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Abstract--The electronic circuit diagnostic problem is roughly formulated and subdivided into six 
subproblems. Current literature and patents are surveyed with respect to the above six subproblems. Some 
of the existing expert diagnostic systems as well as expert diagnostic shells are described and their 
limitations are outlined. A review of the relevant terms from AI is included. The bibliography list contains 
some 300 references. 

1. INTRODUCTION 

This paper discusses artificial intelligence methods in circuit pack testing. Testing requires 
investment of labor, capital and information about testing techniques. The added cost of testing 
in the circuit pack production line is justified by several reasons: first, the defective products are 
not shipped; second, testing helps to develop product repair methodology; and, finally, testing helps 
to discover manufacturing problems, e.g. low yield due to a single fault may occur because of 
malfunctioning insertion robot, a bad batch of components, or a badly designed in-circuit test. 

The interested reader should refer to Towill (1987) and Williams et al. (1982) for overviews of 
automatic testing. 

1.I. Faul t  categories 

Defects in circuit packs, in general, come from three sources: bad components, damage to 
components or the circuit board, and mistakes in the manufacturing process. Since "different things 
go wrong at different times because of different reasons" (Pynn, 1986), determining an optimal 
manufacturing and test strategy becomes a challenging task. 

Roughly speaking, one can define three different fault categories: device faults (e.g. unoperative 
capacitor) assembly faults (e.g. solder shorts, missing components, misoriented components, etc.) 
and operational faults, such as timing problems arising from apparently good components that fail 
to work together. According to this somewhat arbitrary fault categorization, a two-stage test 
strategy has been adopted by most circuit pack manufacturers: the inspection test stage and the 
functional test stage. 

Inspection test is designed to examine the circuit pack for proper construction and it consists 
of shorts test, in-circuit test, and visual test. The in-circuit test examines the function of each device 
separately from others. Functional (system) test is designed to examine the operation of the pack 
and thus tests the function of assemblies of components. 

As the complexity of the circuit pack grows, the role of testing becomes more important and 
the testing process becomes more difficult. The area of design for testability is becoming a popular 
topic by necessity (Williams and Parker, 1983). With the advent of computer technology, automatic 
test equipment--the equipment for programmed application of sequences of stimuli, measurement, 
and comparison of the results to the expected values---became the accepted norm. The issue of 
software development for such automatic test equipment becomes both increasingly important and 
difficult as the complexity of the circuit packs grows. 

1.2. A u t o m a t e d  diagnostics 

The ability of software to generate stimuli and to draw conclusions about the defective 
components for a given circuit pack is a subtle issue dependent on the experience of the test engineer 
responsible for programming of the automatic test equipment. If the test is to perform two basic 
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tasks, i.e. verification (knowing whether everything is functioning as expected), and diagnosis 
(identifying what causes the unexpected behavior, so it can be fixed) then it is the diagnosis which 
becomes an increasingly difficult task as a result of the growing complexity of the circuit packs. 

1.3. Importance of diagnostics 

Diagnosis of an electronic circuit usually refers to the process of determining the faulty 
component(s) that cause an undesired behavior (output) of the given circuit for some (correctly) 
given input. Importance of diagnosis stems from both practical and theoretical considerations. 

1.3.1. Practical considerations. The practical considerations are primarily of an economic nature: 
there is a monetary value associated with every component in the pack, as well as a monetary value 
associated with the processes of assembly and soldering of the pack. Thus, when a pack is declared 
faulty, it is desirable to replace only the faulty components. 

Moreover, the process of identification of the faulty components (the diagnostics) consists of a 
series of tests each of which has an associated cost, expressed in such parameters as test setup time, 
component destruction, etc. The process of identification of the faulty components and their 
subsequent replacement should not be overly expensive. Thus, 

Observation 1: Diagnostics of circuit packs is primarily an economic problem (Barber and Yau, 
1986). Currently this problem is solved in the majority of cases by humans who are called test 
analysts or diagnosticians. Training of such human analysts is expensive. Their performance 
depends on the accumulated experience. Indeed, 

Observation 2: There are human experts that are extremely successful in the area of diagnostics. 
Therefore, it is very desirable to have computer programs which are capable of performing 
diagnostics. However, 

Observation 3: Diagnostics problem (i.e. the construction of a computer algorithm which is 
capable to perform diagnostics) is NP-hard (Hyafil and Rivest, 1976; Ibarra and Sahni, 1976; Karp, 
1972). 

1.3.2. Theoretical considerations. Therefore, in the absence of a better alternative, we resort to 
the construction of programs that perform approximate diagnostics. In other words, we are willing 
to give up some of the precision of the final description of the faulty component(s) (solution) in 
order to gain in the length of time spent to obtain that solution. Moreover, in many cases, in the 
absence of rigorous mathematical methods to simulate the complex decision making processes 
which are performed by the human diagnosticians, we are forced to invent different heuristics in 
order to obtain in some sense similar diagnostic performance. Therefore, the development of such 
programs is related to the field of computer science which is commonly known by the name of 
artificial intelligence. 

This relation is further extended to the fields of control systems, since, as we shall show later, 
a diagnostics problem is also a planning or control problem. Moreover, approximate solution 
approaches often employ probabilistic and fuzzy reasonings, thus relating the research in 
diagnostics to operations research and information theory. The time complexity considerations in 
the diagnostic and related algorithms requires applications and further developments of the results 
belonging to the field of computational complexity. And, of course, the area of application is related 
to electrical engineering. Diagnostics belongs to the intersection of all of the above fields. Hence 
the theoretical importance of diagnostics. 

1.4. Current approaches 

Two basic approaches and their combinations are currently utilized in industry for conventional 
diagnostic software development: the fault dictionary approach and the guided probe approach. 
The fault dictionary approach requires simulation of the faulty behavior of the system and 
subsequent storage of the simulation results (as well as the fault assumptions) in the fault 
dictionary. A "misbehaved" output of the pack under test can therefore be looked up in the fault 
dictionary. Basically, two problems prevent the fault dictionary approach from being the widely 
accepted testing method. These are the overly extensive memory requirements and the diversity of 
the faults. As a result, the fault dictionaries are usually incomplete and ambiguous. 

The guided probe approach requires only simulation of the correctly functioning circuit pack. 
The basic tool in utilizing this approach is the blame-shifting mechanism applied after each 
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measurement. The upstream (from the test point view) components in the circuit are blamed only 
when the measurements do not agree with the expected results. The efficient sequencing of 
measurements becomes the maii: problem when implementing the guided probe approach. 

1.5. Outline of  the overview 

In order to appreciate and put into perspective the contributions of the earlier published results 
on diagnostics, it is convenient to view them with relation to different aspects of the diagnostics 
problem. Such a perspective not only allows us to compare different approaches but also provides 
us with the opportunity to identify yet unsolved problems. The rest of the paper is organized as 
follows: first we state the diagnostics problem in a more formal way so as to allow its subdivision 
into six subproblems. Then we give a brief overview of each of the subproblems and the tools that 
are used in their solution. 

2. PROBLEM STATEMENT 

A circuit pack (plant) P = P(S, B) is modeled by its structure S and its behavior B. 
Structure S = S(C, T) is defined by the set C of components and topology T on the set C. 
Behavior B =B(IO, R) is defined by two mathematical models: (1) I0  model describing 
the input--output relationships of every c e C and (2) R model describing the reliability of every 
ceC.  

A component c ~ C is called faulty if its observed behavior bo is different from be, the expected 
IO behavior (be e IO). 

Problem 1 (Diagnostic Problem). Given a multicomponent plant P and a symptom 
indicating an anomaly on the expected IO behavior, identify the subset Cf c C of faulty 
components. 

However, the identification part of the above problem is itself a complex process. In particular 
it involves repetitive generation of hypotheses and their support or disposal. Proving or rejecting 
a hypothesis requires in turn to perform sequences of measurements and subsequent sequences of 
symbolic computations. Therefore, the identification requirement of Problem 1 can be satisfied by 
recursively solving the following: 

Problem 2 (Classification Problem). Given a symptom and the results of previously performed 
measurements, obtain an estimate of the faulty subset Cf (generate hypothesis), and 

Problem 3 (Planning Problem). Given an estimate of Cf, obtain the minimum expected cost plan 
(sequence) of measurements, so that when performed, the initial hypothesis will be either proved 
or rejected. 

Note 1. The actual reasoning technique employed to prove or reject a hypothesis, although an 
important issue by itself, serves only a secondary role. 

Diagnostic expert system exploits diverse sources of information to detect failures in a given unit 
under test (UUT). The relevant information is concerned with the function of the different 
components, their interconnection, signal characteristics and their paths, and component reliability 
measures. Moreover, since usually the initial information is insufficient to diagnose correctly, a 
number of additional observations (tests) is needed to complete the diagnosis. The description of 
available tests, their diagnostic value and costs is yet another kind of information necessary for 
diagnosis. Knowledge representation is the term used for the schemes of storing the different kinds 
of information in order to allow for its efficient processing, i.e., failure detection and cost-efficient 
test sequence generation. Knowledge has to be adequately represented for quick manipulation, for 
ease in modification, for specifying distinctions between different concepts, and for viewing of 
multiple levels of abstractions. 

Knowledge representation is inherently related to the ways the knowledge is used. Different 
problem-solving strategies which use the knowledge base define the inference engine of the 
diagnostic expert system. 

Problem 4 (Reasoning Problem). Find an efficient way of reasoning about electrical circuits. (Such 
reasoning involves manipulation of data structures which represent both structural and behavioral 
data.) 
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Note 2. Both Problem 2 and Problem 3 involve requirements to reason along both structural 
and behavioral lines. Such computational requirements require novel approaches for solution of 

Problem 5 (Representation Problem). Find an efficient way of representing plant P = P(S, B). 
Efficiency of representation is determined by its level of completeness, consistency, transparency, 
and computability (Winston, 1984). 

When solving Problem 1 by using heuristic approaches and in particular by utilizing knowledge 
of human experts, one can not overestimate the importance of 

Problem 6 (Knowledge Engineering Problem). Find efficient ways to extract the heuristics about 
circuit pack troubleshooting from human experts. 

And, when interfacing to analysts at the shop floor level, one must also face 
Problem 7 (User Interface Problem). Find efficient ways to conduct a fruitful dialog with the 

human analysts performing diagnostics. 
We have identified six problems which belong to the field of artificially intelligent testing. Now 

we turn to the approaches and tools which are being used to solve those problems. It is more 
convenient first to address the problems of representation and reasoning, then the planning and 
classification problems, and, finally the issues about knowledge engineering and user interfaces. 

3. REPRESENTATION AND REASONING PROBLEMS 

Basically two approaches and their combinations have been used to solve diagnostics problems: 
the rule-based (shallow modeling) approach and the conceptual (deep) modeling approach. Many 
diagnostic systems have their knowledge in the form of rules, representing separate and modular 
chunks of knowledge, e.g. "Observations =~ Hypothesis". Often such knowledge may be contra- 
dictory, incomplete, or too large to be manipulated efficiently. In such cases one models the domain 
or system under consideration and reasons with this model to generate diagnostics. Such models 
have been called causal, conceptual, or deep models. 

3.1. Performance notions 

The choice of the correct approach or their combination depends on such factors as size and 
complexity of the diagnosed system, its reliability on the one hand, and its criticality and stability 
on the other hand. 

System size is usually defined in terms of the number of line replaceable units (LRU). System 
complexity reflects the size of the effort required to track down a fault and it is a function of the 
number of feedback loops, number of outputs and inputs to LRUs, etc. 

Reliability of the diagnosed system is defined as the cumulative reliability of its LRUs. Note that 
the more reliable the system is the more difficult is the diagnostic task. 

The criticality of the diagnosed system is defined in terms of the length of time interval length 
within which the diagnosis must be completed. Stability of the diagnosed system is defined by the 
number of modifications to the system per unit of time. 

3.2. Rule-based appoach 

The rule-based approach can be further subdivided into deterministic decision trees, single 
relevant rule, and multiple relevant rule methods. 

3.2.1. Deterministic decision tree. The deterministic decision tree method is based on the 
construction of a hierarchy of questions in such a way that each combination of answers can be 
interpreted as a leaf on the decision tree. The main advantage of this approach is in its simplicity 
and in its suitability to the systems of high criticality. However, this approach is limited to the 
systems of low complexity and high stability. 

3.2.2. Single relevant rule. The single relevant rule approach is based on searching the rule base 
for the single rule which can be applied in a given situation or can confirm a given hypothesis. Since 
such search procedures can be applied recursively, they have been called forward and backward 
chaining respectively. The advantages and disadvantages of the single relevant rules are similar to 
the ones of the deterministic decision trees. However, when applying this approach one must be 
aware of the requirements to maintain a valid rule base, i.e. no two rules may apply to the same 
situation (consistency), and each situation has to be covered by a rule (completeness). 
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Optimality of the rule base is obtained by ordering the rules in such a way that the expected 
time to search for the relevant rule is minimized. An entropy-based approach is usually utilized 
to obtain the optimal ordering of the rule-base. Sometimes a cost is associated with the firing action 
of the rule or/and with the satisfaction of the antecedent of the rule (i.e. query of the user, test 
setup time, etc.). In such cases the optimality of the rule-base becomes a difficult problem. The 
requirements of consistency, completeness, and optimality are very difficult to satisfy in advance 
when dealing with systems of low stability and high complexity. 

3.2.3. Multiple relevant rules. To resolve the above problem, the multiple relevant rules approach 
has been developed by several authors. This approach requires application of a heuristic to evaluate 
the chaining strength of the rule on a particular situation as well as a heuristic to combine the 
strengths of several rules when forward or backward chaining is involved. A basic expert system 
building tool (a shell) has been recently patented (Hardy et al., 1987) by Teknoledge. The tool 
includes interactive knowledge base debugging, question generation, legal response checking, 
explanation, and certainty factors. (Its source code in Prolog takes 7 pages and is available in the 
patent documentation.) However the expert systems based on this approach and having several 
hundreds of rules again exhibit great difficulties in maintaining their knowledge base. Also the 
multiple relevant rules approach does not contribute to the problem of knowledge acquisition for 
the systems of low stability. 

3.3. Conceptual modeling approach 

Conceptual modeling approach takes into consideration the original system description rather 
than using the knowledge compiled by humans into a decision tree or a set of rules. The conceptual 
modeling approach can also be subdivided into normal functioning modeling and fault functioning 
modeling. The overall diagnostic strategies and their relationships were described in Chandrasek- 
aran and Milne (1985), who used a hierarchy of four levels: structural, behavioral, functional and pat- 
tern matching. Given structural representation (list of components and their connectivity; Forbus, 
1987; Bylander and Chandrasekaran, 1985) using qualitative simulation and consolidation pro- 
posed methods to generate the behavioral description. To generate a functional description of the de- 
vice using the behavioral description, one may use the approach of de Kleer which is based on teleo- 
logical (device intentions based) reasoning. The pattern matching diagnostic strategy can be applied 
after compiling (by a human expert or by a machine) the functional description of the device. 

Deep (structural, behavioral and functional) modeling can also be used to declare the innocence 
of certain components of the unit under test (UUT; Scarlet al., 1987), or to explain the observed 
malfunction (Kuipers, 1987). 

Using de Kleer's (1983) approach, given a low level electronic description of the components, 
one is able to deduce the outputs of the circuit, and consequently diagnose faults in it. Davis (1983) 
proposed computing the function and the inverse of each component and then utilizing them to 
propagate of combination of inputs to compute the outputs or vice versa. Digital troubleshooting 
becomes possible by comparing the expected values with the computed ones. 

A formal language for UUT description has been developed by (Chandrasekaran, 1985) who 
compiles the above description into a set of production rules which are used for diagnosis. 

M ilne (1985) uses structural reasoning at both the fault isolation to a functional area and possible 
faults proposal stages. Using his "responsibility theory" appoach only four basic diagnostic rules 
are needed: two rules to propose faults using description of structure and another two using 
description of function. 

Forbus (1981) develops a qualitative reasoning methodology to derive the diagnostic rules given 
a structural description of objects and their topology. Bylander and Chandrasekaran (1985) 
propose a methodology to develop the description of behavior of composites of components based 
only on the descriptions of the components. 

4. P L A N N I N G  P R O B L E M  

Ooel (1980) has shown that the number of tests needed to pinpoint a fault is at worst linear in 
the number of components. However, as we observed earlier, generating the best test sequence is 
NP-complete (Ibarra and Sahni, 1976). 
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A test generation algorithm which uses the design information has been proposed some 20 years 
ago by Roth et al. (1967) and it is called the d-algorithm. The d-algorithm is based on activating 
simultaneously all the paths to the observable point in the system. Such an approach is impractical 
for nowadays circuits because of its high computational requirements. 

An algorithm of Cantone (1985) for deciding which test to perform is based on maximizing 
the ratio of information gained and expected cost, computed over the available subcircuits. 
The algorithm is based on the gamma-miniaverage method (Slagle and Lee, 1971). A combi- 
nation of structural information (topology of components) and compiled knowledge (cost 
of test and components' failure rates) is used to further isolate the fault to a single functional 
area. 

The DART algorithm (Bennett et al., 1981) exploits the heirarchy of the circuit in order to deal 
with the issue of exponential growth in the number of computations. Within each level DART 
deduces the suspects by reasoning backward to find a justification for a symptom and generates 
additional tests by working forward from a behavioral rule for one of the suspects to observable 
outputs. For more on planning see also Allen et al. (1983), de Kleer (1977), Hyafil et al. (1976), 
Ibarra et al. (1976), Konolige et al. (1980), Loveland (1979), McDermott (1981, 1982), Poage et al. 
(1964), Rosenchein (1981), Sacerdoti (1977), Shirley (1983), Slagle et al. (1971), Vere (1983) and 
Warren (1976). 

5. CLASSIFICATION PROBLEM 

The diagnostic mode of reasoning is a term used by Kim and Pearl (1985) to describe the 
inference process of updating the causal model of beliefs due to modifications in the model of 
symptoms. Kim and Pearl (1985) describe a computational model for causal and diagnostic 
reasoning which is a generalization of the Bayesian methods previously applied to decision trees 
(DDI, 1973). 

5.1. Bayesian methods 

Diagnostic reasoning requires construction of means to assign and update a blame measure to 
parts of the model, based on the observed behavioral deviations of the physical system. The 
classical Bayesian probabilistic approach suffers from the following shortcomings: (1) the need to 
establish a priori probability of success of a test; (2) the need to establish a priori failure rates of 
the components; (3) the approach is only applicable when the events are mutally exclusive; and 
(4) conditional probabilities for every combination of evidence must be computed since the 
independence of evidence cannot be assumed. 

The Dempster-Shafer (Shafer, 1976) theory of evidence has been proposed to remedy some of 
the above problems. The theory still suffers from shortcomings 1, 2 and 4. Recently Thompson 
and Wojcik of Westinghouse patented a "Method and Apparatus for System Fault Diagnosis and 
Control" (Thompson and Wojcik, 1987). A domain-independent set of metarules is constructed 
which is able to build a rule network through which belief is propagated to detect defects. 

5.2. Multiple -fault assumption 

The multiple-fault assumption poses an additional difficulty in diagnostics problems. Peng and 
Reggia (1987) developed a probability based approach to guide the backward chaining in such a 
way that the more likely situations are considered first. By only using the input/output description 
of the components and the connectivity information, de Kleer (1986) developed a procedure to 
incrementally accept or rule-out possible faults. See also Edgar et al. (1984). 

Fuzzy logic applications for failure analysis were tried by Kitowski and Ksazek (1985). The 
applied method involves solution of fuzzy equations derived from a failure-symptom fuzzy relations 
matrix. 

Sensor-based systems for realtime monitoring present particularly stringent requirements for 
expert diagnostic systems. A rule-based system utilizing multiple sensors for obtaining data about 
chemical parameters was recently patented (Kemper et al., 1987; Westinghouse Electric). The 
system is utilized to monitor a steam turbine-generator power plant. 
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5.3. Learning 

Learning of diagnostics systems has been explored only at the compiled knowledge base level 
reasoning: Pazzani (1987) developed a failure-driven learning mechanism to update the rule-base 
when a diagnostic failure occurs. 

6. KNOWLI~DGE ENGINEERING PROBLEM 

Problem 6 (knowledge engineering) has been addressed in Cheeseman (1984), who considered 
the problem of expert systems learning from data. In particular he proposed a method for 
extracting information from data to form the knowledge base for a probabilistic expert system. 
A rule acquisition method for a diagnostic expert system has been recently filed for European 
Patent (Alexander et al., 1986) by Tektronix. The method includes a grammar for acceptable 
patterns which are automatically converted to rules. The rule acquisition process includes parsing 
of an input sentence as it is received and guiding the expert through the sentence creation. The 
system is implemented in Small Talk and Prolog. 

7. USER INTERFACE PROBLEM 

Problem 7 (user interface) is considered in Simmons (1985) and Taie et al. (1987) who addressed 
the issues of graphical and animated representation of functioning of devices. See also Richer and 
Clancey (1985) and Brown et ai. (1981). 

8. OPERATING IMPLEMENTATIONS 

Several diagnostic expert systems have been developed in industry during the last few years. 
A review of the capabilities and limitations of some of the completed projects is given to exemplify 
the theoretical discussion of the applicable methods given above. 

ADVISR (Cooper et al., 1987) is a rule-based expert system developed by AAI Corporation, 
running on IBM PC/AT, working in conjunction was ATLAS test program software, and designed 
to indicate faults on a Navy AN/USM-UUG (V) automatic tester. A single-fault assumption is 
made as well as the assumption about fully-reliable connectivities. 

ADS (Magliero et al., 1987) was developed by Harris Corporation as part of the Navy Integrated 
Diagnostic Support System. ADS integrates several knowledge representation paradigms such as 
pre-computed fault-trees, design topology, logical parameters historical records, and production 
rules. Test selection is done by maximizing the "expected" entropy to cost ratio. The system is 
implemented in ADA. 

FCMDS (Bursch et al., 1987) is developed by Honeywell Inc., in Lisp. FCMDS uses frame 
representation for its knowledge base which is subdivided into Causal Model KB and Test KB. 
The Causal Model includes the design toplogy. The Test Base contains the basic procedural 
knowledge for performing tests. Test selection is done similarly as in ADS. Test interpretation 
procedures involve proprietary algorithms to manipulate failure likelihood measures attached to 
LRUs. This allows for multiple-fault assumption. 

APU MAID (McCown et al., 1987) is developed by Allied-Signal Aerospace Company (Bendix). 
It has a temporal, event-based description of the diagnostic target system, The system is viewed 
as a sequence of functional events composed of location and context, e.g. time and causality. A 
failure model is obtained as an event-based description. The rest of the system is implemented in 
a rule-based fashion. The rules describe the relationships among events, components and 
parameters. 

FIS (Pipitone, 1986) is developed at the NRL's Center for Applied Research in AI. It is based 
on the fault model which is a qualitative causal model composed of a block diagram of the UUT 
combined with a set of causal rules for each block. Processing hypothesized test failures through 
the fault model produces an "ambiguity" set of possibly faulty components. A rule-based test cost 
generation is used to evaluate the variable costs of the tests. The best test is chosen similarly to 
the ADS. It is written in Lisp and runs on Sun. 
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AI-Ferret (Maguire, 1987) is developed at Hughes Aircraft Company. It is written in Interlisp-D 
and Loops and runs on Xerox 1109 AI workstation. It is basically similar to FIS and it has been 
successfully applied to diagnose the TOW missile system. The resulting rule base contains 3950 rules 
while the connectivity model contains over 900 functions (modes). 

Haidex (Firdman, 1987) is another diagnostic expert system developed at Hughes. It is based 
on the conceptual model of the normally functioning system and the set of deviations from the 
normal function. The inference engine generates a troubleshooting strategy by decomposing the 
UUT into its subsystems. It is developed in Zetalisp and runs on Symbolics 3670. 

MYCIN (Shortlife, 1976) is one of the first expert diagnostic systems designed at Stanford to 
recognize bacterial infections in blood samples. It is based on purely rule-based approach and it 
contains about 700 rules. Each rule has a confidence factor associated with it and the inference 
engine is provided with an adhoc  computation scheme to combine the factors when using backward 
chaining. Other MYCIN and medical applications related papers include Adams (1976), Benbasset 
et al. (1976), Ben-Bassat et al. (1980), Bjerregard (1976), Blois (1980), Bosyj (1975), Cantazarite 
et al. (1979), Chandrasekaran (1982), Chandrasekaran et al. (1979, 1980), Charniak (1983), Cooper 
(1984), Elstein et al. (1978), Flehinger (1975), Gomez et al. (1981), Gorry (1973), Kolodner et al. 
(1987), Kulikowski (1970, 1980), Lipkin et aL (1985), Miller et al. (1982), Mittal (1980), Mittal et al. 
(1979), Patil et al. (1981), Patrick et al. (1981), Regia (1982), Regia et al. (1985), Rubin (1975), 
Szolovitz (1978) and Weiss et al. (1978). 

Some other expert systems (AFHRL, 1984) include ARBY/NDS (DUCK) for communications 
networks troubleshooting, ACE for preventive maintenance of telephone cables, LES (frame-based 
with about 50rules) for electronic maintenance, STAMP, IDT (Shubin et al., 1982), CRIB 
(Hartley, 1984) and CRITTER (Kelly et al., 1982). 

9. SYSTEM BUILDING TOOLS 

The core of an expert system has a knowledge base and an inference engine that operates on 
the knowledge base. User interface is considered at two different levels: when developing a system, 
and when deploying it. Some of the important concepts are summarized below. 

9.1. Knowledge representation 

There are three important aspects of knowledge representation which must be available in any 
diagnostic system building tool. These are: object descriptions, actions, and certainties. 

The most convenient way to represent objects is by frames which are tabular data structures 
(records). A frame consists of slots which are filled with either data about objects or relations to 
other frames. A built-in inheritance mechanism allows to inherit or override the information from 
other frames. 

Actions are used to modify the relevant database. Actions are usually implemented by rules or 
procedures. 

The degree or correctness of data and/or knowledge is usually expressed by means of belief 
functions, certainty factors, or probabilities. 

9.2. Inference approach 

The inference approach in a typical diagnostic expert system may be a combination of forward 
and backward chaining, hypothetical reasoning, and blackboard mechanism. 

9.2. I. Chaining. Backward chaining is a method of evaluating hypothesized conclusions to see 
whether they are supported by the evidence. It is usually implemented via i f - then rules, starting 
with rules that have the hypothesized conclusions as their consequents. The set of rules is then 
searched for those in which the antecedents include the previous conclusions. This process 
(backward chaining) is continued until the hypothesis is proved. If the proof is unachievable, then 
some other hypothesis may be tried. 

Forward chaining starts with the present data with is matched with the antecedents until a 
relevant rule is found. The consequent of that rule determines the new present data and the process 
of matching is repeated until a desired conclusion is reached. 
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9.2.2. Hypothetical reasoning. Hypothetical reasoning (truth maintenance) refers to the solution 
in which hypotheses have to be assumed when initializing the search (e.g. forward or backward 
chaining.) Nonmonotonic reasoning refers to the ability of retracting the consequences of the 
assumptions which have been found untrue during the search process. Different tools handle 
nonmonotonic reasoning by using viewpoints, contexts or worlds, or nonchronological backtrack- 
ing. Hypothetical reasoning literature includes Doyle (1979), and McDermott (1980, 1982). 

The blackboard mechanism (Hayes-Roth, 1983) refers to a common data structure shared by 
a group of cooperating expert systems. An agenda often is used to control the development of the 
solution on the blackboard. This mechanism is especially useful when several competing solutions 
are developed in parallel. 

9.2.3. Pattern matching. Pattern matching is usually required in two mechanized reasoning 
instances: when matching rule atecedents to the current knowledge situation to fire the best 
applicable rule, and when matching partially filled frames to the existing knowledge base to 
determine the current knowledge. 

9.3. Expert system shells 

A diagnostic expert system development tool is required to have the following capabilities: (1) 
Knowledge representation: structured rules, certainty factors, frames; (2) Inference engine: forward 
chaining, backward chaining, backward chaining, blackboard-like, truth maintenance, pattern 
matching; (3) Developer interface: KB editor, menu, check for consistency, graphics representation 
of KB, graphics utilities to build end user interface, debug; and (4) Interface to general-purpose 
programming language (e.g. C). 

Unfortunately, none of the available products in the current market have all of the above 
features, although all of the products have many features in addition to the above list. The only 
products that come close to our requirements are ART, KEE and Knowledge Craft (see Expert 
System Shells List). However, the cost of these tools is in the range of $10,000-$65,000, besides 
additional expensive training. 

9.4. Diagnostic tools 

Two commercially available special purpose diagnostic expert system tools have been developed 
recently, namely, IN-ATE, and AI-Test. We give a short outline of their characteristics. 

9.4.1. IN-ATE. IN-ATE (Cantone et al., 1985) provides an excellent menu-driven syntax for 
specifying fault diagnosis expert rules. It also allows specification of the signal flow and uses it when 
searching for the defective component. In additon it has frames-based knowledge representation 
and a mechanism to perform probabilistic reasoning. 

The system does have an interface to C, and it does have capabilities for automated testing the 
knowledge base consistency. It runs however only on a Macintosh computer. The system does not 
have a separate electronics theory and measurements related data-base. Therefore, each test point 
must have all the relevant information. Thus, some duplication of information and difficulties in 
knowledge acquisition are inevitable. 

9.4.2. AI-Test. AI-Test (Ben-Bassat et al., 1987) is developed by Intelligent Electronics and runs 
on IBM-PC/AT. AI-Test is comprised of two knowledge bases---the Universal Knowledge Base 
which contains general information relating to electronics theory, kinds of measurements (DC, 
frequency, etc), signal types, etc. and the UUT-specific knowledge base which includes the block 
diagram of the UUT and tests descriptions. 

The inference engine interprets the test results (by updating the model of beliefs) and chooses 
the next best test. No mechanism is provided to update the initial failure rates of the components. 
Also, the choice of the appropriate kind of test at a specific test point must be performed by the 
user. An AI system should be able to suggest the most informative test description automatically. 
The user interface has been improved greatly since the last release. 

10. CONCLUSIONS 

New circuit pack manufacturing technologies (e.g. surface mount) contribute further to the 
complexity of the circuit pack and thus make the testing even more difficult. For example a new 
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approach in electronic design is the Built-In-Self-Test (BIST) approach (Agarwal, 1987). This 
approach has the positive features of testing the equipment at its normal operation speed, as 
well as running the test in parallel on all the devices. Thus a malfunctioning device can in 
principle declare its faulty condition faster and seemingly reduce the difficulty of the diagnostic 
task. 

10.I. New challenges 

As happened before, the new technology has posed new testing challenges. In particular, BIST 
technology requires separate independent testing of the built-in test equipment. Failing to test the 
built-in hardware may result in two kinds of errors: a correctly functioning device declaring itself 
as faulty and thus being replaced for the wrong reason (such repeated mistakes will later be 
propagated to mistakes in the process control) and a misbehaving device declaring itself as being 
healthy, thus postponing the troubleshooting to later stages and therefore increasing the manu- 
facturing and maintenance costs. 

10.2. Drawbacks of the rule-based approach 

Since the success of MYCIN, the rule-based approach has been implemented several times in 
circuit pack diagnostics. The mechanisms that proved useful in medical applications were 
automatically applied in the electronics industry. However, in this industry only part of the 
knowledge (general electronics laws) is static, while the rest of the knowledge changes with every 
new design and with every new batch of components. Moreover, the usually available statistical 
data is not present any more. One the other hand, another kind of data (connectivity and signal 
paths) is available. These differences must be recognized and utilized (e.g. IN-ATE and AI-Test) 
in order to develop a successful expert system. 

10.3. Classification and planning problems 

The diagnostic problem is still far from being resolved and it is currently an area of active 
research and development. In particular in the area of the classification problem there is a lack 
of computationally efficient schemes to propagate the results of tests. A prevailing assumption is 
the "perfect info" assumption underlying the construction of most of the diagnostic expert systems. 
The mechanisms for dealing with partial, unreliable, and contradictory results are mainly based 
on the Dempster-Shaffer theory. The conditional probabilities (correlation data), which are usually 
available in medical applications are not generally available in electronic circuit pack diagnostics 
applications. Thus, the applicability of the "classical" belief propagating schemes is questionable. 
This issue requires a separate investigation in light of dealing with structural circuit description in 
addition to rules. The issue of dealing with noisy data also requires a specialized effort. 

In the area of the planning problem there is lack of mathematically sound basis for the best test 
selection. Most of the existing systems either do not address the issue of test planning or use an 
ad hoc method. Computational efficiency is another issue which must be addressed separately. 

10.4. Deep knowledge representation and reasoning 

Although it is now quite obvious that a purely rule-based approach is not practical, there are 
not many pragmatic ways to implement a deeper kind of knowledge besides the connectivity of 
the circuit pack. The area of knowledge representation and reasoning currently receives most of 
the AI community's attention. Yet it is still unclear to what extent qualitative reasoning and 
functional knowledge can be used for practical applications. Consequently all of the existing 
diagnostic expert systems implementations are using a combination of rule-based and connectivity 
knowlege with a mechanism for belief functions manipulations and an ad hoc (entropy vs cost 
based) best test selection heuristic. Thus, efficiency of such systems is difficult to assess. 

10.5. Learning and user interface 

The least amount of work is done in the areas of learning and user interface. It seems that the 
most desirable approach to "engineer" knowledge is via a mechanized interview of the design 
engineers. Experiments have not been performed, nor have tools been constructed to achieve such 
goals. 
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10.6. More open problems 

Only one system (AI-Test) has implemented a separate global electronics knowledge base 
containing generally true facts about electronic circuits behavior, possible tests, etc. However, there 
is no known technique to match the best test to its proposed location and to its time occurrence. 
This test matching problem solution could provide an important aid in diagnostic expert system 
construction. And finally, applications of new technologies (e.g. neural networks) have yet to be 
examined. 
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