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Abstract 

The proposed Hybrid Stage Shop Scheduling (HSSS) model, inspired from a real case in the high-

fashion industry, aims to fully exploit the potential of parallel resources, splitting and overlapping 

concurrent operations among teams of multifunctional machines and operators on the same job. 

The HSSS formally extends mixed shop scheduling (a combination of flowshop and open shop), 

which is able to model routing flexibility, and hybrid shop scheduling, which provides resource 

flexibility. To also include operational flexibility through alternative plans obtained by reordering 

operations linked by undefined or arbitrary (immaterial) precedence constraints, the proposed model 

integrates process planning and group shop scheduling. 

A mixed integer linear programming model and a theory based on disjunctive graphs have been 

proposed to explore the composite relations between nodes involving immaterial relations and 

deploying their routing rules. 

A constructive O(resources×jobs2) algorithm to generate a feasible plan/schedule in the most general 

case has been developed and applied to a case study. 

 

Keywords: manufacturing systems, planning/scheduling integration, mixed shop scheduling, 

nonlinear routing, resource flexibility 
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1 Introduction 

We consider a rather general model of mixed shop in which a set of operations for a given set of 

jobs has to be scheduled on a set of machines, which includes two extensions to the standard 

scheduling problem as defined by Dauzère-Pérès, Roux, and Lasserre (1998): 

1. an operation can be processed by one resource chosen in a given set (resource flexibility); for 

the sake of generality, we use the standard term resource from the scheduling theory instead of 

machine; 

2. the routing of products in the shop floor is not necessarily linear, i.e. an operation can have more 

than one predecessor and more than one successor on the routing (nonlinear routing). 

The mixed shop type considered here is a hybrid (or flexible) shop type combination of flowshop 

and open shop. A hybrid flowshop is a flowline with parallel resources. In a flowshop, the sequence 

of operations of each job (routing) is linear and predefined; in an open shop the sequence of 

operations is immaterial (or undefined). In a mixed shop, the set of constraints between operations 

is partitioned into two sets: flowshop type set and open shop type set (Masuda, Ishii, & Nishida, 

1985).  

1.1. Integration of process planning and shop scheduling 

Mixed shop is the paradigm for the integration of process planning and shop scheduling (Tan & 

Khoshnevis, 2000). Process planning has been defined by the Society of Manufacturing Engineers 

as the systematic determination of the methods by which a product is to be manufactured 

economically and competitively. Traditionally, process planning and shop scheduling are applied 

separately and sequentially. If a single output of process planning (the plan) is considered as the 

input to flowshop scheduling, routing constraints from planning may create bottleneck situations on 

some resources while other can be starving. Also the line balancing may be affected. Consequently, 

the global system performance can be improved by integrating planning and scheduling. However, 

the integration of process planning and shop scheduling does not consider operations belonging to 

the set of open shop type but rather the assignment of optimal process plans among a number of 

(predefined) alternatives. Stecke and Raman (1995) described a scheme for classifying different 

types of flexibility conventionally associated with the ability to manufacture a variety of part types 

by flexible manufacturing systems. In this classification operation flexibility assumes that more 

alternative plans can be generated by the process planner for a given job. Kis (2003) and Leung 

(2010) modeled an integrated process planning and shop scheduling system by disjunctive 

AND/OR graphs. The branches of an OR-subgraph constitute a set of alternative subroutes: exactly 

one of them must be chosen during scheduling. AND/OR graphs are a generalization of the resource 
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alternatives of individual operations; however, immaterial constraints among operations cannot be 

considered effectively. Go, Wahab, Rahman, Ramli, and Hussain (2012) and Bentaha, Battaïa, and 

Dolgui (2014) approached the design of disassembly lines for end-of-life products with the 

objective to maximize the line profit. An AND/OR graph was used to model the precedence 

relationships among tasks and subassemblies and the disassembly alternatives. Doh, Yu, Kim, Lee, 

and Nam (2013) considered alternative machines for each operation (resource flexibility), in 

addition to specifying multiple process plans alternative operations and their sequence by a network 

model with AND/OR nodes. Otto and Otto (2014) described a precedence graph approach that is 

based on learning from past feasible production sequences and forms a sufficient precedence graph 

that guarantees feasible assembly line balancing in the automotive industry. The assignment of tasks 

to stations is due to restrictions, which can be expressed in a precedence graph that includes direct 

and indirect conjunctive precedence relations. Phanden, Jain, and Verma (2013) developed a 

simulation-based genetic algorithm (GA) to integrate the process planning and scheduling function 

that can be quickly implemented in a company with existing process planning and scheduling 

departments. Bensmaine, Dahane, and Benyoucef (2013) proposed a new heuristics to integrate the 

process planning and scheduling problem for reconfigurable machine tools, each with multiple 

configurations, and can perform different operations with different capacities. They considered only 

direct precedence graph relations. 

1.2. Mixed and group shop scheduling 

In order to reduce the gap with real manufacturing systems, the mixed shop scheduling problem has 

been regarded as a mixture of flow (or job) and open shop scheduling problems, where operations 

with immaterial precedence constraints are grouped in the route of the related job. In 1997, the 

group shop scheduling problem was first introduced in the context of a mathematical competition 

(Whizzkids, 1997). Regarding the group shop scheduling problem, Blum and Sampels (2004) used 

a disjunctive graph representation for group shop scheduling and applied an ant colony algorithm to 

tackle the problem complexity. Liu, Ong, and Ng (2005) proposed a tabu search for group shop 

scheduling and evaluated the algorithm performance on a set of benchmark problems. Ahmadizar 

and Shahmaleki (2014) considered the stochastic group shop scheduling problem where both release 

dates and processing times are random variables, normally, exponentially or uniformly distributed.  

From the literature above, it can be observed that the mixed shop model includes the models on 

integration of process planning and scheduling and those on group shop scheduling, by allowing 

alternative plans produced simply reordering operations connected by immaterial constraints 

(Figure 1). 
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According to Stecke and Raman (1995), in addition to operation flexibility, routing flexibility is 

another aspect of the scheduling flexibility related to the ability of generating alternative paths, 

which can be followed through the system for a given process plan. As discussed by Rossi and 

Lanzetta (2013), shared buffers between stages allow routing flexibility, by the permutation of job 

sequences on resources. 

Figure 2 shows as an (exclusive) OR node (node 0 towards O31 and O32) that can be reworded as a 

no-exclusive OR by an immaterial relation, which allows more alternative routings for the scheduler 

module.
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Figure 1. Example of mixed shop precedence graphs achieved by operation and routing flexibility (according to Stecke & Raman, 1995). 

No-exclusive OR nodes described by immaterial relations give alternative routing for the scheduler module in order to minimize the 

completion time. 

Figure 1 about here 
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As shown by Masuda, Ishii, and Nishida (1985), the mixed shop problem is NP-hard. Relatively 

few papers were proposed on the subject. Shakhlevich et al. (2000) discussed the complexity of 

mixed shop problems under various criteria and clarified the boundary between polynomially 

solvable and NP-hard problems. Blazewicz and Kobler (2002) reviewed the properties of simple 

precedence graphs for scheduling problems and exhibited several new polynomial cases for various 

problems on unrelated parallel machines under arbitrary resource constraints. Ferrell, Sale, Sams, 

and Yellamarju (2000) approached the problem by heuristics and evaluated the performance in a 

promising set of dispatching rules. Nasiri and Kianfar (2011) proposed a stage shop scheduling, an 

open job shop scheduling problem where all the operations of the same job with immaterial 

precedence constraints are grouped in a stage of the job shop-type. Aloulou and Artigues (2010) and 

Amin-Naseri and Ashfadi (2012) modeled simple or primitive non-linear precedence constraints, in 

order to split macro operations into micro operations at stage level. 
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Table 1. Main contributions from the literature to the mixed shop scheduling problem as an 

integration of alternative nonlinear routing approaches (group shop, AND/OR) 

Authors 

Graph type 

MILP Theory
Disjunctive arc Node 

Flexible 
or 

hybrid 

Nonlinear routing 

Group shop Mixed shop AND/OR 

Masuda, Ishii, and 

Nishida (1985) 
  •   • 

Dauzère-Pérès, Roux, 

and Lasserre (1998) 
•  •   • 

Kis (2003 )    •   

Blum and  

Sampels (2004) 
 •    • 

Liu, Ong, and Ng (2005)  •     

Leung (2010)    •   

Aloulou and  

Artigues (2010) 
  •   • 

Nasiri and  

Kianfar (2011) 
  •  •  

Amin-Naseri and 

Ashfadi (2012) 
•  •  •  

Doh, Yu, Kim, Lee, and 
Nam (2013) 

•   • •  

Bensmaine, Dahane, and 

Benyoucef (2013) 
   • •  

Ahmadizar and 

Shahmaleki (2014) 
 •    • 

Otto and Otto (2014) •   •   

Current work •  •  • • 

 

From this literature analysis chronologically synthesized in Table 1, it can be observed that the most 

recent works (towards the bottom) converge to the generalization of integrated process planning and 

group shop scheduling. For this purpose, further research for the definition and use of new 

precedence relations is required.  
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1.3. From mixed to hybrid shop scheduling 

Resource flexibility and nonlinear routing allow a higher level of manufacturing flexibility within 

each stage of the flowshop: multiple resources can process in parallel subparts of the same product 

(multi-resource systems). 

Resource flexibility in the standard flowshop model was reviewed by Ribas, Leisten, and Framinan 

(2010) and Ruiz and Maroto (2005). In recent years, approaches to hybrid flowshops were proposed 

by Behnamian and Zandieh (2011), considering the minimization of earliness and quadratic 

tardiness penalties by a discrete colonial competitive algorithm. Rossi, Pandolfi, and Lanzetta 

(2013) considered a non-permutation hybrid flow shop scheduling problem, with parallel batching 

machines, parallel batch families and a machine loading system modeled as sequence-independent 

uniform set-up times, with the purpose of reducing the number of tardy jobs and the makespan. 

They proposed two dynamic heuristics based on the critical ratio of allowance set-up and processing 

time in the scheduling horizon. Li, Meng, Liang, and Zhao (2014) proposed a heuristic-search 

genetic algorithm, which results in lower complexity and higher efficiency for multi-stage hybrid 

flow shop scheduling with batch processing machines. Amin-Naseri and Ashfadi (2012) 

considered some primitive non-linear precedence relations in a flexible job shop environment and 

proposed a local search problem-specific to speed up e genetic algorithm. Rossi (2014) proposed an 

ant colony optimization approach based on a disjunctive graph model in order to schedule a 

manufacturing system with resource flexibility, separable sequence dependent/independent setup 

and transportation times. Benavides, Ritt, and Miralles (2014) proposed an extension to flowshop 

with heterogeneous resources among stages, to optimize worker assignment to workstations of 

health care departments, with the objective of minimizing the makespan, while respecting the 

diverse capabilities and paces of heterogeneous workers. To our knowledge, only Amin-Naseri and 

Ashfadi (2012) considered some aspects of nonlinear routing with resource flexibility using a 

genetic algorithm, without exploring the theoretical implications. 

1.4. Problem motivation and approach 

The research was motivated by a real manufacturing case, a high-fashion company based in 

Florence, Italy, for the production of high-fashion goods by skilled artisans.  

An operation (e.g. the manual assembly of a woman bag) can be split in a number of micro-

operations (e.g. stitching a handle and sewing a slide fastener), which can be performed on the same 

job in a fixed or arbitrary routing by different resources of the belonging flowshop stage (e.g. by 

two operators of the assembly shop). Splitting operations of multi-resource systems affects process 

planning providing further flexibility and increases the number of scheduling alternatives for the 
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shop system and, potentially, shorter schedules can be obtained. Alternative plans produced simply 

reordering operations reduce the process planner workload. Generating alternative plans improves 

machine utilization and line balancing.  

Figure 2 shows an example problem derived from the examined case represented as a disjunctive 

graph. The three shaded areas are examples of macro operations that have been split by detailing the 

sub operations and resources in order to process them in parallel (overlapping) to reduce the 

makespan. Precedence graphs allow different routings (sequence permutations) by the inclusion of 

the immaterial precedence arcs in addition to directed (or conjunctive) arcs. As shown in the 

example, mixed routing can also span across consecutive stages. 

The most general case, which represents the focus of current paper, is the shaded graph relation 

O122-O133-O252 in the example. The cited operations represent respectively: gluing the two halves of 

the bag, stitching a pocket on just one of the two sides, stitching a buckle to both halves, with 

realistic times indicated. Gluing is on the previous stage because of a precedence constraint. 

Sequence O122-O133-O252 is potentially shorter versus sequence O122-O252-O133 for the possible 

parallelization of O122 and O252. 
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Figure 2. A disjunctive graph modeling a mixed shop for hybrid flowshop scheduling, with 

processing times t i j k at nodes O i j k for N (=3) jobs on S (=3) stages, with respectively Q1=2 

(hybrid), Q2=1, Q3=1 resources. Colored disjunctive arcs represent the candidate resource for 

the connected nodes (operations). Bottom: the top digraph partially transformed in acyclic 

digraph by directing disjunctive arcs on two paths starting from node 0 and ending at node * 

(green and brown) and one ending in O222 (yellow). 

Figure 2 about here 

 

Stage 2 Stage 3

t253

0

O111 O122

resource assignment: resource 1, stage 1
job routing

O222

O211

t111 t122

t211

t222

*

O34

O143

O252

t321

t332 t343

t143

O133

t133

O242

t242

O232

t232

t311

immaterial routing
resource assignment: resource 2, stage 1

resource assignment: resource 1, stage 2

resource assignment: resource 1, stage 3mixed routing

O32

O33

O31

24

Stage 2 Stage 3Stage 1

0

O111

O222

O211

19

*

O33

O143

O252

O32

O33

O133

O242

O232

O31
20

11

12

3

7 4

26

41

28

37

O122

36

Stage 1



  

Revised manuscript 

12 

We propose the hybrid stage shop scheduling (HSSS), a mixed shop model for hybrid flowshop 

scheduling with unrelated parallel resources per stage. The proposed underlying mixed model, in 

addition to routing flexibility that emerges with permutations of the operations linked by immaterial 

relations, allows: (i) splitting operations of the flowshop type set on the same job and assigning 

them to alternative resources; (ii) overlapping the operations of consecutive stages linked by 

immaterial routing, yielding shorter schedules.  

The proposed hybrid stage shop scheduling model completes the mixed stage shop model by Nasiri 

and Kianfar (2011) and the hybrid stage shop scheduling model by Amin-Naseri and Ashfadi 

(2012). Extensions include the addition of operation overlapping and splitting within stages and 

across consecutive stages with the composition of mixed relations, which will be discussed 

throughout the paper. 

The proposed model can be applied to Computer Aided Design (CAD), where designers share the 

same digital model of the product under development (Leu et al., 2013) , in robotic assembly and in 

disassembly of end of life goods, where operations on subparts can be carried out concurrently, and 

in train traffic management by railway line branching (Kozan & Liu, 2012).  

In section 2 we define the hybrid stage shop scheduling problem and its MILP (section 3). In 

section 4 we describe the model based on digraphs and in section 5 we propose a set of primitive 

and mixed rules and their combinations, derived from the precedence graph, in order to deploy and 

explore various alternative routings. The hybrid stage shop scheduling model is based on a digraph, 

which is a powerful tool to design scheduling optimization (metaheuristics) algorithms. In section 6 

a heuristics is presented to obtain a conjunctive graph, which represents a feasible solution of the 

hybrid stage shop scheduling problem. Also, the computational complexity is evaluated. 

Application to a case study is discussed in section 7. 

 

2 Hybrid Stage Shop Scheduling (HSSS) 

In hybrid stage shop scheduling, N jobs have to be scheduled on S stages with R resources in all, in 

accordance with its nonlinear routing, represented by a precedence graph, which includes 

conjunctive (directed) and disjunctive precedence constraints (described below) among operations 

belonging to a set of il  operations Oi j k with i=1,..,N,  j=1,.., il ,  k=1,..,S. Each operation Oi j k has to 

be processed according to its precedence constraint, denoted by a level Li j, for time ti j k with 

resource flexibility represented by the assignment to a single resource h among a set of alternative 

identical resources {Qk-1+1,.., Qk} of the stage k (k=1,..,S). Each job i is subject to a release date, ri, an 
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initial level ijlj L
i,..,1min = =Li 1=1. st(Oi j k) and ct(Oi j k) denote respectively the starting and the 

completion time of an operation, with iCt  being the total completion time for each job. 

No resource can process more than one operation at a time and an operation must be processed 

by one, and only one, resource; no precedence constraints between operations of different jobs is 

allowed. All resources are available since the initial time and resource breakdown is not 

considered. Setup is negligible or is included in the processing time. The handling system offers 

the flexibility to move a part with negligible transportation time and includes a buffer for each 

stage. The buffer size of stages k=1 and k=S+1 is N (i.e. the input and output buffers contain up 

to N jobs). The number of slots of the buffer at stage k, k=2,…,S, each containing a single job, is 

defined by the following Lemma 1. 

 

Lemma 1. The hybrid flowshop scheduling with N jobs and R resources is Bi=+∝ if and only if the 

shared buffer size for stage k , k=2,…,S is at least: 

 )( 2−−− kk QQN  (1) 

 

 

This proof extends the result achieved by Rossi and Lanzetta (2013). In the worst case, the 

system becomes congested in a single stage. Let k be this stage, with )( 1−− kk QQ  the number of 

its resources. Hence, the number of jobs waiting in the buffer of stage k or in the previous stages 

is )( 1−−− kk QQN . Similarly, in the previous stage there are )( 21 −− − kk QQ  resources. The jobs 

can wait after processing in the previous stage k-1 before a resource of the stage k will be free. 

The minimum buffer size for each of the intermediate stages is given by: 

 )()()( 2211 −−−− −−=−−−− kkkkkk QQNQQQQN  (2) 

� 

 

Operations of job i are partitioned in k subsets Gi k to be performed by resources of stage k 

according to the following equations: 
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The quantity P = mink=1,..,S )( 1−− kk QQ  represents the degree of resource flexibility, i.e. the 

parallelization capability of the system. We define a hybrid stage shop scheduling model with 

degree of resource flexibility P as P-HSSS model. 

The assignment of operations to a given resource of current stage is a source of flexibility, in 

addition to the flexibility represented by sequencing operations on resources. This double source of 

flexibility increases the problem complexity along with the performance increase. 

 

3 Hybrid stage shop scheduling mixed integer model 

A mixed integer linear programming (MILP) model for the hybrid stage shop scheduling is 

described. 

 

Decision variable 

ijkhx  1, if operation j of job i is assigned to resource h in stage k 

 0, otherwise 

 

The objective function selected is the total completion time (makespan) minimization and can be 

formulated as: 

 maxCMin  (5) 

subject to constraints I.1 to I.15. 
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The constraint equation (I.1) forces the total completion time of job i, to be less or equal to the sum 

of all processing times affecting job i, indexed by operations and stages. 

The constraint equation (I.2) ensures that each operation is assigned to exactly one resource. 

The constraint equation (I.3) ensures that each operation is specific to exactly one stage. 

The constraint equation (I.4) shows that any operation can (sum equal to 1) or cannot (sum equal to 

0) be assigned to a particular pair of job and resource. 

ilj ,...,1=∀ kk QQh ,...,11 +=∀ − Sk ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀ kk QQh ,...,11 +=∀ − Sk ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀ kk QQh ,...,11 +=∀ − Sk ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀ Sk ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀ Sk ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀ Sk ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀ Sk ,...,1=∀

Ni ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀

Ni ,...,1=∀ ilj ,...,1=∀ kk QQh ,...,11 +=∀ − Sk ,...,1=∀
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The constraint equation (I.5) represents the possibility (sum equal to 1) or not (sum equal to 0) that 

a job involves the use of a resource for a specific operation. 

The constraint equation (I.6) requires that the processing time of resource h of stage k performing 

operation j of job i is equal to 0 if the transaction is not assigned to any resource. 

The constraint equation (I.7) requires that the difference between the completion time and the 

starting time of a resource busy for an operation of a job be equal to its processing time. 

The constraint equation (I.8) ensures that the difference between the starting time of a certain 

operation and the completion time calculated for the immediately preceding operation is greater 

than 0 if the value of the variable level of the previous operation is smaller compared to the variable 

level of the following operation. It is worth dwelling on the condition in which it has the same value 

of the variable level for two successive operations; in this case the order of execution can be chosen 

arbitrarily: the result can be greater, less or equal to 0. 

Finally, the constraint equations ranging from (I.9) to (I.15) are simply conditions of existence and 

non-negativity of the variables used in the model. 

 

4 Hybrid stage shop scheduling disjunctive graph 

representation 

The hybrid stage shop scheduling problem can be represented by a weighted disjunctive graph as in 

Rossi and Lanzetta (2014), applied to the non permutation flowshop scheduling (Figure 2 top): 

 DG = (ℵ, Wℵ, C, D, Eh k) (6) 

where 

ℵ is the set of nodes (operations ijkO ) plus the dummy start and finishing nodes 0 and *; 

WN is the set of weight on nodes, represented by the processing times ijkt ; 

C is the set of conjunctive (directed) arcs (a,b) between every pair of nodes a and b on a job routing, 

representing the precedence constraints between the corresponding operations (conjunctive 

relations, C); it also includes conjunctive arcs between 0 (*) and every first (last) node on a routing; 

D is the set of disjunctive arcs [a,b] (equal to [b,a]), between every pair of nodes a and b on a job 

routing with immaterial precedence constraints between the corresponding operations (disjunctive 

relations, D); 

Eh k is the hth set (h∈{Qk-1+1,..., Qk}) of disjunctive arcs [u,v] between every pair of nodes u and v 

belonging to the same stage k; u,v∈Gi k,  k=1,..,S; Eh k also includes disjunctive arcs between 0 and u 
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(v) and between u (v) and * for all u∈Gi k. The sets Eh k are represented by colored disjunctive arcs in 

Figure 2 top. 

It can be noticed that the DG includes one kind of conjunctive arc (arrows in the digraph of Figure 2 

top) and two kinds of disjunctive arcs: D for nonlinear routing (dashed lines) and Eh k for resource 

flexibility (colored lines). 

In general, a P-HSSS problem, i.e. a problem with degree of resource flexibility P, is represented by 

S stages of P kinds of arcs E*k. The number of disjunctive arcs in the digraph is O(P⋅S⋅N2), because 

the arcs of E*k connected with at least N nodes are O(N 2) and the total flexibility is obtained by P⋅N2 

arcs of E*k (Kacem, Hammadi, & Borne, 2002). Consequently, in the P-HSSS total flexibility is 

present, but only within each stage. 

The set D describes nonlinear routing for open and consequently for the mixed shop considered 

here. D is not required to model linear problems, such as flowshop and hybrid flowshop scheduling. 

In the next section the interaction between C and D type relations will be discussed. 

A finite sequence of conjunctive arcs between two nodes is called path. The length of an arc is 

equal to the processing time of the node at which it ends. The path length is equal to the sum of the 

lengths of its arcs. A path which starts from 0 and ends at * is the loading sequence on a resource. 

Figure 2 bottom shows two paths with lengths, respectively, 24+20 (green path) and 19+11 (brown 

path), which start from 0 and end at *; they are the loading sequences of resources of stage 1. A 

cycle is a path that starts and ends at the same node. If no cycle is present in a conjunctive graph 

achieved by directing some disjunctive arcs, the conjunctive graph is acyclic (Figure 2 bottom). In 

particular, a digraph is an acyclic conjunctive graph. If an acyclic conjunctive graph includes all the 

nodes, the related loading sequences on the resources are feasible schedules and the makespan is the 

length of the critical path, i.e. the longest path between the dummy start and finishing nodes. 

Finally, for each job, the length of the longest path between the dummy start node 0 and a given 

node is the total completion time ct(Oi j k) of the corresponding operation. 

 

5 Hybrid stage shop scheduling routing rules 

Hybrid stage shop scheduling is a more general model for mixed shop scheduling and it is more 

suitable to describe real manufacturing cases, but it requires the definition of new relations among 

nodes split at the stage level or across consecutive stages. A digraph as defined in (6) includes C 

and D type primitive relations. By the presence of D type relations, routing is nonlinear. C and D 

type relations in (6) between nodes involve precedence constraints, which can be described by the 
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routing rules (feasible sequence of operations for a given job) introduced in this section. The 

proposed wildcard node mechanism will also be described. 

The complete set of basic relations includes two primitive C and D type relations defined in (6) 

listed in Table 2 and five mixed relations introduced in Table 3. The complete set of basic relations 

between nodes j and j + 1, j=1,…, 1−il , of the same job i and their levels Li j is: 

(a). Conjunctive relation (C), Li (j+1) = Li j + 1. The routing is linear as in flowshop scheduling 

(Table 2). 

(b). Disjunctive relation (D), Li (j+1)=Li j. The routing is immaterial as in open shop 

scheduling, where a sequence of operations is a job permutation (Table 2). 

(c). Mixed relation (M). Mixed relations are present, where a disjunctive relation can 

anticipate, interpose or postpone a direct relation (Table 3).  

Levels are the mechanism to represent the precedence constraints between operations. 

 

Table 2. Primitive relations (2 nodes) and deployment of their routing rules 

Case Relations Notation Precedence graph Routing deployment

#1. 
Conjunctive 
(directed) 

C (1,2) 

 

 

#2. Disjunctive D [1,2] (or [2,1]) 

 
 

 

Table 2 shows linear and arbitrary relations among operations of the same job and their routing 

rules. 

A C relation is a conjunctive arc between a starting and ending node and is represented in round 

brackets (1,2); the starting node represents the operation processed before in the feasible sequence 

1�2, as imposed by the level Li 2 = Li 1+1.  

A D relation is a disjunctive arc between two nodes; the nodes represent operations processed in an 

arbitrary order within the feasible sequence; the two feasible sequences are 1�2 and 2�1 

associated with a unique level, where Li 2=Li 1. A D relation has no orientation between nodes and is 

differentiated from a C relation by using square brackets: [1,2] = [2,1]. 

Both conjunctive and disjunctive (primitive) relations are denoted by { }DC,=Γ . 

  2   1 

Li 1 Li 1+1

 
  1   2 

Li 1 Li 1

  2   1 

   1   2 

  2   1 
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Table 3. Mixed relations (3 nodes) and deployment of their routing rules 

Case Notation Precedence graph Routing deployment 

#3. M1 

 

 

#4. M2 

 

 

#5. M3 

 

 

 

#6. M4 

 

 

 
 

 

 

Table 3 shows the mixed relations (Mx, x=1,..,4) among nodes. A M relation, yx ∪ , is a union of 

primitive relations x,y ∈ Γ = {C, D}. 

M1 and M2 include one disjunctive relation, [2,3], and two conjunctive relations, yielding two 

feasible routing rules.  

 

  1 

  2 

  3 

Li 1
Li 1+1

Li 1+1    1   2   3 

  1   3   2 

 

1 

2 

3 

Li 2+1 Li 3=Li 2

Li 2
 2 3 1 

3 2 1 

  1 

  2 

  3 

Li 2

{Li 1,Li 2} Li 1

 1 2 3 

1 3 2 

3 1 2 

 

  1 

  2 

  3 

Li 1 Li 1

Li 1

   1   2   3 

  1   3   2 

  2   1   3 

  2   3   1 

  3   1   2 

  3   2   1 
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M3 includes two D relations and one C relation, (1,2). The directed arc compels a clockwise path 

which encompasses a wildcard node. Node 3, belonging to both D relations, [2,3] and [1,3], can be 

interposed in the sequence compelled by the C relation to obtain feasible routing rules: 1�2�3, 

1�3�2 and 3�1�2. 

M4 includes all three disjunctive arcs (similarly to group shop scheduling); the feasible routing rules 

are all the six permutations of the three nodes. 

An instance of the problem can be expressed in compact form by the tuple 

 

P-HSSS|ℵα|Cβ|Dχ|Rδ|Nε|Sφ|max Li j
γ (7) 

 

where quoted symbols α, β, χ, δ, ε, φ and γ are values of the respective parameter (base). 

An example is the triangular inset of Figure 3 derived from the 2-HSSS|ℵα|C17|D5|R4|N1|S3|max Li j
8 

case in Figure 2.  

 

 

Figure 3. Examples of precedence relations on 2-HSSS|ℵα|C17|D5|R4|N1|S3|max Li j
8: conjunctive 

relations C ((O111, O122), (O122, O133), etc.) and disjunctive relations D ([O222, O232], [O222, O242], 

Stage 2 Stage 3

t253

Stage 1

0

O111 O122

resource assignment: resource 1, stage 1job routing: conjunctive relation C

O211

t111 t122

t211

t222

*

O34

O143

O252

t321

t332 t343

t143

O133

t133

O242

t242

O232

t232

t311

job routing: disjunctive relation D resource assignment: resource 2, stage 1

resource assignment: resource 1, stage 2

resource assignment: resource 1, stage 3
job routing: constrained-disjunctive relation M2
(Nasiri & Kianfar, 2011)

O32

O33

O31

job routing: mixed relation M3 within stage 2 (Amin-Naseri & Ashfadi, 2012)

job routing: mixed relation M3 across stages 2-3 (proposed)

O222
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[O311, O321]) from Table 2; constrained-disjunctive relations M2 and M3 from Table 3 

(respectively cases #4. and #5.) in triangular insets. 

Figure 3 about here 

 

5.1. Properties of basic relations 

The combination of primitive relations has been shown to yield the mixed relations M1 to M4. Their 

precedence graph encompasses nonlinear routing; consequently, a digraph (6) can be formed by 

mixed relations. 

In this subsection, some properties of primitive and mixed relations are introduced to allow more 

complex composition and decomposition rules of digraphs (6). 

 

Proposition 1. All the introduced relations can be represented by a digraph (6) with maximum level 

equal to 2.  

 

As an example, we consider M3. Its digraph is: 

DG(M3) = (ℵ, Wℵ, C, D, Eh k) = { }{ }{ }{ }{ }( ),]3,2[],3,1[,)2,1(,,,,3,2,1 321 iii ttt  

where, without loss in generality, the set of the disjunctive arcs of each resource Eh k is not 

considered. 

 

Lemma 2. The union operator ∪  is closed to the set of the primitive relations Γ . 

 

 

For Proposition 1, if Γ∈yx,  include an acyclic graph, also yx ∪  includes no cycle on its graph. 

A cycle breaks the level of the node, which closes the path on itself. Obviously, only a C relation 

can close a cycle. 

If x = (a,b) ∈ C and y ∈ Γ, then yx ∪  becomes the mixed relation denoted by, respectively, M1 (if y = 

(a,c) ∈ C) and M2 or M3 (if y ∈ D) relations. In fact, the level of nodes b and c forces either a 

disjunctive relation (obtaining the mixed relations M1 and M3) or a conjunctive relation (obtaining 

the mixed relation M2). 

Vice versa, if x = (b,a) ∈ C and y ∈ Γ, then  becomes, similarly to the previous case, the mixed 

relation denoted by, respectively, M2 (if y = (a,c) ∈ C) and M1 or M3 (if y ∈ D) relations.  

yx ∪
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In any case, M1 to M3 relations are disjunctive graphs. Hence, considering the former primitive, i.e. 

the C relation, the thesis is accomplished.  

Analogously, if x = [a,b] ∈ C and y ∈ Γ, then  becomes the mixed relation denoted by, 

respectively, M1 (if y = (c,a) ∈ C, M2 (if y = (a,c) ∈ C) and M4 (if y ∈ D). Hence, the thesis is 

accomplished because M1 and M2 relations are digraphs. 

� 

 

Corollary 1. The level of the wildcard node inherits the levels of the nodes to which it is linked to 

(through D relations).  

 

Corollary 2. The level of all the nodes connected only by D relations is unchanged (i.e. M4).  

 

5.2. Composition and decomposition of basic relations 

In this subsection, it will be shown how to assemble mixed routing rules to form a nonlinear 

precedence graph and achieve more complex rules. A list of compositions of mixed relations is 

shown in Table 4. All possible outcomes of compositions are listed. The same outcome can be 

obtained by different compositions (not shown). 

Compositions may involve nodes belonging to the same stage or to two consecutive stages; 

however, two consecutive stages can be linked by conjunctive arcs only. Decomposition rules can 

be inferred by following the opposite path. 

To explain the composition of mixed relations shown in Table 4, case #12. is considered: 

33 MM ∪ . Both mixed relations have the same wildcard node 3. From Proposition 1, the two 

relations can be represented by the digraphs: 

 

 DG1(M3)=  (8) 

 

 DG2(M3)= { }{ }{ }{ }{ }( ),]4,3[],3,2[,)4,2(,,,,4,3,2 432 iii ttt   (9) 

 

The composite relation is: 

 

 )3()3( 21 MDGMDG ∪ = { }{ }{ }{ }{ }( ),]4,3[],3,2[],3,1[,)4,2(),2,1(,,,,,4,3,2,1 4321 iiii tttt  (10) 

 

yx ∪

{ }{ }{ }{ }{ }( ),]3,2[],3,1[,)2,1(,,,,3,2,1 321 iii ttt
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which has a node (node 2) with one starting and one ending conjunctive arc. The nodes opposite to 

node 2 in these two conjunctive arcs have a level reduced by one or increased by one, respectively, 

if the node is on the conjunctive arc that ends to 2 and if the node is on the conjunctive arc that 

starts from 2. For Corollary 1 the level of the wildcard node inherits the levels of the nodes to 

which it is linked to (through D relations): Li 3={Li 1, Li 2= Li 1+1, Li 4= Li 1+2}. As a consequence, 

the routing rules are obtained by interposing 3 in the sequence compelled by the 2 conjunctive arcs, 

(1,2) and (2,4): 3�1�2�4, 1�3�2�4, 1�2�3�4, 1�2�4�3. 
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Table 4. Composition of mixed relations (4 nodes) and deployment of their routing rules 

Case # Relation 
Combination of mixed 

relations 
Precedence graph Routing deployment 

#7. 21 MM ∪  

 

 

 

 

1 2 3

1 3 2

4

4

M1

M2

 

 

 

 

  1 

  2 

  3 

Li 1 Li 1+1

Li 1+1

 

4

2

3
L i 2 +1 Li 3=Li 2

Li 2

 1 

 2 

 3 

Li 1 Li 1+2

Li 1+1 

 4 

Li 1+1 

 

  1 

  2 

  3 

Li 1

Li 1+1 

  4 

Li 1 

1
 

3
 

 2
 

 4
 

1
 

3
 

4
 

2
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#8. 31 MM ∪  
 

 

 

M1

M3

1 2 3

1 3 2

4

4

1 2 4 3

 

#9. 41 MM ∪  

 

 

   1

  1

  1

  1

  1

  1

  1

M4M1

  2   3   4

  2   4   3

  3   2   4

  3   4 2

  4   2   3

  4   2

 

 

  1 

  2 

  3 

Li 1 Li 1+1

Li 1+1

 

4

2

3

Li 2

{Li 1,Li 2}
 

L i 
  1 

 

  1 

  2 

  3 

Li 1 Li 1+2

Li 1+1 

  4 

{Li 1+1, Li 1+2}

 

  1 

  2 

  3 

Li 1 Li 1+1

Li 1+1

 

4

2

3

L i 1 Li 1
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Li 1 Li 1+1
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Li 1+1 
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#10. 12 MM ∪   

 

 

 

#11. 23 MM ∪   
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  3   1   2   4
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M2  

 

4
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3
L i 2 +1 Li 3=Li 2
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Li 2
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#12. 33 MM ∪  
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  2 
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Li 2

{Li 1,Li 2} Li 1 

 1 
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 3 

Li 1

Li 1+1 

 4 

{Li 1, Li 1+1, Li 1+2} 

Li 1+2 

 1
 

 2
 4
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 4 
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#13. 43 MM ∪   
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Composite relations can be recombined into two mixed relations x and y with conjunctive arcs from 

x to y, which cross the boundaries of the two relations in the x-y direction (by construction), 

according to the following two alternatives (Table 5): 

1. by a C relation, e.g. (3,2) in the precedence graph of row 1 for case #7. in Table 4; 

2. by a D relation, e.g. [2,3] in row 2 for all other cases of Table 4 except case #7. (only case #13. 

is represented). 

In the first alternative, the combined mixed rule is modeled by two D relations between nodes with 

the same level. The routing rule of this recombination is unchanged with respect to the original case 

#7. in Table 4. 

In the second alternative, the combined mixed rule is modeled by splitting nodes with the same 

level and by connecting the split nodes by disjunctive arcs. Two mixed relations Mx are created. 

Each node of the D relation is split into two nodes, the original node and the dummy node, which 

are connected by a D relation. For example, node 2 is placed facing dummy node 2’ and they are 

connected by arc [2,2’]. The routing rule of the recombination imposes that only one node, between 

the original and the dummy node, will be included into the loading sequence of the selected 

resource. The not selected node will have no connection to the rest of the digraph and will not be 

considered by the routing rule. 

In both alternatives, in the combined mixed rule the red arrows cross the boundaries of the two 

relations from left to right and no arrow is present in the opposite direction in order to process more 

complex relations which satisfy the properties introduced above. 
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Table 5. Decomposition rules for the mixed relations of C type (M1 ∪ M2) and of D type 

(M3 ∪ M3), yielding respectively a D to D relation and two split M3 relations. 

Case Precedence graph Combined mixed rule 

#7.    1

  2

  3

Li 1

Li 1+1

  4

D

D

 

#12.  

 

  1  

  2  

  3  

Li 1
 

Li 1+1  

{ L i 1,  Li 1+1 }  

  2’  

  3’  

L i 1+1  

 4   

{ L  i   1 
,   L i   1 +1 }   

{  L i   1 +1,  L i   1 +2 }   

Splitting operation 2  

Splitting operation 3   

M3 M3 

 

 

 

6 A scheduling heuristic (H•HSSS) 

This section describes an example heuristic to show the usability of the proposed HSSS model for 

scheduling purposes. 

The developed algorithm is a list scheduler heuristic derived from Giffler and Thompson (1960), 

which was proven to generate a feasible schedule on the digraph, by visiting every node once and 
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only once. The list scheduler algorithm was originally proposed for classic job shop scheduling. At 

every step, a node is connected by means of a feasible move to the partially acyclic conjunctive 

graph, which represents the partial schedule. A feasible move is a disjunctive arc, which can be 

directed in the partial conjunctive graph without creating a cycle. 

The following pseudo code produces an acyclic graph, which includes the critical path. 

 

Heuristic for hybrid stage shop scheduling (H•HSSS) 

Input: a weighted digraph DG = (ℵ, WN, C, D, Ehk) 

O ← {Oi j k ⏐ i=1,..,N, j=1,..,li, k=1,..,S} 

i. AL1
w←{Oi j k ∈O⏐ Oi j k ∩ O = ∅} 

ii.  AL2
w←{Oi j k ∈ AL1

w | NiLij ,..,1,min = } 

iii. cti j k =ri, for each Oi j k ∈ AL2
w 

for each k =1 to S do  

Initialization of Candidate Nodes: build, in two steps, the allowed list ALw for the current 

iteration w:  

i. AL1
w←{Oi j k ∈ O⏐ Oi j k-1 ∩ O = ∅} 

ii.  AL2
w←{Oi j k ∈ AL1

w | } 

for each w =1 to (Σi=1,..,N  li) do  

1. Initialization of Feasible Moves: mark as a feasible move each disjunctive arc 

(Oi’ j’ k, Oi j k) of Eh k where Oi j k ∈AL2
w and Oi’ j’ k is the last operation of the 

loading sequence of resource h of the stage k (it creates the possibility for the 

candidate operation to become the new last operation of that loading 

sequence); 

2. Move Selection: select a feasible move (Oi’ j’ k, Oi j k) of Ehk by directing the 

related disjunctive arc (Oi’ j’ k =‘dummy 0’,if k =1); 

3. Update Routing: if ,*ijij LL =  where Oi j* k is in the path which starts from 0 

and ends at Oi j k, direct the last disjunctive arc in the path [Oi j* k, Oi j k]∈ D 

(after this action (Oi j* k, Oi j k) ∈ C) and update 1* += ijij LL ; finally, update 

the level on all the disjunctive arcs connected to Oi j k (i.e. 1** += ijij LL , if 

[Oi j k, Oi j** k] ∈ D); 

NiLij ,..,1,min =
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4. Arcs Removal: remove all the remaining disjunctive arcs connected to Oi’ j’ k 

(i.e. no other operation can be immediately subsequent to Oi’ j’ k in the loading 

sequence); remove all the remaining disjunctive arcs of Eh’k connected to Oi j k, 

i.e. h’≠h (i.e. no other loading sequence can include the operation); finally, 

remove all the remaining disjunctive arcs of D connected to Oi j* k (i.e. the 

routing must be linear after updating); 

5. Computing Length: the length of the arc (Oi’ j’ k, Oi j k) is evaluated as the 

processing time of node Oi j k; this length is placed on the arc (Oi’ j’ k, Oi j k) and 

on the arc of the job routing (Oi j* k, Oi j k) which ends at Oi j k; also, the 

completion time cti j k = max{cti’j* k, cti j* k}+ti j k is placed as a mark of the node 

Oi j k, if Li j*<Li j; otherwise, if Li j*=Li j and two resources are available, 

min{ΤA k’, cti j* k}+ti j k, k’≠k, where T is the available time of resource k’; 

6. Updating Structures: update O by removing operation Oi j k: O ← O \ {Oi j k}; 

end for 

7. Directing the remaining disjunctive arcs: the arcs are connected to the dummy node *; 

Output: the acyclic conjunctive graph with the completion times for all the operations 

 

Lemma 3. The algorithm generates in: 

 

 ))((
S

l
P

S

l
NlO ii

i ++  (11) 

a complete selection of arcs of DG i.e. an acyclic conjunctive graph that includes all nodes. 

 

 

This property results from the following considerations: 

a) the achieved graph includes all the nodes: the main loop is performed |O| times and 

 initially the candidate list includes all the nodes; at each iteration one and only one node is 

removed from candidate list (step 6); 

b) the achieved graph is conjunctive: i) for each iteration, the selected feasible move directs an 

arc of E which ends at the node removed from candidate list (step 2); ii) for each iteration, 

the node removed from candidate list is inserted in the path which starts from 0 (step 3); iii) 
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all the disjunctive arcs of E and D which starts from the starting node of the conjunctive arc 

are removed (step 4); 

c) the conjunctive graph is acyclic: i) one and only one feasible move ends to a node which is 

in the candidate list (steps 1, 2 and 6); ii) one and only one routing rule ends to a node which 

is in the candidate list (steps 3 and 6). 

In order to evaluate the computational complexity of the algorithm, it can be noted that the main 

loop is performed n⋅m times and the most time-consuming steps are Arcs Removal and Computing 

Length step. The selection of a feasible move (Oi’ j k’, Oi j k) entails that the following alternative arcs 

are removed and the following connected nodes are marked: 

i) alternative sequencing arcs: all disjunctive arcs connected to the last operation Oi’j k’ in 

the loading sequence of resource h; they are at most N-1, one for each alternative job in 

order to approach the sequencing problem (the first member of expression 

(11complessità)); 

ii) alternative assigning arcs: all disjunctive arcs of Eh’ k , where h’ belonging to the stage k 

and h’≠h, connected to the candidate operation Oi j k; they are at most P-1, one for each 

alternative resource in order to approach the assigning problem (the second member of 

expression (11complessità)); 

iii) selecting nodes level: all nodes Oi j k, where Li j*≤ Li j, have marked with the completion 

time cti j k = max{cti’ j* k, cti j* k }+ti j (the third member of expression (11complessità)). 

� 

 

Because of these computational complexity considerations, the proposed algorithm finds a feasible 

schedule by means of an implicit visit of a large number of disjunctive arcs. Another consequence is 

that the three sequencing, assigning and selecting decisional points are considered at the same time 

in the selection of a feasible move because, at the same time, it is both an alternative sequencing arc 

and alternative assigning arc with the selected level. 

 

7 Case study 

The case considered from the fashion industry includes five stages (Soldani, Rossi, & Lanzetta, 

2013): 

1. cutting – manual, die and machine cutting; 
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2. preparation – primary and secondary part preparation; 

3. varnishing; 

4. assembly – manual and machine stitching; 

5. finishing – finishing operations and packaging. 

Jobs include single parts (€€ 25.000 woman bags) or batches. 

A 5×5 benchmark, with 5 stages and 5 jobs, characterized as 2-HSSS|ℵ34|C23|D6|R10|N5|S5|max Li j
6, 

by a total of 34 operations with 23 conjunctive arcs, 6 disjunctive arcs (6/34=17%) and a maximum 

number of levels of 6. The simplest non-trivial case of P=2 parallel (or identical) resources per 

stage has been considered, to make it a hybrid stage shop scheduling benchmark. The release dates 

for jobs and resources are zero. The case 1-HSSS|ℵ34|C23|D6|R5|N5|S5|max Li j
6, with P=1 machine per 

stage has also been analyzed for comparison and can be considered as a special case of hybrid stage 

shop scheduling. Consequently, the general H•HSSS pseudo code can be applied to both 

benchmarks. 
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Figure 4. Proposed P-HSSS|ℵ34|C23|D6|R5P|N5|S5|max Li j
6 benchmark with 5 stages (columns) 

and 5 jobs (rows), including the precedence relations in Table 2 and Table 3. Colored arcs for 

P not shown for clarity. 

Figure 4 about here 

 

The benchmark in Figure 4 has been designed in order to include all the precedence relations 

introduced above, and recalled in Table 6; inter-stage relations are denoted by the two 

corresponding consecutive stage numbers, consequently it can be noticed there is no biunivocal 

relation between stages and primitive relations. 

 

Table 6. Map of job routing per precedence relations for the benchmark in Figure 4 

 STAGE 

JOB 1 1-2 2 2-3 3 3-4 4 4-5 5 

1 Node M1 D M2 Node  C  Node 

2 M4  Node M1 D M2 Node  Node 

3 Node  Node  Node  Node  Node 

4 Node M1 M3  Node  Node M1 D 

5 Node  Node  C  Node  Node 

 

 

Table 6 shows 6 occurrences of precedence graphs spanning across two stages. By applying the 

H•HSSS pseudo code on the two benchmarks considered, the Gantt diagrams of the obtained 

schedule are shown in Figure 5.  
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Figure 5. Gantt for the 2-HSSS|ℵ34|C23|D6|R10|N5|S5|max Li j
6 (top) and for the the 1-HSSS|ℵ34|C23|D6|R5|N5|S5|max Li j

6 (bottom) benchmark in 

Figure 4. Larger numbers in colored bars express jobs with their respective operations (smaller numbers) and completion time 

(superscripts) 

Figure 5 about here 
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At stage 1 in the top Gantt of Figure 5 for the 2-HSSS benchmark, the routing rule of the mixed 

relation M4 allows the overlapping among (micro) operations of job 2, renamed as 2-1, 2-2 and 2-3 

for readability. Resources 1 and 2 overlap in processing, respectively, operations 2-1 and 2-2, while 

operation 2-3 is processed on resource 1 as soon as the resource becomes available. 

The three mixed relations M1 between stage 1 and 2, between stage 2 and 3 and between stage 4 

and 5 are merged in three composite relations M1 ∪ M2. All these relations are managed as D 

relations (also see Table 6). The corresponding routing rule allows overlapping operations 1-1 and 

1-2 on the alternative resources of stage 2; analogously, for D relations of stage 3 and 5. 

The routing rule of the mixed relation M3 of job 4 at stage 2 is scheduled by overlapping operations 

4-2 and 4-3 on the two alternative resources; operation 4-4 is processed after operation 4-3 has been 

completed, because of the conjunctive relation (4-3, 4-4) included in the mixed relation M3. The 

adopted routing rule is 4-3�4-4; it is only applied to resource 1, because operation 4-2 is processed 

on resource 2. 

At stage 1 in the bottom Gantt of Figure 5 for the 1-HSSS benchmark, the routing rule of the mixed 

relation M4 does not allow the overlapping among (micro) operations 2-1, 2-2 and 2-3, which are 

processed sequentially by resource 1. Similarly, the three mixed relations M1, including operations 

1-2 and 1-3 at stage 2, 4-3, 4-2 and 4-4 at stage 2 and 2-5 and 2-6 at stage 3, which are managed as D 

relations (also see Table 6), are processed sequentially by resource 1. The routing rule of the mixed 

relation M3 of job 4 at stage 2 is processed sequentially by resource 1 with routing 4-3, 4-2 and 4-4. 

It can be noticed that splitting operations does not affect the completion time on each resource, 

because only permutations are possible. Allowed permutations are according to the selected routing 

rules of Table 2, Table 3 and Table 4. Inversely, the presence of two or more resources allows 

further potential makespan reduction by overlapping. 

As designed, the proposed heuristics provides feasible schedules. The Move Selection at step 2. can 

be improved by the use of dispatching rules to obtain better solutions. 

It can also be observed that the proposed theory (model, description and code) is applicable also 

with only one resource per stage and that it has been profitably applied to the examined case. 

 

8 Conclusion 

This work has been inspired by a real manufacturing case from the high-fashion industry. A hybrid 

stage shop scheduling model has been proposed. The problem has been described by mixed integer 

linear programming. The solution has been formalized by a disjunctive graph representation, a 

powerful tool to design scheduling optimization (metaheuristics) algorithms. An O(P⋅S⋅N2) 
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constructive method (heuristics) to generate a feasible plan/schedule in the most general case has 

been proposed and applied to a case study; it is based on priority levels obtained from the 

precedence graphs by deploying alternative routings. To find an optimal solution, metaheuristics 

like ant colony optimization, iterated local search and tabu search that produce constructive 

solutions may benefit of the graph representation. 

The hybrid stage shop scheduling model is able to provide shorter scheduling, by overlapping 

operations and by splitting on the same job, increasing the number of scheduling alternatives. These 

advantages, obtained at the cost of increased complexity, require resource and organization 

flexibility: more complex material flow and multifunctional resources (machines and/or operators).  

The proposed hybrid stage shop scheduling model completes the mixed stage shop model by 

resource flexibility and by integrating process planning and group shop scheduling (operational and 

routing flexibility). Greater flexibility and shorter makespan are available versus AND/OR graphs. 

Other contributions include the addition of operation overlapping and splitting within stages and 

across consecutive stages with the composition and the decomposition of primitive (2 nodes) and 

mixed (3 and 4 nodes) relations. The universe of new more complex relations has been explored 

and discussed both concerning the application implication and the theoretical background. The 

wildcard node mechanism is the key concept to fully exploit the potential of parallel resources, by 

allowing alternative plans obtained by permutation of operations linked by undefined or arbitrary 

routing, modeled as immaterial precedence constraints. Immaterial links, allow the integration of 

process planning and scheduling, with possible relapse in assembly/disassembly, computer aided 

design and process planning, manufacturing and service scheduling, and more generally in project 

management. 

 

9 Future work 

Mixed relations of the hybrid stage shop scheduling are included in a single stage or may span 

across two consecutive stages. The extension of immaterial constraints to multiple stages in hybrid 

shop scheduling (from HSSS to HSS), represents a new research area. The most general case of 

precedence graphs involving more than two consecutive stages has been examined and solved in a 

case study. Combining further the new mixed type relation, more complex nonlinear relations (5+ 

nodes) can be speculated both on the theoretical and algorithmic sides. Among developments is the 

unifying theory for α nodes and χ immaterial relations (and γ levels).  

An alternative interpretation of immaterial precedence constraints is considering resources as in a 

local job shop. In a perspective where the flowshop can be considered as a special case of the job 



  

Revised manuscript 

41 

shop, the hybrid stage shop scheduling model can be considered as a smooth transition between a 

flowshop and the more general case of job shop. In this regard the mentioned χ parameter may 

represent a measure of the flow grade of a given job shop. From a practical viewpoint, job shop 

solutions can be transferred from the literature.  
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