBINING METAINTERF’RETERS

An important underlying principle of our methodology for building expert systems,
and complex programs more generally, is that they should be constructed from
simple building blocks. The individual units must be easy to combine and use. If
metainterpreters are to be useful as modular components of expert systems, it must
be easy to mix several metainterpreters and incorporate their joint effect in an object
program.

This section discusses how to combine the effect of different metainterpreters
when solving a given object goal. Two strategies for combination, nesting and
separative combination, are presented. For each, a metalevel goal or program is
given which specifies what is computed. Further strengths and weaknesses of each
are discussed.

We suggest there are two major issues relevant for the combination of metainter-
preters. The first is whether an efficient program can be derived which incorporates

174 LEON STERLING AND RANDALL D. BEER

the effects of the different flavors. More particularly in this paper, we consider
whether the mixing technique of Sections 3 and 4 is applicable. The second issue is
commutativity, that is, whether the combination strategy is sensitive to the order in
which the metainterpreters are given.

A minor issue is handling name clashes. In this paper, all metainterpreters are
referred to as solve, which would cause problems in most current PROLOG
implementations. Each metainterpreter could be renamed, or a good module system
used. The best solution is to use an extension of PROLOG such as metaPROLOG
[5], where theories are treated as genuine objects and can be referred to and
manipulated. Each metainterpreter would be a theory.

In this section all metainterpreters are assumed to be structural or contextual
enhancements of a common metainterpreter, unless explicitly stated otherwise. Each
enhancement has a single extra argument. For example, prooftree, branch, and
count are all of this form. Restricting to enhancements with only one extra argument
is in fact no loss of generality. Several extra arguments can be grouped into a single
structured argument with a technique similar to the pushing down of metaargu-
ments discussed in Section 4.

Combining behavioral enhancements is not discussed in this paper. Different
ways of modifying control using behavioral enhancements are not obviously conso-
nant. It is a research issue to find a useful way of specifying behavioral enhance-
ments to allow them to be combined commutatively.

The first strategy for combining metainterpreters is called nesting. Suppose solve,
and solve, are two metainterpreters. The effect of both solve, and solve, in solving
a given object level query Goal is captured with the metalevel query
solve,(solve,(Goal, Argl), Arg2).

It is straightforward to mix two metainterpreters into an object program to
achieve the effect of a given nested query. The first metainterpreter is mixed into the
object program, and the resultant program is the new object program into which the
second metainterpreter is mixed. The process can be iterated to mix in several
metainterpreters. A discussion of this approach is given in [25] together with some
statistics on the speedup of solving the final object program in contrast with going
through levels of interpretation.

The nesting strategy is not commutative, however. Consider mixing both prooftree
and branch into an object program. If prooftree is mixed in after branch, the
argument constituting the proof tree will contain references to the context that has
been added, which would not be there if prooftree had been mixed in before branch.
The problem is more noticeable with flavors with extra goals such as count. If count
and prooftree are mixed, the proof tree may or may not include the arithmetic
calculation, depending on the order of mixing in the metainterpreters.

The reason for the lack of commutativity of the nesting strategy is the loss of
distinction between object level and metalevel entities. Goals in the unenhanced
metainterpreter, called basic goals, and goals introduced to manipulate the extra
structure are indistinguishable once a metainterpreter has been mixed into an object
program. The partial evaluator cannot distinguish easily between object level and
metalevel goals. Although this may be overcome with a more sophisticated partial
evaluator taking account of appropriate metaknowledge denoting basic goals, it is
preferable to find a simpler form of combination which is commutative.

METAINTERPRETERS FOR SYSTEM CONSTRUCTION 175

solve(Goal,[Flavor]Flavors],[Result [Results]) :-
flavor(Havor,MetaGoa.l,Theory),
amalgarnated(Goal,MetaGoal,Result),
solve_flavor(Theory,MetaGoal), FIGURE 9. Solving goals separatively.

solve(Goal,Flavors,Results).
solve(GoaU I,[I).

The second strategy is called separative combination. The extra argument of each
metainterpreter is computed separately in the same context. Figure 9 contains a
definition for a predicate solve(Goa1, Flavors, Results), where Goal is the object
goal, Flavors is a list of flavors to be mixed, and Results is a list of arguments
computed by each flavor.

The goal is solved sequentially for each flavor. There are two points of interest in
the code. Firstly, if the goal being solved is not ground initially, but is instantiated
by the first flavor, then later flavors will solve the instantiated goal. This guarantees
consistency. Secondly, there is no commitment to the representation of the flavor or
the form of the result in the code.

The predicate amalgamated/3 is responsible for respecting representational
details. More importantly, it communicates information between the object and
metalevel goals. An appropriate definition is

amalgamated(Goal,solve(Goal,Result) ,Result) .

The order of the flavors is unimportant for the separative strategy. They com-
mute with respect to the program in Figure 9. In other words, the argument
corresponding to each flavor will be the same no matter in which order it appears.

The code for solue/3 solves the object goal as many times as there are flavors. It
is preferable to solve a given object goal only once. This can be achieved by
generating a metainterpreter which combines the effects of the flavors. The top level
code for combining metainterpreters is given in Figure 10. The basic relation is
combine(Flavors, NewFlavor), where Flavors is a list of flavor names and NewFlavor

combine([~avorIFlavors],flavor(comb,solve(Goal,Args),Meta)) :-
flavor(Flavor,_,_),
basic_Aavor(Flavor,Vanilla),

flavor(Vanilla,_,VauillaTheory),
combine([FlavorlFlavors],Args,VanillaTheory,Meta).

combine([Flavor(Flavors],[Arg@rgs],InMeta,Meta) :-
flavor(Flavor,solve(Goal,Arg),Theory),
combine_theories(Theory,In Meta,OutMeta),
combine(Flavors,Args,OutMeta,Meta).

combine([I,[],Meta,Meta) :-
complete(Meta).

FIGURE 10. Combining flavors separatively.

176 LEON STERLING AND RANDALL D. BEER

is a new flavor which represents the combination of all of them. The metagoal of the
combined flavor is solue(Goal,Args), where Args is the list of arguments which are
the enhancements of the flavors being combined.

The code for combine theories is technical but straightforward and is omitted
here. It is an example, similar to the pushing down of metaarguments, of a problem
that has been sufficiently constrained that syntactic transformations suffice to solve
it. The last clause in Figure 10 completes the incomplete structures generated by
combine_theories.

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

The paper has discussed how different metainterpreters can be combined and mixed
into a knowledge base. A classification of metainterpreters has been developed to
specify the combination. A basic metainterpreter of a given granularity is identified.
Three types of enhancements of the basic metainterpreter can then be described:
structural enhancements, contextual enhancements, and behavioral enhancements.

A strategy for combining structural and contextual enhancements called separa-
tive combination is described. It is best implemented as follows. Given a collection
of metainterpreters, combine them to produce a new me&interpreter, and then mix
the new metainterpreter into the knowledge base. The mixing in is performed by a
restricted form of partial evaluation augmented by an additional step of pushing
down metaarguments.

Future work is possible for the three areas of classification, combining metainter-
preters and mixing them into the knowledge base. The classification can be sharp-
ened with respect to behavioral enhancements. Hopefully a clearer understanding of
the types of behavioral enhancements will enable them to be freely combined with
structural and contextual enhancements. For the partial evaluation, the assumptions
about expert systems that are used could be more clearly stated, and it could be
shown how they affect the partial evaluator.

The example flavors have all been small. We feel, nonetheless, that they are
representative of what will be needed to develop large applications. PROLOG
programs are concise. A large application should still be developed as concrete
proof of the utility of these ideas.

Finally, the relationship to LISP flavors needs to be explored further. Both the
separative and nesting strategies of mixing flavors treat the flavors as independent.
It is both more interesting and more general purpose to allow interactions between
flavors. Indeed, the bulk of work on flavors in LISP is in the development of a
language for expressing interaction. The examples in logic programming that we
have seen have not needed interaction. The appropriate language or form for
expressing interactions for logic programming flavors thus remains essentially
academic, but is a topic for research currently under investigation.

This work was partially supported by a core research grant from the Cleveland Advanced Manufacturing

Program and the State of Ohio. Anm Lakhotia helped with running some test examples.

METAINTERPRETERS FOR SYSTEM CONSTRUCTION 177

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Abelson, H. and Sussman, G. J., The Structure and Interpretation of Computer Programs,
MIT Press, 1985.

Ben David, A. and Sterling, L. S., A Prototype Expert System for Credit Evaluation, in:
L. F. Paul (ed.), Artificial Intelligence in Economics and Management, Elsevier North-
Holland, 1986, pp. 121-128.

Bloch, C., Source-to-Source Transformations of Logic Programs, M.Sc. Thesis, CS84-22,
Weizmann Inst. of Science, 1984.

Bowen, K. and Kowalski, R., Amalgamating Language and Meta-language, in: Clark and
Tarnlund (eds.), Logic Programming Academic, 1982, pp. 153-172.

Bowen, K. and Weinberg, T., A meta-level extension of PROLOG, in: J. Cohen and J.
Conery (eds.), Proceedings of the 1985 Symposium on Logic Programming, IEEE Com-
puter Society Press, 1985, pp. 48-53.

Cannon, H. I., Flavors: A Non-Hierarchical Approach to Object-Centered Programming,
unpublished paper, 1982.

Clark, K. L. and McCabe, F. G., PROLOG: A Language for Implementing Expert
Systems, in: Hayes, Michie, and Pao (eds.), Machine Intefhgence IO Ellis-Hotwood, 1982,
pp. 455-470.

Dincbas, M., Meta control of logic programs in METALOG, in: Proceedings of FGCS
‘84, Tokyo, Nov. 1984, pp. 361-370.

Gallagher, J., Transforming Logic Programs by Specializing Interpreters, in: The Proceed-
ings of the Seventh European Conference on AI, Brighton Center, UK, 1986.

Gallaire, H., Merging Objects and Logic Programming: Relational Semantics, in: Pro-
ceedings AAAI-86, Philadelphia, 1986, pp. 754-758.

Gallaire, H. and Lasserre, C., Metalevel Control for Logic Programs, in: Clark and
Tamlund (eds.), Logic Programming, Academic, 1982, pp. 173-185.

Hammond, P., micro-PROLOG for expert systems, in: micro-prolog: Programming in
logic, Prentice-Hall International, 1984.

Kahn, K. M., The Compilation of PROLOG Programs without the Use of a PROLOG
Compiler, Tech. Report, UPMAIL, Uppsala Univ., Sweden, 1984.

Kahn, K. M., Partial Evaluation, Programming Methodology, and Artificial Intelligence,
AI Magazine, Spring, 1984, pp. 53-57.

Kahn, K., Tribble, E. E., Miller, M. S., and Bobrow, D. G., Objects in Concurrent Logic
Programming Languages, in: Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, 1986, pp. 242-257,

Komorowski, H. J., A Specification of an Abstract PROLOG Machine and Its Applica-
tion to Partial Evaluation, Linkoping Studies in Science and Technology Dissertations,
No. 69, Software Systems Research Center, Linkoping Univ., Sweden.

Mierowsky, C., Taylor, S., Shapiro, E. Y., Levy, J., and Safra, S., The Design and
Implementation of Flat Concurrent PROLOG, Tech. Report CS85-09, Dept. of Com-
puter Science, Weizmann Inst. of Science, Rehovot, Israel, 1985.

Pereira, L., Logic Control with Logic, in: Proceedings of the First International Logic
Programming Conference, Marseille, 1982, pp. 9-18.

Moon, D. A., Object-Oriented Programming with Flavors, in: Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, Port-
land, Ore., 1986, pp. l-8.

Shapiro, E. Y. and Safra, M., Meta-interpreters for real, in: Proceedings of IFIP-86,

1986.

Shapiro, E. Y., Unpublished lecture notes on Concurrent PROLOG, 1985.

Shapiro, E. Y. and Takeuchi, A., Object Oriented Programming in Concurrent PROLOG,
New Generation Comput. 1~25-48 (1983).

LEON STERLING AND RANDALL D. BEER

23.

24.

25.

26.

27.

28.

29.

30.

31.

Stefik, M. and Bobrow, D. G., Object-Oriented Programming: Themes and Variations,
AI Magazine 6(4):40-62 (Winter 1986).

Sterling, L. S., Meta interpreters for Expert Systems, CAISR TR 134-85, Case Western
Reserve Univ., 1985.

Sterling, L. S. and Beer, R. D., Incremental Flavor-Mixing of Meta-interpreters for
Expert System Construction, in: Proceedings of the Third Logic Programming Symposium,
Salt Lake City, 1986, pp. 20-27.

Sterling, L. S. and Lalee, M., An Explanation Shell for Expert Systems, Comput.
Intelligence (1986).

Sterling, L. S. and Shapiro, E. Y., The Art of Prolog, MIT Press, 1986.

Takeuchi, A. and Furukawa, K., Partial Evaluation of PROLOG programs and its
Application to Metaprogramming, ICOT Tech. Report, 1985.

Weyhrauch, R. W., Prolegomena to a Theory of Mechanized Formal Reasoning, Artifi-
cial Intelligence 13:133-170 (1980).

Weinreb, D. and Moon, D., Flavors: Message Passing in the Lisp Machine, MIT-AI
Memo No. 602, 1980.

Zaniolo, C., Object-Oriented Programming in PROLOG, in: Proceedings 1984 Znterna-
tional Symposium on Logic Programming, Atlantic City, 1984, pp. 265-270.

