Features of the Expert-System-Shell SPIRIT

Wilhelm Rödder, Elmar Reucher, Friedhelm Kulmann

Overview

Knowledge processing in SPIRIT
Reliability of answers
Graphs and hypergraphs
Recall by a stimulus
Conclusion and remarks

Knowledge processing in SPIRIT

Step 1: Definition of a knowledge domain

Specify variables V_{l} with respective values v_{l}; Literal $V_{l}=v_{l}$
e.g.: MARITAL=single, STUDENT=true.

Propositions formed by junctors \wedge (and), \vee (or), $-($ not $)$,
Denoted by $A, B, C \Rightarrow$ Propositional language L .
Extension to conditional language L|L by binary conditional operator 1 .
e.g.: MARITAL=single | (STUDENT=true \wedge PARENT=true).
$B \mid A[x], A, B \in \mathrm{~L}, x \in[0 ; 1]$.

CII 04

Excursus

Step 2: Knowledge acquisition

Given
set of rules
$\mathrm{R}=\left\{B_{i} \mid A_{i}\left[x_{i}\right], i=1, \ldots, I\right\}$.

Adaption of uniform distribution P^{0} to R by solving
$P^{*}=\arg \min R\left(Q, P^{0}\right), \quad$ s.t. $Q \neq \mathrm{R}$
$R\left(Q, P^{0}\right)$ relative entropy from P^{0} to Q.

Excursus

Step 3: Inference

Focus

$$
\mathrm{E}=\left\{D_{j} \mid C_{j}\left[y_{j}\right], j=1, \ldots, J\right\} .
$$

Adaption of P^{*} to E by solving $P^{* *}=\arg \min R\left(Q, P^{*}\right), \quad$ s.t. $Q \neq \mathrm{E}$.

Query: $H \mid G$
Answer $P^{* *}(H \mid G)$.

CII 04

Excursus

CII 04

Reliability of answers

Given
$P^{*}=\arg \min R\left(Q, P^{0}\right), \quad$ s.t. $Q \neq \mathrm{R}$
$H \mid G=$?
Lower bound
$\bar{u}=\min Q(H \mid G) \quad$ s.t. $Q \neq \mathrm{R} \quad$ and
Upper bound
$\bar{u}=\max Q(H \mid G) \quad$ s.t. $\mathrm{Q}=\mathrm{R}$.

Second order uncertainty of $H \mid G$
$m=-\operatorname{ld} \bar{u}-(-\mathrm{ld} \bar{u})$ [bit].

Excursus

CII 04

Graphs and hypergraphs

Example creditworthiness

NB: No Bad earlier credits (t/f)
KN : client in KNown to the bank (t / f)
IN: INcome sufficient (t / f)
IA: Inquiry Agency (t/f)
GO: GOod credits (yes/no)

Index	P act	
0	0,87998	GO=yes
1	0,70000	SU\|GO=yes
2	0,51000	SU\|GO=no
3	0,65984	$(\mathrm{A} \wedge \mathrm{KN}) \mid \mathrm{GO}=$ yes
4	0,39466	$(1 A \cap K N) \mid G O=n o$
5	0,10000	$(\neg \mid A \cap \neg K N) \mid G O=y e s$
6	0,34832	$(\neg \mid A \wedge \neg K N) \mid G O=n o$
7	0,23980	$(1 A \cap \neg$ 价) \| GO=yes
8	0,22119	$(1 A \sim \neg K N) \mid G O=n o$
9	0,15005	$(\mathrm{KN} \wedge N B \wedge M E) \mid G O=y e s$
10	0,06011	$(\mathrm{KN} \wedge N B \wedge M E) \mid G O=n o$
11	0,11007	$(\mathrm{KN} \wedge \neg \mathrm{NB} \wedge \mathrm{ME}) \mid \mathrm{GO}=\mathrm{yes}$
12	0,05010	$(\mathrm{KN} \wedge \neg \mathrm{NB} \wedge \mathrm{ME}) \mid \mathrm{GO}=\mathrm{no}$
13	0,20012	$(\mathrm{KN} \cap N B \cap \neg \mathrm{ME}) \mid \mathrm{GO}=$ yes
14	0,16020	$(\mathrm{KN} \wedge N \mathrm{NB} \wedge \neg \mathrm{ME}) \mid \mathrm{GO}=\mathrm{no}$

SU: somebody offers $\underline{\text { SUrety (t/f) }}$
ME: financial MEans available (t/f)
JO: JOb for more than 3 years $(\mathrm{t} / \mathrm{f})$
LO: LOan the money (t / f)
U: RetUrn of investment.

15	0,19997	$(\mathrm{KN} \wedge \neg \mathrm{NB} \wedge \neg \mathrm{ME}) \mid \mathrm{GO}=\mathrm{ye}$ ¢
16	0,16009	$(\mathrm{KN} \wedge \neg \mathrm{NB} \wedge \sim$ (ME) \mid GO=no
17	0,18002	$(\neg \mathrm{KN} \wedge \neg \mathrm{NB} \wedge \mathrm{ME}) \mid \mathrm{GO}=$ yes
18	0,21050	$(\neg \mathrm{KN} \wedge \neg \mathrm{NB} \wedge \mathrm{ME}) \mid \mathrm{GO}=$ no
19	0,43001	
20	0,33821	$(\mathbb{N} \wedge M E) \mid G O=n o$
21	0,25006	($\mathrm{IN} \wedge \neg \mathrm{TME}$) \| GO=yes
22	0,19322	$(\mathbb{N} \wedge \neg \mathrm{ME}) \mid \mathrm{GO}=$ no
23	0,24991	$(\neg \mathbb{N} \wedge \neg$ ME) \| GO=yes
24	0,34298	$(\neg \mid \mathbb{N} \wedge \neg \mathrm{ME}) \mid \mathrm{GO}=$ no
25	0,59000	JO\|GO=yes
26	0,53000	JO\|GO=no
27	1,00000	$\mathrm{U}=1466$ ($\mathrm{LO}=\mathrm{yes} \mathrm{n}$ GO=yes)
28	1,00000	$\mathrm{U}=-8614 \mid$ ($\mathrm{LO}=$ yes $\wedge \mathrm{GO}=\mathrm{no}$)
29	1,00000	$\mathrm{U}=0 \mid(\mathrm{LO}=\mathrm{no} \sim \mathrm{GO}=\mathrm{no})$
30	1,00000	$\mathrm{U}=-29 \mid$ (LO=no $n \mathrm{GO}=\gamma \mathrm{es}$)

CII 04

Graphs and hypergraphs

Markov net

Given
set of finite valued variables $V=\left\{V_{1}, \ldots, V_{\mathrm{L}}\right\}$.

With respect to $(V ; P)$ if for any variable V_{l}, V_{m} :
$\left(V_{l}, V_{m}\right) \notin \mathrm{E} \Leftrightarrow\left(V_{l} \perp V_{m} \mid \bigvee\{l, m\} ; P\right)$.
\Rightarrow Minimal independency graph

Graphs and hypergraphs

Inference net

Given
set of finite valued variables $V=\left\{V_{1}, \ldots, V_{\mathrm{L}}\right\}$.

Variables V_{l} and V_{m} are involved in a rule $B_{i} \mid A_{i}$
V_{l} and V_{m} connected by an arrow, if a value v_{l} involved in A_{i} and v_{m} in B_{i}.
V_{l} and V_{m} connected by an edge, if v_{l} and v_{m} appear in the conclusion B_{i} of the same rule.

Excursus

Graphs and hypergraphs

Hypertree

Given
set of finite valued variables $V=\left\{V_{1}, \ldots, V_{L}\right\}$.
Denote $E_{i}\left(B_{i} \mid A_{i}\right) \subseteq V$ set of variables involved in a rule $B_{i} \mid A_{i}$
$\Rightarrow E_{i}$ hyperedges of the hypergraph (V, \mathcal{E}).
In general (V, \mathcal{E}) not acyclic, use "fill-in"-methods to construct (acyclic) hypertree

For propagation: Hypertree \Rightarrow junctiontree (each node corresponds to an edge of the hypertree)

Excursus

CII 04

Graphs and hypergraphs

Application credit worthiness

NB: No Bad earlier credits
KN : client in KNown to the bank
JO: JOb for more than 3 years (t / f)
SU: somebody offers SUrety (t/f)
ME: financial MEans available (t/f)
IN: INcome sufficient (t / f)
IA: Inquiry Agency (t/f)
LO: LOan the money (t / f)
GO: GOod credits (yes/no)
true
true
false
false
true
true
true yes
yes

Amount of credits $10.000 €$

Credit's lifespan: 4 years
$\mathrm{U}=723,06 €$

Excursus

Recall by a stimulus

$V_{l} \in\left\{V_{1}, \ldots, V_{\mathrm{L}}\right\}$,
P^{*} epistemic state.
$P^{* *}$ adaption of P^{*} to a certain focus $\mathrm{E}=\{F[1]$.$\} .$
Impact measure: $R\left(\left(V_{i} ; P^{* *}\right),\left(V_{i} ; P^{*}\right)\right)[\mathrm{bit}]$.

Excursus

Excursus

Conclusion and remarks

Model	no. variable s	no. rules	no. LEGs	$H\left(P^{0}\right)$	$H\left(P^{*}\right)$	utility yes/no	decision yes/no
BB	20	340	17	29.91	18.57	no	no
TS	76	574	50	76.00	12.83	no	yes
CR	18	38	13	22.68	6.00	no	no
BS	86	1051	36	104.79	87.12	no	yes
OD	6	18	3	8.17	4.08	yes	yes
CW	10	31	6	11.00	7.38	yes	yes

blue baby (BB)
car repair (CR) business-to-business (BS)
oil drilling problem (OD) credit worthiness support system (CW)

