
 Domain-dependent Information Gathering Agent

Aleksander Pivk*, Matjaz Gams

Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract

A universal agent should be capable of gathering information from arbitrary heterogeneous sites and offer intelligent
information services on its own based on information so gathered. We present a domain-dependent agent for information
gathering. It can visit an arbitrary domain-related site by observing a user perform the first query. By understanding key
concepts of the first query, the agent performs subsequent queries autonomously. When a user asks the agent about a
particular item, the agent gathers relevant information from various sites. The major advantage of the agent is a semi-
automatic creation of a wrapper around a particular site with few human interventions. We have implemented two versions of
such information-gathering agents: ShinA (SHoppINg Assistant) for e-trading tasks, and EMA (EMployment Agent), which
performs employment and job related functions over the Internet.

Keywords: Intelligent agent; Comparison shopping; Information extraction; Inductive learning; Wrapper

1. Introduction

Internet services offer several advantages over the
classical ones, and are already changing the way
companies, customers, and users perform their
activities. But the rapid growth of the Internet has
resulted in an explosion of available information and
online services. To make things worse, the Internet is
poorly structured, and disorganized (Lewis, 1999).
There are millions of heterogeneous Internet sites
offering various services, which makes the Internet
unintelligible for any single user conducting a non-
trivial task. Therefore, serviceability of the Internet
depends to a large degree on the amount of
automated uniform user-friendly services, systems,
and tools (Levy, 2000; Pazienza, 1997).

The negative side of the Internet success is evident
when one wants to gather relevant information. One
of the first solutions to cope with information
overload were search engines. Typically, a user
provides a couple of keywords, and a search engine
finds links to relevant sites.

This simple approach has several drawbacks. A
search engine proposes only simple links to hopefully
relevant sites. A user must still follow the links
manually, and further browse for the desired
information (Balabanovic & Shoham, 1995). Some
of the links point to vast databases with specialized
interfaces. This forces the user to get acquainted with
new interfaces, and slows down the user even more.
In addition, this approach favors largest information
providers due to name-branding and time
optimization. As a result, this largely reduces the
basic advantage of the Internet. To further complicate
matters, a user is unaware of changes in already

visited sites unless he or she revisits the sites
frequently.

A rather simple solution is to provide alert services
when a relevant site changes. E.g., several e-
commerce sites already allow shoppers to order price
alerts that notify a shopper when the price of a
product changes, or falls below a specified amount.
But some of the services require lengthy surveys to
be filled out before they can be used, while at the
same time they may provide little or no
personalization. It is also undesirable that such
services weaken user privacy (Jakobsson, 1998).

Another approach involves voluntary ratings and
reviews of sites by users, resulting in personalization
and recommendations. Again, this takes a lot of user
time and introduces problems with privacy. In
addition, recommendation systems effectively reduce
the size of the marketplace and introduce bias, as it is
difficult to obtain a sufficient number of ratings for
every existing vendor, and to control the reliability of
the sources (Pivk, 2001; Basu, Hirsh & Cohen, 1998;
Schafer, Konstan & Riedl, 1999).

In this paper we present solutions of the problem of
information gathering. We propose a domain-
dependent information-gathering agent that extends
the existing approaches by providing automatic
uniformity, user autonomy, and privacy. We
implemented two systems: a semi-uniform intelligent
agent for employment tasks (Gams, 2001) and for e-
commerce (Pivk & Gams, 2000). Our principal goal
was to improve accessibility and expand the benefits
of existing information-gathering approaches.

The paper is organized as follows: In Section 2 we
describe agents, in Section 3 wrappers, in Section 4
the algorithm, in Section 5 the implementation for
employment tasks, and in Section 6 for e-trading.

*
Corresponding author. Tel.: +386-1-447-3380; fax.: +386-1-425-1038.
E-mail address: aleksander.pivk@ijs.si

Related work is described in Section 7. We
summarize our ideas in Conclusion.

2. Agents

In information gathering, one of the most attractive
new approaches are software agents. They help
automate a variety of activities, most of which are
time consuming. Software agents differ from
“traditional” software in the sense that they are
personalized, social, continuously running and semi-
autonomous (Gutmann, Moukas & Maes, 1998). In
this way, the Internet is becoming more user-friendly,
semi-intelligent and human-like.

There are many definitions of what the term
“agent” denotes, based on different approaches,
expectations and visions (Bradshaw, 1997). Shoham
(1997) describes a software agent as a software entity
which functions continuously and autonomously in a
particular environment often inhabited by other
agents and processes. The requirement for continuity
and autonomy derives from human desire that an
agent be able to perform activities in a flexible and
intelligent manner, responsive to changes in the
environment, and without constant human
supervision. An agent that functions over a long
period of time should be able to adapt from its
experience (Liebowitz, 1999). There are two types of
agents, closely related to our research:
Information/Internet agents and shopping agents.

Information/Internet agents perform the role of
managing, manipulating, or collating information
from many distributed sources (Maes, 1994; Maes,
Guttman & Moukas, 1999). The motivation for
developing information agents is at least twofold.
Firstly, there is an increasing need for tools that
manage the information explosion. Secondly, there
are also vast financial opportunities to be gained.

Shopping agents find products (the following
terms: product/object/item/entity represent synonyms
in this paper) under the best terms among different e-
commerce sites (Dastani, Jacobs, Jonker, Catholyn
& Truer, 1999; Gutmann, Moukas & Maes, 1998). A
shopping agent queries multiple sites on behalf of a
shopper to gather pricing and other information on
products and services.

However, basic comparison-shopping agents
(Greenwald & Kephart, 1999) still lack several
desired properties. They introduce a marketplace that
is biased in favor of those e-commerce sites that
collaborate with the shopping agents. In addition to a
limited number of e-commerce sites to choose from,
those participating sites often do not offer the best
prices. Typically, e-commerce sites that are included
into agent’s repertoire follow specific protocols or
include hand-coded wrappers to transform data into
agent-readable forms (Hammer, 1997; Muslea,
Minton & Knoblock, 1998).

An ideal agent would extract contents of
heterogeneous Internet databases online, and present
the data to a user in a uniform way (Cowie &
Lehnert, 1996). While this task is feasible by
humans, current computer systems are not intelligent

enough to perform it successfully as the type,
amount, and organization of the information provided
by databases differ from site to site (Baek, Liebowitz,
Prasad & Granger, 1999). For an autonomous agent,
the desired properties are uniformity, user autonomy
and privacy.

Uniformity refers to the ability of an agent to
automatically enter various sites and adapt to the
type, amount, and organization of the information
provided by various companies. Since this property
demands human-level intelligence, the task is beyond
current computer systems. In reality, we accept
limited uniformity, i.e. semi-uniformity.

Autonomy refers to the idea that an agent provides
the best possible service by remaining as independent
as possible from both customers and vendors.
Autonomy from vendors implies that the service is to
remain unbiased by performing wide searches (as
opposed to only searching the databases of a few
“preferred” vendors). This can be achieved by
progress in making interfaces more uniform, and by
improved methods for interpreting potential hits.
Autonomy from the customer means that users can
be relieved from the tedious task of searching for
information and of needing to adjust to different
sites.

Additionally, our research addresses the privacy of
the shopper by concealing the identity and behavior
of the user. However, we note that the privacy
provided is conditional, and should be selectively
revoked if abuse is suspected. These aspects of our
proposed agent provide for an unbiased marketplace
where the user benefits in many respects, and safely
stays hidden behind the agent who performs
anonymous searches on user’s behalf.

3. Wrappers

There is a classical solution for dealing with
heterogeneous information sources (in our case
domain-specific databases), where each source has a
unique way of providing information to the user.
Namely, a program may be able to integrate
information from the sources if it has at its disposal a
communicator-translator, generally referred to as
wrapper (Yang, Seo & Choi, 2000), which produces
a translation rule for each site.

Formally, a wrapper is a program or a rule that
understands information provided by a specific
source and translates it into a regular form that can be
further reused. A wrapper is an essential component
of a mediator system (Fig. 2), which accepts queries
from users, translates each one into the appropriate
query for the individual source, fetches the relevant
pages from that source, extracts the requested
information from the retrieved pages, and returns the
result to the user. Essentially, wrappers make the
Web sources look like databases that can be queried
through the mediator’s query language (Kusmerick,
Weld & Doorenbas, 1997; Cowie & Lehnert, 1996).

Wrappers can be either hand-coded or created
automatically by software agents (Muslea, 1999).

Hand-coding wrappers is a tedious and time-
consuming task. In addition, a comparison agent with
these manually written wrappers is not scalable
because new stores are not automatically integrated.

Automatic construction of wrappers by agents for
online stores is a challenging issue, mainly because
HTML documents on the Web are not agent-friendly
(Liu, Pu & Han, 2000). Another difficulty for
automatic wrapper-generation comes from the
heterogeneity of scores, in the sense that different
stores employ different mechanisms for manipulating
customer queries, and different styles for displaying
product information. Fortunately, domain-dependent
sites such as online stores are mostly semi-structured
(Atzeni, Mecca & Merialdo, 1997), and we can
extract at least some meaningful information without
the help of semantic-based modules.

4. Information-gathering algorithm

We present our algorithm for an automatic
information-gathering domain-dependent agent.

Task: Gather information from heterogeneous

Internet databases with as little human intervention as
possible.

Domain-dependent constraint: Heterogeneous

Internet databases have to contain common concepts
like job definition in employment tasks, or product
description in e-commerce.

Before presenting the algorithm, we describe the

basic data structures used.

4.1. Data structures

A record represents a product/object/item/entity,
e.g., a job offer or a product offer. Here is an
example of a product offer from Amazon, in this case
a book:

Special Edition Using Java Server Pages and

Servlets, by Mark Wutka, Our Price: $27.99, You
Save: $12.00 (30%), Used Price: $15.06,
Availability: Usually ships within 24 hours,
Paperback - 754 pages 1st edition (January 15,
2000), Que; ISBN: 0789724413; Dimensions: 1.70 x
9.09 x 7.36, Amazon.com Sales Rank: 69,177.

A reply usually consists of records of items in

HTML. The items are stored as lists of records of
text, or records in XML format.

A form corresponds to an HTML form. There are
two variations of this data structure: empty –
corresponding to the HTML source, and filled – with
data filled in. An example of a form is presented in
Fig. 1. The relevant part of the HTML source is:

<form name="shinaForm" method="post"
action="shinaServlet" onSubmit="doSubmit()">
<center><table border=0 ><tr>

<td align=center>
Need help?
</td><td><center>

<input type="text" value="" name="searchStr"
size="30" maxlength="80" onChange=
"this.value=validateQuery(this.value);">

<td><input type="submit" value="ShinA
Search"></td></table></center>

<hr size=2 width="380" align="center">
<center><table cols=1 width="63%" ><tr>
<td align=center>
Number of items to be displayed:
</td></tr><tr><td align=center>
<select name="noItems" size="1" >
<option value="5>5
<option value="10" selected>10
<option value="20"> 20
<option value="50">50
</select></td></tr></table></center>
</form>

Fig. 1. ShinA’s main interface.

The first paragraph of the HTML code introduces

the form name (shinaForm), the method (post), and
the action (shinaServlet) that is performed upon
query submission, a couple of parameters, and a link
to Help. The second paragraph presents an input field
for a text query, which gets validated by the
validateQuery method. The third paragraph describes
the ShinA’s submit button. When pressed, the
entered text – query, is sent to the shinaServlet
program. The last paragraph lets a user choose the
number of items per output page.

A query is a string of text submitted to a server
through an HTML form. An example of a query
searching for "Java Servlets" is:

http://ai.ijs.si/shinaServlet?searchStr=Java+Servlets
(3/1)

The query consists of the address of the server
(http://ai.ijs.si), the name of the program
(shinaServlet), the parameter name (searchStr), and
the entered value. Our system also attaches statistics
to each query in the form of the success rate (3
attempts / 1 failure).

HTML commands are parts of a form. The agent
uses them as patterns. An example of an HTML
command as a form field is:

<input type="text" value="" name="query"
size="30" maxlength="80" onChange=
"this.value=validateQuery(this.value);">

A query-reply consists of a query and a

corresponding reply. With it the system records
questions sent by the user together with reply
generated.

Fig. 2. An information integration system / mediator accesses

databases through wrappers.

Extraction rules enable parsing of the output of a
particular database in order to get a uniform output
by the mediator system. Extraction rules represent
the syntactic structure of database output (Ashish &
Knoblock, 1997). Our implementations are rather
straightforward, e.g. a rule searches for a text
description inside HTML documents, separated by
specified delimiters. Examples of extraction rules
are:

text := string of characters
number := string of digits 0 .. 9
…
price := html.body.td[i].number
WHERE html.body.td[i].b.text = “EUR”
…
jobDescription := { text1 jobDefinition text2
delimiter}
productDescription := { ID name price text }

The first two lines are examples of basic syntactic
structures like text and number. The middle part is an
example of an extraction rule for price. It consists of
a number, which is followed by a currency type, in

this case EUR. The last two lines represent top-level
extraction rules, describing major concepts like
jobDescription or productDescription. A
jobDescription consists of some text before an actual
jobDefinition and some text afterwards, where a
delimiter separates each jobDescription.

Schematically, the system communicates with
heterogeneous databases using extraction rules for
wrapping (Fig. 2).

4.2. Algorithm

The algorithm consists of two major phases:
1) the initial query to an unknown database

The agent observes a user enter and query a new
Internet database (ObserveUser – names of
procedures are in italics). Then the agent records
and parses communication between the human and
the database, and extracts sufficient content
(HTML RuleExtraction, concept matching). If
necessary, the agent consults the user to get the
desired level of understanding of the
communication. This enables nearly error-free
performance of the system.

2) subsequent queries (MappAndMatch, Retrieve)
The agent performs a new query to the Internet
database by simulating what a user did. If the
query is successful, the agent updates the statistics
for the query and presents information through a
uniform interface to the user. If the query is not
successful, the system updates statistics, and
discovers whether the query has become invalid. If
the query is found to be invalid, the system
demands new rules to be extracted for a particular
site. The user is notified accordingly.

When connecting to a new database for the first

time, the ObserveUser procedure is applied:

procedure ObserveUser (query, commands, reply);
{A user starts communicating with a database
through the agent interface. The agent remembers
user commands and HTML commands without
active participation. The user is in principle unaware
of agent’s presence.}
begin
 start observing a communication between a user

and a database interface;
repeat remember query and commands;
until session is finished;
if session finishes with error
 then forget the whole session;
 else RuleExtraction(query, commands,

extractRules, reply);
end;

procedure RuleExtraction(query, commands,

extractRules, reply)
{The agent stores three basic types of information:
- database description - name, URL address, title,

country and other available information.

- query and extraction rules - to perform another
query in future; the query is either stored for the
first time or modified accordingly

- a list of HTML commands - the agent parses
HTML commands, especially those that perform
some action with the input/output fields. Other
commands are most often skipped.}

begin
 store query into appropriate data structure;
 find a delimiter in the reply;
 repeat {parse commands and create extract rules}
 find the next HTML command in the reply;
 if this command fits a rule
 then add the rule to a list of extractRules;
 else ignore the command;
 until all commands are parsed;
 set pointers to establish query-reply structures;
 {end parsing commands, start parsing the reply in

order to extract concepts}
 repeat
 find the first concept/pattern/item (e.g., a job, a

product ...);
 add the concept/pattern into the corresponding

list of entities {mapping};
 until document is parsed and transformed into a list

of entities for the mediator system;
end;

The procedure for creating extraction rules

establishes connections between the parsed HTML
document and the domain-dependent concepts. In
this way, background knowledge in the form of
ontologies is used to capture the meaning of essential
parts in the HTML document. For example, in the
domain of employment tasks, ontologies can be used
to identify professions.

If the RuleExtraction procedure fails at any stage, it
calls for a supervisor intervention. On demand, it
shows all intermediate results, e.g. a list of extracted
rules, which the supervisor can modify at will.
Therefore, if the system decomposes the process
well, no human help is needed. In any case, at the
end of the session the system assumes that the
parsing and mapping procedures are flawless. This
does not mean that no mistake can occur in the
future, because a page can change.

The "Retrieve" procedure connects to databases of
previous queries, where queries are modified to
reflect user’s question. The "Retrieve" module
connects to the database in two ways:
• if exact query was previously successfully

performed, the agent repeats it;
• otherwise the system tries to create a query, based

on a similar query. The best way to do this is to
“understand” by ontologies, which queries qualify
as promising candidates. For example, if a user
asks for a specific type of shoes, all shoe-related
shops and all shoe-related previous queries seem
to be a good basis for a new query. The new query
is constructed by changing previous entities with
the specific type of shoes.

procedure Retrieve(query, replies);
{get info from a query database and write it into
replies, consisting of a list of entities with
corresponding parameters and their values}
begin
 find all queries with identical input fields to the one

typed by a new user;
 if no queries found then CreateQuery (queries);
 for all queries do
 extract database address from a query and connect

to the Internet address and obtain lastReply;
 if an error is obtained then
 if query is invalid then begin
 RuleExtraction(query, null, extractRules, null);
 notify the user;
 if RuleExtraction not successful then

notify the supervisor;
 end;
 else notify the supervisor;
 else begin

 MappAndMatch (lastReply, replies);
 update statistics;
 end;

 show extracted replies to the user through the
mediator system;

end;

procedure CreateQuery (queries)
{create a new list of queries based on previous
similar ones}
begin
 apply an ontology to create a list of new queries;
 for all previous queries that correspond to similar

items
 do begin

replace items with new ones;
 set statistics for new queries;
 end;
end;

There are different types of ontologies, some of
them hard-coded into the system and others
consisting of simple or complex data structures. For
example, if a query corresponds to a form with just
one input field for a database search, and the user
enters just one input field in the mediator form, then
this is a perfect match.

Another ontology is based on clustering of
databases based on the entities they provide (i.e.,
kinds of products).

Other ontologies consist of a list of entities that can
be entered into a specific input field. For example,
practically all job definitions are defined in a national
catalog.

Ontologies play a substantial role in construction of
modifications from a list of queries and commands.
For example, a full "looking-for-jobs" query can be
described in a form with a flexible frame consisting
of many subfields. The query contains information
about job profession and additional specifications of
area, income, type of work etc. The routine checks

that all common major items, such as profession, are
filled in and that modified commands are (hopefully)
related to the same job specification.

procedure MappAndMatch (lastReply, replies)
{based on extracted rules, parse the lastReply and
add each extracted entity with corresponding values
into replies, i.e. into the mediator system}
begin
 repeat
 match each extraction rule to the lastReply;
 when the first rule triggers, delete the matched top

of the lastReply;
 if the extracted transformed text corresponds to a

part of the entity
 then add it into replies;
 until end-of-lastReply;
end;

Advanced successful performance of the system is
based not only on ontologies but also on memory-
based learning. The ontologies are more or less static
and sometimes even hand-coded. They represent
basic knowledge about a specific problem domain.
Some ontologies are dynamically created or
instantiated, e.g. those describing shops, which
makes it possible to search similar shops. Namely,
each shop typically presents its product catalogue,
basic orientation, and structure.

While ontologies are domain-specific, the memory-
based learning is a plain uniform implementation of
the basic technique published elsewhere (Kitano,
1993). The algorithm was only slightly modified
according to the problem domain characteristics. The
algorithm performs memory-based learning by
storing queries and statistics. The system learns each
time a pattern is successful or not by changing its
statistical success rate. In this way, the system adapts
to the desires of the users and to changes in the
domain-related sites on the Internet. Our algorithm is
described in (Gams 2001). Additional learning in
ShinA is described in Section 6.

The system was implemented in two problem
domains: employment and e-trading. While the two
implementations vary a lot in terms of programming
languages and technical details, the algorithm is
practically the same. Both implementations offer
information about desired objects, which differ in
properties, benefits and costs. Users browse through
a large number of potential candidates, and compare
several similar possibilities to finally choose specific
objects.

5. Employment information gathering

EMA (EMployment Agent) is an intelligent
employment agent for providing employment
information in a way similar to human employment
agents (Gams, 2001). An Internet-based intelligent
employment agent should perform like a human
agent, provide basic information about available jobs

and available workers, and try to match these two
databases as efficiently as possible (Fig. 3).

In employment tasks, users typically want to get a
job - any job, a good job, better than a current job. In
this way, a typical task of the agent is to find relevant
information about a specific job offer (analogy – a
specific e-commerce item) from various information
sources.

EMA is an intelligent agent that provides user-
friendly information on demand, or when it notices
relevant information on the Internet. EMA can store
search patterns, perform search on its own or
following direct commands, and it can send online
replies or offline emails regarding vacant jobs or
available workers. EMA can store and observe
interesting Web sites chosen by users, and match
available jobs and workers.

Fig. 3. The basic task of the EMA Internet-based intelligent
employment agent is to provide employment information as

human agents do.

EMA has been implemented a couple of years ago

with several modules added subsequently. Ema also
incorporated some language and translation
capabilities, such as Slovene text-to-speech interface.
It also included ontologies for profession definitions,
and the ability to connect to arbitrary employment
sites on its own.

Natural language processing.
A common input to EMA is a partially constrained

Slovenian domain-dependent text, often consisting of
phrases and form inputs. In bulletin boards, the
language is a matter of choice, but titles and
information are either in Slovene or in English.
Consequently, majority of text is either Slovene or
English, with a couple of exceptions. No censorship
is performed regarding language or specific details as
long as the input is dedicated to the desired
employment task and inside minimal decency
requirements.

The system is capable of translating Slovene text
into English. The translation is based on a dictionary
consisting of up to four words observed previously in
the employment data. In the worst case, new
combinations are translated word-by-word and stored
for further overview by humans. Stored combinations

are sorted by frequency and translated by humans if
reasonable. In addition, the translation system looks
into the morphology dictionary to capture different
forms of the same words. Slovene has a rich
morphology so this is essential for good
performance. Finally, a spell-checker module
corrects spelling errors.

The translation is currently not yet at the level
performed by systems translating between larger
European languages; however, it is sufficiently good
to enable basic understanding of translated text, since
the employment syntax is quite limited. The Internet
site of the EMA system is presented in Fig. 4
(http://www.ess.gov.si).

Fig. 4. Home site of the intelligent employment agent.

Ontologies.
EMA performs some of its advanced functions

based on ontologies. In this way, EMA understands
the basic employment tasks. One of the most
common employment tasks (besides basic queries) is
to find a relation between different job descriptions
and jobs definitions. This is in fact one of the basic
concept of all employment tasks. E.g., from a basic
search query consisting of applicant’s properties and
desires, one should extract relevant job offers.
Conversely, from a job definition one should look for
available workers. With machine and statistical text-
learning methods (Freitag, 1998; Mladenic, 1999) we
(Bezek & Gams, 2001) have designed ontologies, i.e.
meta-knowledge about job definitions from
interesting words.

Semi-uniformity.
During the first years of the EMA system, several

competing Internet-based employment sites were
designed. Since EMA was a national employment
site sponsored by Employment Services of Slovenia
(ESS), an idea emerged to represent also the
information from other employment sites. Instead of
handwriting wrappers around each particular
employment site, we have designed an algorithm that
semi-automatically (Ashish & Knoblock, 1997;

Kusmerick, Weld & Doorenbas, 1997) attaches to
other employment sites and then automatically
gathers information from those particular sites.
Although the algorithm published in (Gams, 2001)
was not fully implemented, we have designed two
slightly modified modules of this kind and
implemented them in EMA. Another version was
independently designed by a student group
(JobProvider) on the basis of public lectures and
presentations. All versions were functional for at
least some time, and on average for several years,
thus showing that the idea is sound. On the basis of
these experiences we have decided to generalize the
algorithm, and design another system, the ShinA
system, for e-commerce tasks (Pivk & Gams, 2000).

EMA is a big software system especially for our
R&D group of intelligent systems at the Jozef Stefan
Institute. It consists of several modules and
submodules, written in different programming
languages and runs on several platforms and
operating systems. The system is a 30 thousand lines
program written mainly in C, and also in other
languages and with Internet programming tools.
Together with text and data it occupies 30 MB of
space.

The EMA agent was, and still is, among the most
successful applications of intelligent agents in
Slovenia and in Central Europe. In the first year of its
implementation, our country was the third in Europe
to offer national employment information through the
Internet. At that time, we were the first country in the
world to provide over 90% of all nationally available
jobs on the Internet. On the other hand, in absolute
terms there are employment systems in big countries
or employment systems connected to major Internet
information providers such as Yahoo or AltaVista
that provide orders of magnitude bigger amounts of
employment information.

EMA was among the most often-visited non-
entertainment sites in Slovenia. At its peak, there
were over 200.000 visits monthly, which represents
one tenth of country’s population. Most visitors were
driven by unemployment, or by the desire to find a
better job.

6. E-trading information gathering

Another implementation of our system is ShinA
(SHoppINg Assistant)–a mediator system that
automatically collects product description from a
number of online stores on user’s behalf. ShinA
performs a different task than EMA – that of a
shopping assistant. ShinA was reprogrammed from
scratch, but still based on experiences and the
common algorithms of EMA. ShinA’s crucial ability
to semi-automatically gather information from
various sites replaces hand-coded wrappers of EMA.
(Yang, Lee & Choi, 2000).

INPUT
by User

Fig. 5. Workflow diagram of the ShinA system.

6.1. Workflow of the agent

The mediator system enables a user to enter two
types of data. The first type is a new e-store URL
address and the second type is a request for multiple-
store product information (Fig. 5).

In the first case, where a user enters a new e-store
URL address, the system observes the user’s
communication with the e-commerce site. Since e-
commerce sites have various input mechanisms, the
system must locate the position of a query form that
accepts user’s search-for-item requests, and must be
able to intelligently parse at least the most relevant
parts of it. The user’s communication with the e-
commerce site finishes either by entering a search
query into an input field of the form or by selecting
an ontology (i.e., product catalogue link). This
suffices to generate a query template. In this way,
ShinA generates an appropriate query template for
each online store.

Afterwards, the mediator system applies a learning
algorithm, described in detail in Section 6.3. In the

learning phase, appropriate extraction rules are
created that correspond to a most representative
pattern (i.e. description of an item). In this phase,
ontologies are also recognized and extracted.
Evaluation and testing of extracted rules is performed
by extracting product information from a randomly
retrieved e-store’s product page. In case when the
extraction of products’ description is unsuccessful,
new pattern and extraction rules have to be
discovered. The system must be able to ignore
redundant and unnecessary fragments of a page.
Furthermore, it has to delineate a product description
and recognize the attributes of a product such as the
price, the manufacturer, the availability, the special
offer, the size, etc. Next, the e-store is classified into
one or more corresponding clusters (used for later
search of items), using learned ontologies and basic
information about the e-store. Finally, basic
information, query template, rules and ontologies are
stored into a knowledge database.

Type of
input

ObserveUser()

User
finished

RuleExtraction()
(wrapper generation)

OntologyExtraction()

Test extracted
rules (wrapper)

StoreClustering()

SAVE:
- E-store basic information
- E-store query template
- Extracted rules (wrapper)
- Ontologies

Retrieve()

for all e-stores in a cluster
(except those already stored)

CreateQuery()

Merge both list of queries
(created & stored)

MappAndMatch()

SAVE:
- Newly generated item-query
- Item information

OUTPUT
(multiple-store item-related

information results)

query for item search new e-store’s URL address

no

yes

wrong rules
(wrapper)

rules OK
(wrapper)

Fig. 6. An overall architecture of ShinA.

In the second case, where a user enters a keyword

search for an item, the system first checks whether an
equal or similar search has ever been requested. If so,
each stored query (linked with user’s item search) is
modified accordingly and added to the list of
potential queries. Otherwise, the system takes the
most promising cluster of e-stores and creates queries
based on query templates. The created queries are
then added to the list of potential queries. Next, each
potential query is performed on the corresponding e-
store, which responds with a page, hopefully
containing information about sought after items with
their descriptions. The system tries to extract product
information from each retrieved page with
appropriate extraction rules. The successful queries
and related product information are then stored into
Knowledge database.
Finally, product information (from various sites and
various formats) is presented to the user in a user-
friendly uniform way.

6.2. System architecture

The common data structures, the algorithm and
ontologies have already been described in Section 4.
Here we describe ShinA in this framework as a
particular implementation of the algorithm. Fig. 6
shows the architecture of our ShinA comparison-
shopping agent. The task of the observing module
ObserveUser() is to transform requested pages into a

form that enables the system to control and supervise
user’s communication with e-store sites. The wrapper
generator RuleExtraction() is the main learning
module that constructs a wrapper for each particular
store. The wrapper generator learns two things: it
recognizes a store’s query scheme and ontologies,
and it learns how to extract a store’s content. The
wrapper interpreter Retrieve() is a module that
executes generated wrappers to get product
information. This module forms several actual
queries by combining each store’s query template
with the keywords that the user actually typed in, and
sends them to the corresponding shopping sites. The
search results from the stores are then collected and
fed to the uniform output generator module
MappAndMatch(). The output generator integrates all
the search results and generates a uniform output.
Information such as extracted rules, query templates,
ontologies, item-related information, e-store-related
information, etc., is stored into the Knowledge
database.

6.3. Learning Algorithm

The main learning task specific to ShinA is to build
a rule from one or several resulting pages. Such a
rule is used to learn the format of product description
from successful searches at a new shopping site. We
use an inductive learning mechanism to accomplish
this task. Here, the examples correspond to the pages

of a search result, and the concept to be learned
corresponds to the extraction rule (Yang, Seo &
Choi, 2001).

Each page contains one or more product
descriptions that matched the query. A product
description is composed of a sequence of product
attributes. For example, a music store displays search
results in which the attributes are the CD title, the
artist name, the price, etc.

The wrapper-learning module has to find the
starting and ending position of the list of product
attributes within the result page, and recognize the
pattern of a product description. To do this, our
method is divided into three phases. In the first
phase, the HTML source of the page is partitioned
into three parts. The first and the last part are
redundant and irrelevant fragments of the page
(header, advertisement, script) that must be ignored.
The useful middle part must be extracted, and
consists of a set of attributes that describe the
product. If there is more than just one product
description on the resulting page, more different
patterns of product representations may occur. In the
next phase, the algorithm recognizes product
attributes by examining HTML tags (delimiters) and
categorizes them, accordingly. The product
description is thus viewed as a sequence of
categories, and the algorithm finds repeating patterns
in it. The most frequent pattern becomes the
representative product description.

6.4. Implementation

ShinA’s Web interface is shown in Fig. 1. Unlike
EMA, ShinA is a dedicated system without modules
for translation, speech, and large amount of locally
stored data. However, the core task of parsing and
understanding heterogeneous sites is more difficult in
e-commerce than in employment because of higher
diversity of e-stores.

The ShinA system has been implemented on a
Windows 2000 operating system, running Apache
HTTP Server, version 1.3. As developing tools, JDK
1.3.1 and Jakarta Tomcat 3.2 were used. The system
is written in Java and is based on servlet/JSP. It
consists of approximately 10 thousand lines of code.
Tomcat is a servlet container that is used in the
official Reference Implementation for the Java
Server and JavaServer Pages technologies. Both
Apache Server and Tomcat are developed in an open
and participatory environment and therefore freely
available.

7. Related work

BargainFinder (Krulwich, 1995) and Jango (Jango)
are first-stage comparison shoppers. They specify
functions that agents must have in order to be applied
to Electronic Commerce. Both systems employ the
manual rule extraction method.

ShopBot (Doorenbos, Etzioni & Weld, 1997), like
our system, suggests an automatic rule extraction
technique by analyzing and learning the shopping

sites. In order to integrate specific product
information, Shopbot first removes irrelevant
information such as advertisements by using an
inductive learning mechanism and then extracts
necessary product information. Shopbot, however,
uses several strong biases about the structure of
HTML and the display format of product search
results to learn. Therefore, Shopbot is unable to learn
a shopping site that does not conform to these strong
biases. By contrast, the only bias in our method is
that the result of a product search should be displayed
in a semi-structured way, that is, each product
description unit has the same output format, which
conforms to almost all shopping sites. We expect our
method to function more robustly than Shopbot. The
thesis can be verified by empirically testing the
success rate of correct wrapper constructions. We
plan to measure the performance of our agents in the
near future.

PersonaLogic is a comparison-shopping system
that compares specific products themselves rather
than shopping sites.

Kasbah, AuctionBot, and Tete-a-Tete (see
References) are negotiation mediators with which
users can buy and sell products based on negotiation
strategies between agents in the virtual marketplace.
They do not enter e-commerce sites in an automatic
or semi-automatic way like our agents do.

To our knowledge, today’s commercial comparison
shoppers, including MySimon, PriceWatch, and
BottomDollar all employ manual rule extraction
methods, and consequently suffer from reduced
scalability, and the ability to incorporate new e-stores
and adapt to changes in incorporated stores.

8. Conclusion

We have proposed a general domain-dependent
information-gathering agent. The system has been
implemented in several versions of the two basic
applications: EMA for employment, and ShinA for e-
commerce. The agent successfully constructs correct
wrappers for “reasonable” domain-dependent
databases without assuming many structural
constraints.

The agent contains a quick, simple and robust
inductive learning algorithm that automatically
generates wrappers. The extension of the learning
method is memory-based learning of success rates of
particular queries. This makes it possible to adapt to
user habits and to changes at visited sites.

 There are some limitations in our current system.
Firstly, we have assumed that users give a proper
URL and path for the test query. Secondly, each
major concept must contain a uniform structure. We
think that this is not a severe restriction since most
domain-related databases stores that produce semi-
structured entity information, contain the same
attributes. Thirdly, we only extract the major
information from an entity description that may also
contain several other attributes. Lastly, the system
relies heavily on HTML. If an Internet site provides
information exclusively by embedding it in graphics

or using Java, the system will be unable to handle the
site.

Overall, the idea of semi-automatic information-
gathering from heterogeneous Internet-based
databases is becoming technologically mature. The
problems we have been facing during
implementations were not of principal matter.
Technically, similar systems seem to be close to full-
scale implementation. One can imagine a uniform e-
shopping agent visiting and gathering information
from all e-shopping databases on the Internet.

We believe that this technique can also be applied
to other information integration systems for
heterogeneous information sources.

Acknowledgement:
Financial support was provided by an international

project INCO-Copernicus 960154, Cooperative
Research in Information Infrastructure, CRII, by the
Ministry of education, science and sports in Slovenia,
and by ESS. We would like to thank the CEO of the
Employment Service of Slovenia, Mr. J. Glazer.

References

Ashish, N., & Knoblock, C. (1997). Semi-Automatic

Wrapper Generation for Internet Information Sources.
In Proceedings of Second IFCIS Conference on
Cooperative Information Systems (CoopIS).

Atzeni, P., Mecca, G., & Merialdo, P. (1997). Semi-
structured and Structured Data in the Web: Going Back
ad Forth. ACM SIGMOD Workshop on Management of
Semistructured Data, pp.1-9.

AuctionBot. http://auction.eecs.umich.edu/
Balabanovic, M., & Shoham, Y. (1995). Learning

Information Retrieval Agents: Experiments with
Automated Web Browsing. In Proc. of the AAAI Spring
Symp. on Information Gathering from Heterogeneous,
Distributed Environments.

Baek, S., Liebowitz, J., Prasad, S.Y., & Granger, M.J.
(1999). Intelligent Agents for Knowledge Management
- Toward Intelligent Web-Based Collaboration within
Virtual Teams. In Knowledge Management Handbook,
(ed. Jay Liebowitz), CRC Press, (11-1 - 11-23).
Washington, DC.

Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation
as classification: Using social and content-based
information in recommendation. In Proceedings of the
1998 Workshop on Recommender Systems, AIII Press,
pp.11-15.

Bezek, A., & Gams, M. (2001). An agent that understands
job description. Informatica (Ljubljana), 25(1), pp.99-
105.

BottomDollar. http://www.bottomdollar.com/
Bradshaw, J. M. (1997). Software Agents, AAAI Press,

Menlo Park, California.
Cowie, J., & Lehnert, W. (1996). Information Extraction.

Comm. of the ACM, 39(1), pp.80-101.
Dastani, M., Jacobs, N., Jonker, Catholyn, M., & Truer, J.

(1999). Modelling User Preferences and Mediating
Agents in Electronic Commerce. In Proc. of the Agent-

Mediated Electronic Commerce (AMEC) SIG-Meeting
of AGENTLINK.

Doorenbos, R., Etzioni, O., & Weld, D. (1997). A Scalable
Comparison-Shopping Agent for the World Wide Web.
In Proceedings of the First International Conference
on Autonomous Agents, pp.39-48.

Freitag, D. (1998). Information Extraction from HTML:
Application of a General Machine Learning Approach.
In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI-98).

Gams, M. (2001). A Uniform Internet-Communicative
Agent, Electronic Commerce Research, 1, Kluwer
Academic Publishers, pp.69-84.

Greenwald, A.R., & Kephart, J.O. (1999). Shopbots and
pricebots. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence, pp.506-511.

Gutmann, R. H., Moukas, A. G., & Maes, P. (1998).
Agents as Mediators in Electronic Commerce,
Electronic Markets, 8(1), pp.22-27.

Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R.,
Breunig, M., & Vassalos, V. (1997). Template-based
wrappers in the TSIMMIS system. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pp.532-535.

Jakobsson, M., & Yung, M. (1998). On assurance
structures for WWW commerce. In Financial
Cryptography ’98.

Jango. http://www.jango.com/
Kasbah. http://kasbah.media.mit.edu/
Kitano, H. (1993). Challenges of Massive Parallelism, In

Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pp.813-834.

Krulwich, B. (1995). Bargain Finder agent prototype.
Technical Report, Anderson Consulting.
http://bf.cstar.ac.com/bf/

Kusmerick, N., Weld, D.S., & Doorenbas, R. (1997).
Wrapper Induction for Information Extraction. In
International Joint Conference on Artificial
Intelligence, pp.729-735.

Levy, A.Y., & Weld, D.S. (2000). Intelligent Internet
Systems. Artificial Intelligence, 118, pp.1-14.

Liebowitz, J., (ed.). (1999). Knowledge Management
Handbook, CRC Press, Washington, DC.

Liu, L., Pu, C., & Han, W. (2000). XWRAP: An XML-
enabled Wrapper Construction System for Web
Information Sources. In Proceedings of the Sixteenth
International Conference on Data Engineering, pp.
611-621.

Lewis, T. (1999). Microsoft Rising : ... and Other Tales of
Silicon Valley, ACM.

Maes, P. (1994). Agents that reduce work and information
overload. Comm. of the ACM, 37(7), pp.31-40.

Maes, P., Guttman, R., & Moukas, A. (1999). Agents that
buy and sell. Comm. of the ACM, 42(3), pp.81-91.

Mladenic, D. (1999). Text-learning and related intelligent
agents. IEEE EXPERT, Special Issue on Applications
of Intelligent Information Retrieval.

Muslea, I., Minton, S., & Knoblock, C. (1998). Wrapper
Induction of Semistructured, Web-based Information

http://www.bottomdollar.com/
http://www.jango.com/

Sources. In Proceedings of the Conference on
Automatic Learning and Discovery.

Muslea, I., Minton, S., & Knoblock, C. (1999). A
Hierarchical Approach to Wrapper Induction. In
Proceedings of the Third International Conference on
Autonomous Agents, pp.190-197.

MySimon. http://www.mysimon.com/
Pazienza, M.T. (ed.), (1997). Information Extraction,

Springer.
PersonaLogic. http://www.personalogic.com/
Pivk, A. (2001). Item-based Collaborative Filtering

Algorithms, In Proc. of the Fourth International
Conference on Information Society, pp. 65-68.

Pivk, A., & Gams, M. (2000). E-Commerce Intelligent
Agents, In Proceedings of ICTEC’00, pp.418-429.

PriceWatch. http://www.pricewatch.com/
Schafer, J., Konstan, J., & Riedl, J. (1999). Recommender

systems in e-commerce. In Proceedings of ACM
Conference on E-Commerce, pp.158-166.

Shoham, Y. (1997). An Overview of Agent-oriented
Programming, In Software Agents (ed. Bradshaw, J.
M.), AAAI Press, Menlo Park, California, pp.271-290.

Tete-a-Tete. http://ecommerce.media.mit.edu/tete-a-tete/
Yang, J., Seo, H., & Choi, J. (2001). MORPHEUS: A

Customized Comparison Shopping Agent. In
Proceedings of the 5th International Conference on
Autonomous Agents (Agents-2001), pp. 63-64.

Yang, J., Lee, E., & Choi, J. (2000). A Shopping Agent
that Automatically Constructs Wrappers for Semi-
Structured Online Vendors. Lecture Notes in Computer
Science, Vol. 1983, pp.368-373.

http:///
http://www.personalogic.com/
http://ecommerce.media.mit.edu/tete-a-tete/

	Introduction
	Agents
	Wrappers
	Information-gathering algorithm
	Data structures
	Algorithm

	Employment information gathering
	E-trading information gathering
	Workflow of the agent
	System architecture
	Learning Algorithm
	Implementation

	Related work
	Conclusion

