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AN EXPERT SYSTEM FOR HARMONIZING CHORALES 
IN THE STYLE OF J. S. BACH* 

KEMAL EBCiOS;LU 

D This paper describes an expert system called CHORAL, for harmonization of 
four-part chorales in the style of Johann Sebastian Bach. The system 
contains about 350 rules, written in a form of first-order predicate calculus. 
The rules represent musical knowledge from multiple viewpoints of the 
chorale, such as the chord skeleton, the melodic lines of the individual 
parts, and Schenkerian voice leading within the descant and bass. The 
program harmonizes chorale melodies using a generate-and-test method 
with intelligent backtracking. A substantial number of heuristics are used 
for biasing the search toward musical solutions. The CHORAL knowledge 
base provides for style-specific modulations, cadence patterns. and complex 
encounters of simultaneous inessential notes; it imposes difficult constraints 
for maintaining melodic interest in the inner voices. Encouraging results 
have been obtained, and output examples are given. BSL, a new and efficient 
logic-programming language fundamentally different from PROLOG. was 
designed to implement the CHORAL system. a 

INTRODUCTION 

In this paper, we will describe CHORAL, a knowledge-based expert system for 
harmonization and hierarchical voice-leading analysis of chorales in the style of J. S. 
Bach. We will first briefly outline a logic-programming language called BSL that was 
designed to implement the project, and then describe the CHORAL system itself. The 
research that we are about to report covers vast and highly complex areas in both 
artificial intelligence and music, so we will strive to use a language as comprehensi- 
ble as possible. 
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BSL: AN EFFICIENT LOGIC-PROGRAMMING LANGUAGE 

At the outset of our CHORAL project, we considered a number of alternative 
knowledge representation techniques, and we finally decided to use first-order logic 
for representing musical knowledge. First-order logic was felt to be well suited to 
the application, because it allowed us to make precise, concrete assertions about 
properties of a piece of music, and because it was more formal and tractable than 
some other AI paradigms, such as unrestricted production systems [27]. We started 
with over a hundred assertions in first-order predicate calculus, which later formed 
the seed of the knowledge base. These assertions were not in clausal form, and made 
free use e.g. of existential and universal quantifiers, as in the assertions one would 
use to extend English in a formal treatment such as [64]. However, the PROLOG 
interpreter then available to us on the VAX 11 architecture did not have a natural 
way of coding quantifiers; moreover, it did not offer the most efficient way for 
utilizing the native resources of a traditional CPU. On the other hand, our music 
application was well suited to the native data types and operations of a traditional 
architecture, and was also known to be extremely computation-intensive (we did 
have a fair idea of the potential problems of the application, because we had 
previously written a smaller-scale 16th-century strict-counterpoint program using a 
similar heuristic search method [17,18]). We were thus led to look for a different 
logic-programming language for implementing our project. Our requirements were: 
(1) the language had to have a natural way of coding universal and existential 
quantifiers directly; (2) the language had to utilize the native resources of a 
traditional architecture efficiently, in a manner competitive with deterministic 
Algol-class languages, so that we could use it to produce very high-quality music in 
a reasonable time; (3) the language had to have a natural way of specifying 
preferred solutions as well as just correct ones (the musical importance of this will 
be explained in the sequel); (4) the language had to have a streamlined design in 
order to increase its chances of being theoretically tractable; moreover, we felt that 
striving to use a streamlined design was a better way to approach a large project. 
While we were going back and forth between the logical assertions and ways of 
“executing” them, a logic-programming language called BSL (Backtracking specifica- 
tion Language) was designed, which appears to satisfy each of the abovementioned 
requirements. 

The design of the BSL language constitutes an unusual approach to the use of 
logic in computer programming, but is extremely traditional in the sense of the 
execution paradigm. Unlike languages such as PROLOG, BSL is not a descendant of 
resolution theorem-proving research [63]: BSL is merely a nondeterministic language 

with Pascal-style data types, where more than one explicit assignment to a variable 
is forbidden. BSL has a Lisp-like syntax and is compiled into c via a Lisp program. 
We have provided BSL with formal semantics, in a style inspired by [lo] and [30]. 
The semantics of a BSL program F is defined via a ternary relation ‘k, such that 
9( F, u, a’) means program F leads to final state u’ when started in initial state u, 
where a state is a mapping from variable names to elements of a “computer” 
universe, consisting of integers, arrays, records, and other ancillary objects. Given 
an initial state, a BSL program may lead to more than one final state, since it is 
nondeterministic, or it may lead to none at all, in case it never terminates. What 
makes BSL different from ordinary nondeterministic languages [26,70,7], and relates 
it to logic, is that there is a simple mapping that translates a BSL program to a 
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formula of a first-order language, such that if a BSL program terminates in some 
state u, then the corresponding first-order formula is true in u [where the truth of a 
formula in a given state (I is evaluated in a fixed “computer” interpretation after 
replacing any free variables x in the formula by a(x)]. A BSL program is very similar 
in appearance to the corresponding first-order formula, and for this reason, we call 
BSL programs formulas. 

In this paper, we will only give an informal overview of the BSL language. A 
formal description of BSL and a proof of its soundness can be found in [19]. We will 
start with an example of a simple BSL program to solve a little puzzle, followed by 
its first-order translation: Place eight queens on a chess board, so that no queen 
attacks another (i.e. no two queens are on the same row, column, or diagonal). 
Assume that the rows and columns are numbered from 0 to 7, and that the array 
elements p[O], . . . , p[7] represent the column number of the queen in row 0,. . . ,7, 
respectively: 

(include stdmac) ;include standard macro definitions 
(options registers (k j n)) ;allocate kj,n in registers 

(E ((P (array (8) integer))) 
(AnO(< n8)(1+ n) 

(EjO(< j@(L+j) 
(and(AkO(<kn)(l+ k) 

(and(! = j (p k)) 

(! = (- j (P k)) (- n k)) 
(! = (- j (P k)) (- k n)))) 

( := (P n) j))))) 

First-order translation: 

(3p 1 type(p) = “(array (8) integer)“) 
(vn ) 0 2 n < 8) 

(3j ]O<j<S) 
[(Vk ] 0 < k < n) [j # p[k] & j - p[k] # n - k & j - p[k] + k - n] 

& p[nl =_il 
Because of the similarity between a BSL formula and its logical counterpart, a BSL 

formula is like a specification for its own self: it describes what it computes. As the 
reader can readily see, the BSL formula shown above specifies what a solution to the 
eight-queens problem should satisfy, assuming we read an assignment symbol as 
equality, and we translate the quantifiers to a conventional notation. This BSL 

formula compiles into an efficient backtracking program in c that finds and prints 
instantiations for the array p that would make the (3p)-quantified part of the 
corresponding first-order formula true in the fixed interpretation. The register 
declarations shown in the option list are passed to c, and cause the c compiler to 
place the quantifier indices kj,n in registers if possible, for faster execution. The 
original BSL compiler was written in Franz Lisp, and generated code acceptable by 
the Berkeley UNIX’ c compiler, on a VAX 11 computer. We have now ported the BSL 

‘UNIX is a trademark of AT&T Bell Laboratories. 
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compiler to Lisp/VM and IBM 3081-3090 computers: it now generates code 
acceptable by the c version of the PL.8 compiler [77], and also the AT&T c 
compiler. 

We can observe some examples of BSL language features in this eight-queens 
program: The basic building blocks of BSL are constants, consisting of integers (such 
as - 2, 0, 3) and record tags (which are identifiers such as ssn, salary), and variables, 
which are identifiers such as x, p, n, or emp (for convenience, we assume that 
variables are distinct from record tags). Each variable and constant is a BSL term, 
and if I, and t, are BSL terms, the binop is one of the binary operators +, -, * , /, 
sub, and dot, then (binop t, t2) is also a BSL term. Examples of BSL terms are 0, 
(+ x 2) and (* 2 (dot emp salary)). The constructs (1 + x), (1 - x) may be used 
as abbreviations for (+ x 1) and (- x l), respectively. A BSL lvalue is either a 
variable, or a term of the form ( fi . . . (f,_ 1 (f,, x . . . ) . . . ) . . . ) where each of 
ft.. . . , f,, is either sub or dot, and where x is a variable. Lvalues are terms that can 
appear as the left-hand operand of an assignment, and are exemplified by x, (dot 
emp salary), or (sub p n). Lvalues can also be abbreviated as long as their normal 
notation can be inferred from context; for example, the latter two lvalues can be 
written as (salary emp) and (p n), in the proper contexts. A BSL atomic formula is 
either an assignment of the form (:= 1 tt), or a test of the form (relop t, t2), where 1 
is an Ivalue, t,, t, are terms, and relop is one of = = (equal), ! = (not equal), < , 
>=, < = , or > . A BSL atomic formula is a BSL formula. Assuming Fl and F2 are 
BSL formulas, then so are the following: (and F, F2), (or Fl F2),* (A x init cond incr 
F,), (E x inir cond incr F,), and (E ((x typ)) F,), where x is a variable; init, incr are 
terms where init does not contain x; cond is a BSL formula not containing any 
occurrences of A, E, or := ; and fyp is a type. The BSL types are similar to the type 
declarations of an Algol-class language, and allow integer, array, and record 
declarations. Examples of BSL types are integer, (array (3) integer), and (record (ssn 
integer) (salary integer)). In general, “integer” is a BSL type, and if typ, typl,. . . , typ, 
are BSL types, k 2 1, and y,, . . . , yk are distinct record tags, and n is a positive 
integer, then (array (n) fyp) and (record (yi fypJ . . . (y, typ,)) are BSL types. 

We give here an informal description of the nondeterministic program semantics 
of BSL: The variables of BSL can range over objects, each of which has a correspond- 
ing type. Objects of type integer are constants such as -2, 0, 3, and U (called the 
unassigned constant). An object can also be an array, which is a list of objects of the 
same type, or a record, which is a list of alternating record tags and objects, not 
necessarily of the same type. Arrays and records are exemplified by (1 2 U), which is 
an object of type (array (3) integer), and (ssn 999123456 salary 25000) which is an 
object of type (record (ssn integer) (salary integer)). The value of a BSL term, in a 
particular state during execution, is computed by using the usual meanings of the 
binary operators +, -, * , /, sub, and dot. Here sub is defined to be the subscript 
operator which takes an array object and an integer i and returns the i th element of 
the array object (the array elements are numbered starting from 0); and dot is 

‘In the eight-queens program above, the construct (and F, F2 6) abbreviates (and F, (and F2 F3)). 
In general, “and” and “or” associate to the right, and thus (and .) and (or ) can contain more than 
two subformulas. 
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defined to be an operator that extracts a subobject of a given record object as 
determined by a given record tag (it performs a function similar to the dot within 
the expression “employee.salary” in PL/I). BSL atomic formulas, i.e. assignments 
and tests, are executed in the conventional manner: the tests are executed by 
performing the indicated comparison operation after computing the current values 
of the two terms to be compared; and the assignments are executed by computing 
the current value of the right-hand-side term, and then destructively changing the 
value of the left-hand-side term to reflect the current value of the right-hand-side 
term. If the comparison operation indicated in a test comes out to be true, the effect 
of the test is a no-op. However, if a test does not come out to be true, or if an 
assignment is attempted when the current value of the left-hand side is not U, or 
when the current value of the right-hand side is not an integer, or if an attempt is 
made to perform an illegal computation (such as using a variable whose value is U 
in an arithmetic operation or comparison, or dividing by zero), execution does not 
terminate. The formula (and Ft F’) is executed by first executing F,, then F,_. The 
formula (or FI F,) is executed by executing one of FI or F2. The formula (A x init 
cond incr FI) is similar to the c “for” loop; it is executed by saving the old value of 
x, setting x to init, while cond is true repetitively executing FI and setting x to incr, 
and restoring the old value of x if and when cond is finally false. (E x init cond incr 
F,) is executed by saving the old value of x, setting x to init, setting x to incr an 
arbitrary number of times (possibly zero times), and finally deciding not to set x to 
incr any more, executing F,, and then restoring the old value of x. Here cond must 
be true after x is set to init and after each time x is set to incr, or else execution 
does not terminate. (E ((x typ)) FI) is similar to a “begin-end” block with a local 
variable; it is executed by saving the old value of x, setting x to an object of type 
typ all of whose scalar (i.e. integer) subobjects have the value U, executing F,, and 
then restoring the old value of x. 

The translation of a BSL program to the first-order assertion that it is true at its 
termination states is for the most part obvious, as exemplified by the eight-queens 
program above; however, both the assignment symbol (:=) and the equality test 
( = =) of BSL get translated to the equality symbol in the logical counterpart, that is, 
the program contains procedural information not present in its logical counterpart. 
First, assume that F’ denotes the first-order translation of a BSL term, formula, 
or operator F. The translation of BSL terms to first-order logic is straightforward: 
for example (+ x 2) (dot (sub emp i) salary) translate into +(x,2), 
dot(sub(emp,i),salary) (which can also be abbreviated as x + 2, emp[i].salary). The 
first-order translations of the comparison operators -C , > = , < = , > , = = , ! = 
are the predicate symbols < , 2 , I , > , = , f , respectively. Tests such as (relop 
t, tz) and assignments such as (:= 1 tl) translate into the first-order atomic formulas 
t,’ refop’t; and I’ = t;, respectively. (and FI F,) translates into [F,’ & F;], (or FI F2) 

translates into [F,’ V F;], and (E ((x typ)) FI) translates into (3x ]type(x) 
=“typ”)[ F,‘]. For a simple subset of BSL, where the only allowable looping 
constructs are of the form (A x t, (-c x t2) (1 + x) F), (E x t, (< x t2) (1 + x) 
F), and variants thereof, the translation of these to bounded quantifiers of first-order 
logic, namely (Vx 1 t,’ 5 x -c t;)[ F’], (3x 1 t; 5 x < t;)[ F’], . . . , works, where t;, t; are 
the first-order translations of BSL terms t, and t,, respectively, and where x does not 
occur in either t, or t,. However, for the general case involving arbitrary cond and 
incr expressions, which we will not elaborate here, the rigorous translation of BSL 
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formulas involves associating a different function symbol of the first-order language 
with every quantified formula of BSL, and is less natural.3 

The following translation examples should demonstrate the intuition behind the 
relationship of a BSL program to its first-order translation: When either (:= x 0) 
is successfully executed (i.e., x is initially U) or (= = x 0) is successfully executed 
(i.e., x is initially 0), the assertion x = 0 is true at the termination state. When (or 
(= = x 0) (= = x 1)) is successfully executed (i.e., x is initially 0 or 1, and the 
proper subformula of the “or” is chosen for execution), the assertion [x = 0 V 
x = l] is true at the termination state. When 

(A i 0 (< i 10) (l+ i) (E (6 integer)) 

(and (or (:= j 0) (:= j 1)) (:= (sub a i) j)))) 

is successfully executed (i.e., “a” is initially an array object whose first ten elements 
are U), 

(Vi ]O 5 i < 10)(3j ) type(j) = “integer”)[/j = 0 V j = 11 & a[i] = j] 

is true in the termination state. This assertion says that the first 10 elements of “a” 
are an arbitrary sequence of O’s and 1’s. To see why this assertion is true at the 
termination state of the program, observe that during the execution of the program, 
for each i = 0,. . . ,9, the assertion (3j 1 type(j) = “integer”)[[ j = 0 V j = l] & a[i] = j] 
was made true by creating (for each i) an integer j equal to 0 or 1, and then making 
a[;] = j true by assigning j to a[i]. The first-order translation of (and (:= x 0) (:= x 
(1 + x))) is [x = 0 & x = x + 11, but such a BSL formula can never reach a 
termination state, no matter what the initial value of x is, because it violates the 
single-assignment rule enforced by the program semantics of BSL (the single-assign- 
ment rule is the one that verifies that the left-hand-side is U and the right-hand side 
is an integer before each explicit assignment). The intuitive purpose of the single- 
assignment rule is to ensure that the continuation of execution does not destroy the 
truth of the assertions that were previously made true. Top-level formulas (i.e. 
complete programs) of the BSL subset we are describing, such as the eight-queens 
program given above, do not contain free variables, so the truth of the assertions 
corresponding to such formulas is not affected by the value of any variable in the 
termination state. Successfully executing such a top-level BSL formula is equivalent 
to constructively proving that the corresponding first-order sentence is true in a 
fixed interpretation that involves integers, arrays, records, and operations on such 
objects (or in all models of a suitably axiomatized “theory of integers, arrays, and 

records”). 
A BSL program of the form (E ((x tvp)) F) is implemented on a real, determinis- 

tic computer via a modified backtracking method, which in principle attempts to 
simulate all possible executions of the BSL program, and prints out the value of x 
just before the end of every execution that turns out to be successful. Whenever a 
choice has to be made between executing Fl and executing F2 in the context (or F, 

F2), the current state is pushed down to enable restarting by executing F2, and Fl is 

?ke [19] for details. In practice, the general case is rarely needed, because BSL programs are often first 
conceived as first-order assertions rather than, say, “while” loops. 
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executed. Whenever a choice has to be made between executing F and setting n to 

incr in the context (E n init cond incr F), the current state is pushed down to enable 
restarting by setting n to incr, and F is executed. If a test (refop t, tz) is found to be 
false, or if cond is found to be false in the context (E n init cond incr F), or if the 
top level (E ((x typ)) . . .) is successfully executed and x is printed, then the state 
that existed at the most recent choice point is popped from the stack, and execution 
restarts at that choice point. Attempting to make more than one explicit assignment 
to a scalar variable or to a scalar subpart of an aggregate variable, and illegal 
computations (such as attempting to add a number to a variable whose value is U), 
are considered errors and should never occur during the backtracking execution of a 
correct BSL program (however, the run-time checks for detecting such errors may be 
omitted for efficiency reasons). Execution begins with an empty choice-point stack 
and ends when an attempt is made to pop something from an empty stack. 

A modification is made to this basic backtracking technique for the case of 
assignment-free formulas Fl in the context (or Fl F2) or (E n ._. Fl). After a 
formula Fl in such a context is successfully executed, the most recent choice point 
on the stack is discarded (which would be the choice point for restarting at F2, or Fi 
with a different value of n, assuming the modification is uniformly applied). This 
convention, similar to the “cut” operation of PROLOG, serves to prevent duplicate 
solutions for x from being printed out (or redundant failures from occurring) when 
Fl and F2 do not express mutually exclusive conditions, or when Fl is true for more 
than one n in its quantifier range. Here is an example that demonstrates the 
motivation behind this modification to backtracking: suppose that many elements of 
an array “a” are equal to 0 in a particular state during backtracking execution; if in 
this state an assignment-free subformula (E i 0 (< i N) (1 + i) (= = (a i) 0)) is 
executed and succeeds after finding that a[i] = 0 for a particular i, and immediately 
thereafter a failure occurs (or some solution is printed), then there is no point in 
backtracking to the point in the subformula where i is set to i + 1, and then 
succeeding again after finding another element of “a” that is equal to 0, because the 
program will then fail in exactly the same way as before (or will print the same 
solution that it printed before). So the choice point for backtracking to i = i + 1 is 
discarded when (E i . . .) succeeds. 

Since backtracking is a notoriously inefficient search technique, we had to be 
careful about its implementation in BSL, in the hope of making the language usable 
for substantial applications. From the compiler-implementation viewpoint, the 
backtracking semantics described above, which entails saving the entire program 
state for later restarting at the next alternative, would appear to be an inefficient 
mechanism, since the program state would seemingly include the current values of 
all the variables that are active at the point of nondeterministic choice [the active 
variables are the variables that are declared within the quantifiers enclosing the 
choice point; nested quantifiers that use the same variable x, such as (E x . . . (A x 
. . .) . . .), are eliminated by renaming the inner x throughout its scope]. But in case 
run-time checks of single assignment are omitted, as they are in the present 
implementation, the single-assignment rule of BSL allows a significant reduction in 
the amount of information that needs to be saved at a choice point. In the present 
implementation, where variables are allocated in static storage or in registers (for 
the BSL subset we are describing), the following observation applies to a typical 
scalar variable or scalar subpart of a variable, when the state is being pushed down 
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at a choice point: if the variable already has an integer value, then it does not need 
to be saved, since it will not have been assigned again and its storage space will have 
remained intact when backtracking later occurs to this choice point; and if the 
variable is currently unassigned, then it still does not need to be saved, since its 
current value will not be used after a backtracking return is made to this choice 
point. In fact, the only variables that are pushed down at a choice point (called the 
destructibfe variables) are precisely the variables that are both active at the choice 
point and declared within the scope of a universal quantifier (A n . . .) enclosing the 
choice point.4 These variables typically consist of quantifier indices. It is this 
smallness of state that enables a BSL program to rapidly push down the entire 
program state at a nondeterministic choice point, and to return to the most recent 
choice point directly when a failure later occurs, without having to execute state- 
ments in the backward direction as in older nondeterministic languages [26,7], and 
without having to restore variables on a “trail” stack to their previous value, as in 
many PROLOG implementations (e.g. [24,76]). 

The BSL compiler also uses a technique for eliminating or reducing the need for 
pushing down choice points: If a subformula Fi in the context (or Fl F2) or (E n 
init cond incr Fl) is assignment-free, the BSL compiler does not generate code for 
pushing down the state before the execution of F,, and emits compare-and-branch 
statements for Fl that directly jump to next alternative when Fl fails (the next 
alternative is F2, or the setting of n to incr), and that directly jump to the 
continuation of (or Fl F2) or (E n . . . Fl) when Fl succeeds, using a standard 
compilation technique for Boolean expressions [l], extended with bounded quanti- 
fiers. This standard compilation technique is equivalent to, but much more efficient 
than, the original “cut”-like semantics given above, which involves first pushing 
down and then discarding a choice point. 5 Moreover, even when there are assign- 
ments in a subformula Fl in the context (or Fl F2) or (E n init cond incr F,), the 
compiler delays the pushdown operations that would normally precede the code for 
Fl. and emits compare-and-branches for as large an initial segment of Fl as 
possible, as long as assignments are not yet encountered in F,; the code for this 
initial segment jumps directly to the next alternative when Fl fails (the possibility 
exploited here is that F, may fail before the state needs to be pushed down).6 

It should also be noted that BSL operates on the native data types of a traditional 
computer, such as integers and arrays of integers, rather than machine words which 
contain both data and tags, as is the case in a typical PROLOG implementation. 
Moreover, bounded quantifiers in BSL are native to the language and often compile 
into simple loops, which enable traditional compiler optimizations such as code 
motion, strength reduction, or induction-variable elimination. 

4This is because n may be reincremented, and the other variables declared within (A n ) may be 
destroyed through reuse of their storage space during the continuation of execution, due to the static 
nature of the storage. For example, in the eight-queens program above, j and n (but not p) need to be 
pushed down within (E j .) for the purpose of later backtracking to the setting of j to j + 1. 

‘Gergely and Szots [28] have proposed a logic-programming language called Logic of Cuttable 
Formulas, whose formulas are compiled into efficient programs that have essentially the same semantics 
as the assignment-free subset of BSL. 

‘For example, in the eight-queens example above, no pushdown operations are executed within (E j 
(and )) until just before the assignment (:= (p n) j). If (and .) fails before reaching the 

assignment, it jumps directly to the setting of j to j + 1. A detailed compilation algorithm is given in [19]. 
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Some performance comparisons between BSL and PROLOG and Lisp on exhaus- 
tive search algorithms, which may help to quantify the advantage of using BSL, were 
given in [20]. BSL'S method of combining extended Boolean tests and backtracking is 
perhaps a natural way to “execute” a logical specification on a computer; however, 
the possible logical specifications are limited to those that correspond to valid BSL 

programs, and it is required that the programmer indicate which equalities in the 
specification are to be executed as assignments, and which are to be executed as 
tests.’ 

The language subset described up to here is called L*, and constitutes the “pure” 
subset of BSL. The full BSL language also allows user-defined predicates in addition 

to <, > ,..., user-defined functions in addition to +, sub,. . . , global variable 
declarations, macro and constant definitions, “if’ and “case” statements, enumera- 
tion types, real types, and a richer set of primitive operations. The user-defined 
predicates of BSL are nondeterministic recursive procedures analogous to PROLOG 
procedures, but whether a parameter of a BSL predicate is used (i.e., is an input) or is 
assigned to (i.e., is an output) during the predicate call is fixed by the programmer. 
Facilities include a “(with . . .)” construct that allows convenient abbreviations for 
certain lvalues that would otherwise have to be written out with long chains of sub 
and dot operators. A “not” connective is allowed as long as we can move the “not” 
in front of the atomic formulas with de Morgan-like transformations, and then 
change (not (= = . . .)) to (! = . . . ), etc., and still get a valid BSL formula. BSL is 
also extended with heuristics, which are BSL formulas themselves, and which can 
guide the choices made during the backtracking execution of a BSL program. As a 
preparation for the next section, which depicts the use of BSL for implementing 
expert systems, we will describe the heuristics feature of BSL below. 

Normally, the order of enumeration of the possible successful executions, or 
termination states, of a BSL formula F during a backtracking simulation is deter- 
mined in a fairly trivial way via factors such as which subformula occurs first in an 
(or . . . , . .). This order is fine for applications where all solutions have to be found, 
but in applications such as music generation, the list of all solutions is of impractical 
length and is quite boring. It is thus necessary to alter the order of enumeration of 
termination states so that a better solution will tend to come out first. A more 
sophisticated order of enumeration of the termination states of a BSL formula F can 
be obtained by enclosing F in the construct (H F (I, _. . f,) Fk . . . F,), where 
I I,..., I,, are (not necessarily scalar) lvalues that are assigned during F, and Fk , . . . , 
F, are side-effect-free BSL formulas, called heuristics. 

(H F . . .) is simulated as follows: First all executions of F are simulated, and 
whenever an execution of F terminates successfully, the termination state of the 
current execution, as represented by the assignments to I,, _. . , I,, is assigned a 

‘In contrast to BSL. the unification algorithm [63] and certain nonlogical systems such as “Con- 
straints” 1741 defer the choice between making equality and checking for it to run time. But the 
unification algorithm has the elegant consequence of being able to answer different questions about a 
relation without reprogramming, such as using the same code for finding the parents of a given x, or 
finding the children of a given y, or checking if a given y is a parent of a given x, or finding pairs (x,y) 
such that y is a parent of x. BSL is suitable for generate-and-test applications where such versatility, which 
is useful but usually costly, is not of prime importance, and where the question is fixed (e.g., given the 
result of laboratory experiments, find the solutions to a molecular-genetics problem, not the other way 
around, as exemplified by [72]). 
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numerical worth by executing each heuristic Fk,. . . , F, in the current termination 
state. The heuristics are weighted by decreasing powers of two, and the worth of a 
termination state is computed to be the sum of the weights of the heuristics that it 
makes true. Thus, if a heuristic F, is true in the current termination state, k 2 i 2 0, 

it increases the worth of the current termination state by 2’; otherwise, it does not 
affect the worth of the current termination state. Then the assignments to fi,. . . , I, 
in the current termination state are saved in a list along with their worth, and a 
failure return is forced in order to obtain more termination states of F. If and when 
all termination states of F are exhausted (as defined by the modified backtracking 
simulation), the resulting list is sorted according to the worth of each termination 

state (i.e. assignment to I,, . . , I,,). Ties are resolved with explicit randomness, by 
shuffling the list randomly before sorting, in order to defeat any extra unwanted 
“heuristics” that may result from the regularity in the generation of the list. Then 
(H F . . . ) succeeds first with the highest-valued termination state of F, then, if 
backtracking occurs, with the next-highest-valued termination state, etc., and finally 
backtracks to a previous choice point when there are no more assignments left in the 
list. This feature of BSL forms the basis for the BSL generate-and-test paradigm, 
which is described next. 

THE GENERATE-AND-TEST PARADIGM IN BSL 

Despite its Spartan data types, BSL can be used for designing large and complex 
expert systems in a structured manner. The formal analog of a knowledge-based 
system based on the generate-and-test method [72] can be implemented in BSL via a 
very long formula of the following form: 

(E ((s (array(N) WI))) 
(E ((inp ~2)) 

(and “initialize inp” 

(AnO(< nN)(l+ n) 
(H (and 

(or (and conditions, actions,) 

. . . 
(and conditions, actions,)) 

constraint, ; 

; 
; generate section 
; 

. . . ; test section 
constraint,) ; 

KS W 
heuristic, 
. . . ; recommendations section 
heurisric,))))) ; 

In the generate-and-test paradigm of BSL, the computation proceeds by “gener- 
ate-and-test steps”, where each step consists of selecting and assigning an acceptable 
value to the n th element of the solution array “9 depending on the elements 

0,. . . , n - 1 (and also on the input data structure “inp”). The condition-action pairs 

given here are the formal analogs of production rules [9] as they are used in a 
generate-and-test application. The conditions are subformulas that typically per- 
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form certain tests about elements 0 , . . . , n - 1 of the solution array, and the actions 
are subformulas that typically involve assignments to element n of the solution 
array. Thus a condition-action pair has the informal meaning “IF conditions are true 
about the partial solution, THEN a new element as described by the actions can be 
added to the partial solution”.’ The constraints are subformulas that assert absolute 
rules about the elements 0,. . . , n of the solution array. They have the procedural 
effect of rejecting certain assignments to element n (this effect is also called ear& 
pruning in AI literature [32]). The heuri.stics are subformulas that assert what is 
desirable about elements 0,. . , , n of the partial solution; they have the procedural 
effect of having certain assignments to element n tried before others are. The 
condition-action pairs are called the generate section, the constraints are called the 
test section, and the heuristics are called the recommend&ions section of the 
knowledge base. Each step of the program is executed as follows [we are repeating 
the explanation given above for the (H . . .) construct]: All possible assignments to 
the n th element of the partial solution are sequentially generated via the production 
rules. If a candidate assignment does not comply with the constraints, it is thrown 
away; otherwise its worth is computed by summing the weights of the heuristics that 
it makes true, and it is saved in a list, along with its worth. When there are no more 
assignments to be generated for solution element n, the resulting list is sorted 
according to the worth of each candidate. The program then attempts to continue 
with the best assignment to element n, and then, if a dead end is later encountered 
and a backtracking return is made to this point, with the next best assignment, etc., 
as defined by the sorted list. The reasons we chose the particular powers-of-two 
weighting scheme described above for the heuristics were its clarity, freedom from 
unconstrainted numerical weights, and efficient implementation. 

Heuristic search is an important topic that has attracted considerable research 
interest, and many alternative approaches have been studied (e.g., [57.X$60,55]). 
Although BSL's heuristic search paradigm is itself simple, the heuristic criteria that 
one can specify with ease in BSL can be quite sophisticated, because heuristics have 
the generality of logic formulas. Heuristics have no effect on the non!eterministic 
semantics of a BSL formula, or on its first-order translation: the first-order transla- 
tion of (H F . . .) is taken to be the same as the first-order translation of F; 
moreover, in the nondeterministic execution semantics of BSL (H F . . .) is executed 
by executing merely F. 

Within the production rules, constraints, and heuristics, the existential and 
universal quantifiers of BSL can provide capabilities equivalent to the pattern-match- 
ing capabilities of a true production system [27]. For example, assume that we are 
dealing with a molecular-genetics application similar to the one described in [72]. In 
this problem, the solution object can be represented as a sequence of elements, each 
having two attributes, a site and a segment. 9 The problem is to find some or all of 
the solutions that are consistent with the rules of the domain and the results of 

‘Note that this condition-action paradigm captures only the generate-and-test application of produc- 
tion rules, which is the intended application of EM.. In general. production systems can allow very 
arbitrary control, such as self-modification [78] or blackboards [31]. 

The sites are enzyme names labeling points on a circular DNA molecule where that enzyme has 
made a cut, and the segments are integers indicating the length of the DNA molecule segment from one 
site (cut point) to the next. Stetik [72] describes the problem in detail. 
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laboratory experiments given as input. In the context of this application, in order to 
specify a production rule that says “IF certain conditions are true, THEN the segment 
whose length is the smallest among a given array of segments can be added to the 
partial solution”, one could write” 

(and “certain conditions” 
(EiO(< imaxsegs)(l+ i) 

(and(A j 0 ( < j maxsegs) (1 + j) 
(imp(! = i j) 

(< (seg_list i) (seg list j)))) 
(:= (segment (s n)) (seg - list;))))) 

Assuming appropriate type declarations for seg_list and s, the logical translation of 
this subformula is 

[“certain conditions” & 
(3 (0 5 i < maxsegs) 

[(Vj 10 < j < maxsegs)[i # j =j seg_list[i] < seg_listb]] 
& s[n].segment = seg_list[i]]]. 

Similarly, a constraint asserting “IF certain conditions are true, THEN the site that 
has just been added to the solution cannot have more than one previous occurrence 
in the solution” can be written as 

(imp “certain conditions” 
(not (E i (l- n) (> i 0) (l- i) 

(Ej (l- i) (> = j 0) (l- j) 
(and( = = (site (s i)) (site (s n))) 

(= = (site (s j)) (site (s i)))))))) 

whose logical translation is 

[“certain conditions” =j 
not[@i In - 1 2 i > 0)(3j ]i - 1 2 j 2 O)[s[i].site = s[n].site & s[j].site = s[i].site]]]. 

Operations that may normally require more than one recognize-act cycle in an 
ordinary production system can also be performed in a single generate-and-test step 
in the present paradigm; e.g., more than one attribute of the next item to be added 
to the solution, where each attribute involves several nearly independent choices, 
can be decided in a single step. For example, assuming each solution element has 
two attributes, site and segment, the generate section of the knowledge base can be 
constructed as follows: 

(and 
(or “condition-action pairs to choose the n th site”) 
(or “condition-action pairs to choose the n th segment”)) 

where the n th segment may depend on the n th site. (Note that in a production-sys- 
tem language, one normal way of achieving the same effect could take two 

“‘Here. (imp F, Fi) is a macro that expands into (or(not F,) F,) 
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recognize-act cycles: choosing the site during the first recognize-act cycle and 
changing the “current task” to be that of choosing the segment, and choosing the 
segment during the second recognize-act cycle.) 

In fact, the generate section of the Jill-in knowledge base of the CHORAL system 
decides the attributes of the three voices bass, tenor, alto, as well as other relevant 
attributes, in a single step, and has the form 

(and . . . 
(A v bass ( < v soprano) (1 + v) 

(or 
“condition-action pairs to choose attributes of voice v at the 
n th step”)) 

. . . ) 

Our experience while writing large knowledge bases in BSL has suggested that such 
knowledge bases can attain a very high degree of complexity, and some discipline is 
required for managing them (PROLOG and general-purpose expert-system shells 
are also not immune to this problem). The production rules, constraints and 
heuristics of a knowledge base need not be enumerated in an unstructured manner 
as shown here: to enhance legibility, they can be hierarchically grouped according to 
subject, similarly to chapters and paragraphs of a musical treatise (in a larger 
project, perhaps different teams can design the different chapters, based on an 
agreement on the shared data structures and a written outline of the knowledge 
base). Similarly, distinguishable concepts (e.g. parallel motion of two voices, dou- 
bling the fifth of a chord), can be implemented through hierarchies of predicate, 
function, or macro definitions, so constraints and heuristics are short and are as 
close as possible to an English paraphrasing of them. Other points we learned 
through experience are that nested AND-OR-AND-OR structures must be avoided 
(multiplied out, normalized), and that long lists of similar constraints or production 
rules should be replaced by a compact table that is interpreted by a single 
production rule or constraint, and constraints or heuristics longer than a screenful 
of lines should be broken down. But if a proper design methodology is followed, the 
BSL paradigm indeed allows the benefits of a true production system in an important 
class of generate-and-test applications. 

REPRESENTING KNOWLEDGE WITH MULTIPLE VIEWPOINTS 

The paradigm shown above is suitable only for simple generate-and-test problems, 
such as Stefik’s GA1 system [72]. It uses a single model of the solution object, as 
represented by the primitives allowed by the solution array’s type declaration. 
Representing knowledge about multiple viewpoints, or multiple models of a solution 
object, is a need that often arises in the design of complex expert systems: the 
Hearsay-II speech-understanding system [23] was such an example, where there was 
a need to observe the interpretation of speech simultaneously as mutually consistent 
streams of syllables, words, and word sequences. In logic, a good way to describe an 
object from different viewpoints is to use different primitive functions and predi- 
cates for each view, since without the appropriate primitives, logic formulas for 
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describing a concept can be unnecessarily long. But since BSL allows efficient 
manipulation of the native data types of a traditional computer, such as arrays and 
records, it is preferable to implement multiple viewpoints in BSL with pseudofunc- 
tions and predicates, through data structures. In BSL, each viewpoint is represented 
by a different data structure, typically an array of records, that serves as a rich set of 
primitive pseudofunctions and predicates for that view. 

For example, assuming that we wish to have a viewpoint that observes the chord 
skeleton of a musical piece with two primitive functions p(n,v) and a(n,v), represent- 
ing the pitch and accidental of voice v of chord n, BSL lvalues of the form c[n].p[v] 
and c[n].a[v], where c is the array of records of the view, can be used as a 
pseudonotation to abbreviate p(n,v) and a(n,v). 

BSL'S multiple-view paradigm has the following procedural aspect, which amounts 
to interleaved execution of generate-and-test: It is convenient to visualize a separate 
process for each viewpoint, which constructs that particular view of the solution, in 
close interaction with other processes constructing their respective views. A process 
typically executes in units of “generate-and-test steps”. The purpose of each step, as 
before, is to assign acceptable values to the n th element of an array of records, 
depending on the values of the array elements 0,. . . , n - 1, and external inputs, e.g. 
elements of external arrays of records, whose values have been assigned by other 
processes. The processes, implemented as BSL predicate definitions, are arranged in a 
round-robin scheduling chain. With the exception of the specially designated 
process called the clock process, each process first attempts to execute zero or more 
steps until all of its inputs are exhausted, and then schedules (calls) the next process 
in the chain with parameters that indicate how far each process has progressed in 
assigning values to its output arrays. The specially designated clock process at- 
tempts to execute exactly one step when it is scheduled; all other processes adjust 
their timing to this process. 

In certain cases a view may be completely dependent on another, i.e., it may not 
introduce new choices on its own. In the case of such redundant views, it is possible 
to maintain several views in a single process, and share heuristics and constraints, 
provided that one master view is chosen to execute the process step and comply with 
the paradigm. One way to do this is as follows: at the n th step of such a process, the 
generate section is executed to produce a candidate assignment to the attributes of 
the n th element of the master view, then the subordinate views are updated 
according to the chosen master-view attributes, and then a mixture of constraints 
and heuristics from both the master and subordinate views are used to decide if the 
candidate assignment to the n th element of the master view is acceptable and 

desirable. 
It is evident that the framework described here is in contrast with the more 

common techniques for constructing expert systems, where some emphasis is placed 
on sophisticated control structures. We should therefore explain why we have 
chosen such a streamlined architecture for designing an expert system, rather than a 
more complex paradigm such as the multiple-demon queues of [71], or the oppor- 
tunistic scheduling of [23]. We strongly believe that striving to use simpler control 
structures is a better approach to the design of large systems. Our design approach 
is in fact a deliberate choice, and is analogous to a recent approach to computer 
architecture [59,33,62]: It is a preliminary attempt at reducing the semantic gap 
between the top and bottom levels of the hardware-software complex that imple- 
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ments an expert system, by designing a streamlined set of system primitives that 
directly correspond to the target problem” (cf. [53]). The paradigm described here 
has served to simultaneously represent knowledge about and construct multiple 
models of the solution object for the chorale program. We suspect that it can also be 
used for any generate-and-test application where (1) execution efficiency is manda- 
tory during all stages of the development phase, and (2) the solution can be 
conveniently represented as one or more Pascal-style data structures. Note that 
programming such a demanding application in BSL would be much easier than 
programming it in c or Pascal, since BSL is indeed a high-level declarative language 
that gives access to the expressive richness of concepts of first-order predicate 
calculus, despite the fact that there is little tradeoff of efficiency in choosing BSL over 
conventional low-level languages. However, like some of the other knowledge-en- 
gineering paradigms, such as diagnosis-oriented skeletal systems [6], BSL has a 
limited scope of applicability. In particular, the BSL paradigm would be unsuitable 
for applications that cannot do without list processing: in music, we could get away 
with mere arrays and records, because music can be represented as a uniform 
sequence of events. 

A COMPILATION TECHNIQUE FOR INTELLIGENT BACKTRACKING 

Ordinary, or chronological, backtracking may sometimes be inefficient when no 
choices can be found for successfully executing the current generate-and-test step 
and the immediately preceding step is irrelevant to the failure of the current step. In 
this case, a substantial amount of computation that will look useless to a human 
observer will be done until the most recent step that caused the failure is reached. 
For example, assuming the current step is the n th step and the choice responsible 
for the failure of the current step was made at step n - k, k > 2, then there will be a 
seemingly useless sequence of backtrackings to step n - 1 until all of the choices at 
step n - 1 are exhausted, and then there will be a backtracking to step n - 2, and 
then there will again be many backtrackings to step n - 1, and so on. 

The BSL compiler attempts to alleviate the overhead associated with backtracking 
by a special compilation technique triggered by a compiler option. We have 
expressly tried to find an intelligent backtracking heuristic with very low overhead, 
since we have observed that overly ambitious intelligent backtracking schemes can 
introduce so much overhead that they can actually slow down the typical applica- 
tions. In our technique, it is assumed that the computation proceeds as a sequence 
of generate-and-test steps. Otherwise the technique is domain-independent, and will 
produce the same solutions as ordinary backtracking would. Each scalar variable, or 
each scalar member of an aggregate variable, has a tag associated with it. At run 
time, things are arranged so that the tag always contains the stack level to backtrack 
to in order to get a different choice for the value of the corresponding variable. 

“An alternative successful approach is to reduce the semantic gap between existing AI software 
paradigms and hardware, by designing specirrlized hardware for Lisp and PROLOG. The BSL paradigm, 
on the other hand, is destined for well-understood RISC or supercomputer architectures, As for the 
parallel execution of BSL. we expect that significant speedup of BSL programs will be achievable in the 
future, via the emerging “ very long instruction word” (VLIW) architectures and compilation techniques 
[22,56,21], which are intended for parallel execution of general, ordinary, sequential programs. 
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During the execution of a step, a running maximum is maintained of the tags of all 
variables that occur in the failing tests. When a step cannot be executed and 
backtracking is necessary, the program returns to this computed most recent 
responsible step for the failure, which is not necessarily the chronologically preced- 
ing step. l2 There have been a number of research projects in AI and logic 
programming that also have addressed the intelligent backtracking problem, using 
alternative approaches (e.g. [71,13,5,61,11]). 

The main use of this heuristic is for eliminating the need for Conniver-style [73] 
programmed return to an earlier-than-normal step, or the PROLOG-style “cuts” to 
labels specified by the programmer. This sort of inelegant intrusion into the 
backtracking mechanism would have otherwise been mandatory in the chorale 
program, since when a step of the chord skeleton view fails, it must at least 
backtrack to the previous step of the chord skeleton view, which is not necessarily 
the immediately preceding step (the immediately preceding step can be totally 
irrelevant to the failure). Because of this property of the scheduling order of the 
viewpoints, the intelligent backtracking technique causes the chorale program to run 
much faster than it would without it. However, we have encountered cases in the 
chorale program where this conservative and domain-independent intelligent back- 
tracking mechanism is not intelligent enough. In particular, it appears to be 
desirable to detect not only the responsible step, but also the precise change that is 
required at that step (as was done in [68]); but we do not presently know of an easy 
way to compile such an intelligent backtracking algorithm; similarly, we do not 
know whether the additional overhead would be justified. To remedy the problem, 
we have added an incomplete-search feature to the compiler that gives a fixed 
number of chances to the intelligent backtracking technique when there are repeti- 
tive failures at a given step, and then forces the program to backtrack to a step 
earlier than the step recommended by the intelligent backtracking technique. The 
earliness of the step to backtrack to is increased, while the failures continue to occur 
in the same step as they did before. This feature cannot be used in more mundane 
applications where all solutions must be found, but it did give satisfactory results in 
the present application.13 

‘“Here is some more detail: In normal code, when an assignment is made to a scalar variable or a 
scalar subpart of an aggregate variable, the stack level to backtrack to for undoing this assignment is 
placed in the tag of the variable (the additional assignment is compiled inline). Tests are executed as 
usual in normal code. During the execution of a generate-and-test step (a subformula specially designated 
by the programmer, where we are interested in finding the most recent responsible stack level to 
backtrack to, in case this subformula fails), whenever a variable is assigned a value, its tag is set to the 
maximum of the tags of the variables on the right-hand side of the assignment. Whenever a test within 
the generate-and-test step succeeds, execution proceeds as usual, but when the test fails. a “current 
estimate” ( a running maximum) for the most recent responsible stack level is updated, if it is less than 
any of the tags of the variables that were part of the failing test, via additional code compiled inline after 
the test. If the current generate-and-test step fails, this estimate is used for selecting the stack level to 
backtrack to; otherwise, the tags of the variables assigned during the current step are changed to point to 
the next alternative for the current step, and execution continues, typically with the next generate-and-test 
step. Various optimizations are performed on top of these basic principles. See [19] for further details. 

“The incomplete search technique was later disabled on the IBM 3081-3090 version of the program, 
because we felt we could afford more search on the faster hardware. 
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THE H SOWLEDGE MODELS OF THE CHORAL SYSTEM 

We are now in a position to discuss the CHORAL system itself. We will be able to 
give here only a brief overview of the knowledge base of CHORAL, which is in reality 
very long and complex. The CHORAL system uses the backtrackable process schedul- 
ing technique described above to implement the following viewpoints of the chorale: 

The chord-skeleton view, which corresponds to the clock process, observes the 
chorale as a sequence of rhythmless chords and fermatas, with some unconventional 
chord symbols underneath them, indicating key and degree within key. The primi- 
tives of this view allow referencing attributes such as the pitch and accidental of a 
voice v of any chord n in the sequence of skeletal chords. This is the view where we 
have placed, e.g., the production rules that enumerate the possible ways of modulat- 
ing to a new key, the constraints about the preparation and resolution of a seventh 
in a seventh chord, and the heuristics that prefer “Bachian” cadences. 

The jil/-in view observes the chorale as four interacting automata that change 
states in lockstep, generating the actual notes of the chorale in the form of 
suspensions, passing tones, and similar ornamentations, depending on the underly- 
ing chord skeleton. This view reads the chord skeleton output. For each voice v at 
fill-in step n, the primitives allow referencing attributes of voice v at a weak eighth 
beat and an immediately following strong eighth beat, and the new state that voice v 
enters at fill-in step n (the states are suspension, descending passing tone, and 
normal). At each one of its steps, the fill-in view generates the cross product of all 
possible inessential notes (suspensions, passing tones, neighbor notes, miscellaneous 
embellishments specific to the chorale style, etc.) in all the voices, and then filters 
out the unacceptable combinations and selects the desirable combinations, using a 
rather complex list of constraints and heuristics. In this view we have placed, e.g., 
the production rules for enumerating the long list of possible inessential note 
patterns that enable the desirable bold clashes of simultaneous passing tones and 
suspensions. a constraint about not sounding the resolution of a suspension above 
the suspension, and a heuristic on following a suspension by another in the same 
voice (a “Bachian” clichC).14 

The melodic-string view observes the sequence of individual notes of the different 
voices from a purely melodic point of view. The primitives of this view allow 
referencing the pitch and accidental of any note i of a voice v. This is the view where 
we have placed, e.g., a constraint about sevenths or ninths spanned in three notes, 
and a heuristic about continuing a linear progression. 

The merged melodic-string view is similar to the melodic-string view except that it 
observes the repeated pitches merged together. This view was used for recognizing 
and advising against certain bad melodic patterns that we feel are not alleviated 
even if there are repeating notes in the pattern. 

I4 We felt that enabling the bold clashes of multiple simultaneous inessential notes was indispensable 
for obtaining a “Bachian” melocid-harmonic Row. Not allowing multiple simultaneous inessential notes 
or style-specific modulations in the harmonization would have greatly simplified the problem domain, but 
then we would probably not obtain music. 
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The time-slice view observes the chorale as a sequence of vertical time slices each 
of which has a duration of a small time unit (an eighth note), and imposes harmonic 
constraints. The primitives of this view allow referencing the pitch and accidental of 
a voice v at any time slice i, and whether a new note of voice v is struck at that time 
slice. We have placed, e.g., a constraint about consecutive octaves and fifths in this 
view. 

The Schenkerian-analysis view is based on our formal theory of hierarchical voice 
leading, inspired by Schenker [65,66] and also by Lerdahl and Jackendoff [45,46]. 
The core of this theory consists of a set of rewriting rules which, when repeatedly 
applied to a starting pattern, can generate the bass and descant lines of a chorale. 
The Schenkerian-analysis view uses our rewriting rules to find separate parse trees 
for the bass and descant lines of the chorale, employing a bottom-up parsing 
method, and using many heuristics for choosing (among the alternative possible 
actions at each parser step) the action that would hopefully lead to the musically 
most plausible parsing. Unlike Lerdahl and Jackendoff s theory, which is based on a 
hierarchy of individual musical events (e.g. chords, noteheads), our theory is based 
on a hierarchy of slurs, and is more in line with Schenker’s theory. The discussion of 
our voice-leading theory is beyond the scope of this paper, and the details can be 
found in [19]. The Schenkerian-analysis view observes the chorale as the sequence of 
steps of two nondeterministic bottom-up parsers for the descant and bass. This view 
reads the fill-in output. The primitives of this view allow referencing the output 
symbols of a parser step n, the new state that is entered after executing step n, and 
the action on the stack at parser step n. The rules and heuristics of this view belong 
to a new paradigm of automated hierarchical music analysis, and do not correspond 
to any rules that would be found in a traditional treatise. In this view we have 
placed, e.g., the production rules that enumerate the possible parser actions that can 
be done in a given state, a constraint about the agreement between the fundamental 
line accidentals and the key of the chorale, and a heuristic for proper recognition of 
shallow occurrences of the Schenkerian D-C-B-C ending pattern. 

The fill-in, time-slice, and melodic-string views are embedded in the same process, 
with fill-in as the master view among them. 

The order or scheduling of processes is cyclically chord skeleton, fill, Schenker 
bass, Schenker descant. Each time chord skeleton is scheduled, it adds a new chord 
to the chorale; each time fill-in is scheduled, it fills in the available chords and 
produces quarterbeats of the actual music until no more chords are available. Each 
time a Schenker process is scheduled, it executes parser steps until the parser input 
pointer is less than a lookahead window away from the end of the currently 
available notes for the descant or bass.15 When a process does not have any 
available inputs to enable it to execute any steps when it is scheduled, it simply 
schedules the next process in the chain without doing anything. The chorale melody 
is given as input to the program. 

“The lookahead window gradually grew bigger as our ideas evolved, and in the recent versions. for 
the sake of reducing module sizes, we have found it expedient to place the Schenker processes in a 
separate postprocessing program that reads its input from a file produced by the other views. Note that 
the technique of using a separate program for a particular process is not necessarily outside the paradigm 
of nondeterministic parallel processes; it is rather an optimization of a degenerate case of the same 
paradigm. 
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There are currently a total of approximately 350 production rules, constraints, 
and heuristics in the chorale program. The rules and heuristics were found mainly 
from empirical observation of the chorales and personal intuitions, although we 
used a number of traditional treatises (such as [47] and [41, Vol. I]) as an 
anarchronistic, but nevertheless useful point of departure. The current version of the 
chorale program aims only to harmonize an existing chorale melody and assign an 
analysis to it. All parts of the chorale program are written in BSL, except for the 
graphics routines and the routine to read in and preprocess the chorale melody, 
which are written in c. In the VAX 11/780 version of the program, it used to take 
typically 15-60 minutes of CPU time to harmonize a chorale. In the present version, 
which has a larger knowledge base and some extremely difficult rules intended to 
increase the output quality, it typically takes about 3-30 minutes of IBM 3081 CPU 
time to harmonize a chorale, although a few chorales have required several hours. 

The program has presently been tested on about 70 chorales (consuming inordi- 
nate amounts of CPU time) and has reached an acceptable level of competence in 
its harmonization capability: we can say that its competence approaches 
that of a talented student of music who has studied the Bach chorales. The program 
has also produced good hierarchical voice-leading analyses of descant lines, but the 
Schenkerian-analysis knowledge base still reflects a difficult basic research project in 
music analysis, and is not as powerful as the harmonization knowledge base. We 
have also not been able to get any good parsings involving the basses so far. 

The CHORAL system takes an alphanumeric encoding of the chorale melody as 
input, and outputs the chorale score in conventional music notation, and the 
descant parse trees in Schenkerian slur-and-notehead notation. The output can be 
directed to a graphics screen, or can be saved in a file for later printing on a laser 
printer. The BSL compiler inserts a simple interactive interface in “(H F . . .)” 

constructs, which can explain the choices made at any step of a viewpoint, and other 
kinds of debugging tools are built into the program itself, including a graphic 
display of the progress of the composiuon. 

In the Appendix we present five examples of harmonizations produced by the 
program (all the chorale numbers in this paper are from [75]). The reader will notice 
that some notes are too high or too low for the range of some of the voices in these 
examples: this is because the program does not generate the chorale with the voices 
in their proper ranges, but it ensures that there exists a transposition interval that 
will bring all the voices to their proper ranges. Also note that the parallel fifths 
between the soprano and tenor that accompany the anticipation pattern at the 
ending of the second phrase of chorale no. 75 (Figure lo), and at the ending of the 
last phrase of chorale no. 68 (Figure 9), are allowable in the Bach chorale style; see, 
for example, no. 383 in [75]. Bach’s harmonizations of two of the same melodies, no. 
128 and no. 48, are also given for comparison. Occasionally, the program’s harmo- 
nizations can be quite similar to Bach’s, as in no. 128 (Figures 6 and 7) but in other 

cases, the program has its own different, less austere style, as in no. 48 (Figures 11 
and 12). Many more output examples, and the complete list of rules of the system in 
English (about 77 single-spaced book pages) can be found in [19]. 

As a concrete example of what type of knowledge is embodied in the program, 
and how such musical knowledge is expressed in BSL'S logiclike notation, we take a 
constraint from the chord-skeleton view. The following subformula asserts a famil- 
iar constraint about false relations (this is the most recent revision of this constraint; 
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an earlier version was given in our previous publications): 

When two notes which have the same pitch name but different accidentals occur in two 
consecutive chords, but not in the same voice, and no single voice sounds these notes via 
chromatic motion, then the second chord must be a diminished seventh, or the first inversion 
of (a dominant seventh or a major triad), and the bass of the second chord must sound the 
sharpened fifth of the first chord and must be approached by an interval less than or equal to 
a fourth, or the soprano of the second chord must sound the flattened third of the first chord. 
In case the bass sounds the sharpened note of the false relation and moves by ascending 
major third (matching the pattern e-g# in a C-major-E-major chord sequence), then some 
other voice must move in parallel thirds or tenths with the bass (matching the pattern g-b).16 
False relations are also allowed unconditionally between phrase boundaries, when there is a 
major-minor chord change on the same root. 

(The exception where the bass sounds the sharpened fifth of the first chord is 
commonplace; the less usual case where the soprano sounds the flattened third can 
be seen in the chorale “Herzlich thut mich verlangen “, no. 165. The case where there 
is a major-minor chord change on phrase boundaries can be seen in chorale no. 46 
or no. 77. These exceptions are still not a complete list, but we did not attempt to be 
exhaustive.) The complexity of this rule is representative of the complexity of many 
of the production rules, constraints, and heuristics in the CHORAL system. We see the 
BSL code for this rule below: 

(A u bass ( c: = u soprano) (1 + u) 
(A v bass( < = v soprano) (1 + v) 

(imp(and( > n 0) 
(!= uv) 
(= = (mod(p1 u) 7) (mod(p0 v) 7)) 
(! = (al u) (a0 v)) 
(not(E w bass( < = w soprano) (1 + w) 

(and( = = (mod(p1 w) 7) (mod(p1 u) 7)) 

(= = (PO w) (Pl w)))))) 
(or (and(member chordtype 

(dimseventh domseventhl majorl)) 
(or(and(= = (a0 v) (1-t (al u))) 

(== vbass) 
(= = (mod( - (p0 v) rootl) 7) fifth) 
( < = (abs( - (pl v) (p0 v)) fourth) 
(imp(thirdskipup(p1 v) (p0 v)) 

(E w tenor( -C = w soprano) (1 + w) 
(and( = = (mod( - (pl w) (pl v)) 7) 

third) 
(thirdskipup(p1 w) 

(PO w)))))) 
(and( = = (a0 v) (1 - (al u))) 

(= = v soprano) 
(= = (mod( - (p0 v) rootl) 7) third)))) 

“Both of these thirds are filled in with a passing note at the fill-in view. 
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(and( > fermatal 0) 
(= = root0 rootl) 
(= = chordtypel major0) 
(member chordtype minortriads))))))) 

Here, n is the sequence number of current chord; (pi v), i = 0, 1, . . . , is the pitch of 
voice v of chord n - i, encoded as 7* (octave number) + (pitch name); (ai v), 

i=O,l,..., is the accidental of voice v in chord n - i; and chordtypei and rooti, 
i=O,l,..., are the pitch configuration and root of chord n - i, respectively. 
fermatai, i = 0, 1,. . . , indicates the presence of a fermata over chord n - i when it is 
greater than 0. The notation p0, pl, etc. is an abbreviation system, obtained by an 
enclosing BSL “with” statement, that allows convenient and fast access to the most 
recent elements of the array of records representing the chord-skeleton view. 
(thirdskipup pi p2) is a macro which signifies that p2 is a third above pl. We repeat 
the constraint below in a more standard notation for clarity, using the conceptual 
primitive functions of the chord-skeleton view instead of the BSL data structures that 
implement them: 

(Vu 1 bass _< u I soprano)(Vv 1 bass I v I soprano) 
[[n > 0 & u # v & mod(p(n - l,u),7) = mod(p(n,v),7) & a(n - 1,~) # a(n,v) & 

not(3w (bass I w I soprano)[mod(p(n - l,w),7) = mod(p(n - l,u),7) & 

p(n - 1,~) = phw)ll 

[Ghordtype(n) E {dimseventh,domeseventhl,majorl} & 
[[a(n,v) = a(n - 1,~) + 1 & v = bass & mod(p(n,v) - root(n - 1),7) = fifth 

& 

abs(p(n - 1,~) - p(n,v)) s fourth & 
[thirdskipup(p(n - l,v),p(n,v)) =) 
(3w 1 tenor 2 w 5 soprano) 

[mod(p(n - 1,~) - p(n - l,v),7) = third & 

thirdskipup(p(n - l,w),p(n,w))]]J v 
[a(n,v) = a(n - 1,~) - 1 & v = soprano & mod(p(n,v) - 
root(n - 1),7) = third]]] 

[fermata(n - 1) > 0 & root(n) = root(n - 1) & chordtype(n - 1) = major0 & 
chordtype E minortriads]]] 

Before showing an example of a heuristic, it is appropriate to touch upon the 
significance of heuristics for music generation. It is a known fact that absolute 
constraints are not by themselves sufficient for musical results: Composers normally 
use much additional knowledge to guide their choices among the possible solutions. 
Our limited powers of introspection prevent us from exactly replicating the thought 
process of such choices in an algorithm; but there exist algorithmic approximations, 
based on large amounts of precise domain-specific heuristics, or preferences, that 
tend to give good results in practice (cf. [43]). The chorale program uses an extensive 
body of heuristics for selecting the preferred choice among the list of possibilities at 
each step of the program, as previously described in the section on the BSL 

generate-and-test paradigm. Examples of heuristics would be to continue a linear 
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progression, or to follow a suspension by another one in the same voice. 
To exemplify the BSL code corresponding to a heuristic, we again take the 

chord-skeleton view. The following heuristic asserts that it is undesirable to have all 
voices move in the same direction unless the target chord is a diminished seventh. 
Here the construct (Em Q (ql q2 . . . ) (F Q)) is a macro which expands into (or 

(Fq,) (Fq,) . ..). th us allowing us to use the second-order concept of quantifica- 
tion over a set of predicates: 

(imp(and (> n 0) 

(EmQV 3 
(A v bass( < = v soprano) (1 + v) 

(Q (~1 v) (PO v))))) 
(= = chordtype dimseventh)) 

We again provide the heuristic in a more standard notation, for clarification: 

[n > 0 & (3 E { < , > })(Vv Ibass 5 v I soprano)[Q(p(n - l,v),p(n,v))] 3 
chordtype = dimseventh]. 

ON THE USE OF CONSTRAINTS AND HEURISTICS FOR 
MUSIC GENERATION 

It is worthwhile to discuss certain practical issues related to the use of constraints 
and heuristics for music generation. We will first explain the motivation behind the 
use of constraints and heuristics for algorithmic production of music. 

THE MOTIVATION BEHIND CONSTRAINTS AND HEURISTICS 

A composition is written incrementally, typically from left to right in a direct 
fashion for short pieces, or perhaps as a sequence of successively refined plans for 
large-scale works. At each stage of the composition, the composer either decides to 
add an item (e.g. a chord, a phrase, or a plan for a movement, assuming a 
traditional idiom) to the partial composition in the hope of achieving the best 
completion of the composition, or decides that the partial composition needs 
revising, and makes a sequence of erasures and changes in the previously written 
parts of the composition in order to make the composition ready for extension 
again. Given a partial composition x and an item y, the question where “x is 
acceptable, and one of the best ways to extend x is to add y to it” holds for (x,y) can 
be answered by a composer with a limited degree of accuracy and consistency; 
similarly, for a given acceptable partial composition x, the composer can find items 
y such that this question can be answered positively for (x,y). However. the set of 
pairs (x,y) for which the answer is yes, which can be called the extension set, is 
difficult to define with mathematical rigor. Moreover, the extension set does not 
remain constant between styles and historical periods, and evolves even during the 
course of the composition of a single piece. The general approach of this research 
was to select a relatively fixed style, the Bach chorale, attempt to approximate the 
extension set with a precise definition, and then use the precise definition in a 
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computer algorithm for generating music in that style.” Inspired by our own 
experience with a strict counterpoint program [17,18] and the recent AI research in 
expert systems, we have designed the present knowledge-based method for describ- 
ing the extension set, which appears to work, and succeeds in generating nontrivial 
music that is of some competence by educated musician standards. In the following 
sections we will discuss the general problems associated with the constraints and 
heuristics used in this knowledge-based method, and also describe the possible 
sources for constraints and heuristics. 

THE DIFFICULTY OF USING ABSOLUTE RULES TO 
DESCRIBE REAL MUSIC 

A major part of the knowledge of the chorale program is based on constraints, or 
absolute rules in other words. Absolute rules, such as those expressed by treatises on 
harmony, counterpoint, or fugue d ‘Pcole, assert, in a very inflexible manner, which 
pieces are acceptable, and which others are not. For artificial styles such as 
harmony, counterpoint, and fugue exercises, absolute rules are part of the usual 
musical knowledge and practice. However, some problems are encountered when we 
try to describe a real style of music, rather than artificial style, with absolute rules. 
The rules in the book do not work, and many treatises mention to what extent great 
composers break the rules [52,42]. Schenker [66] provides some modifications of 
traditional rules on fifths and octaves, so that the liberties taken by the masters are 

considered acceptable when they no long exist in a middleground reduction; 
unfortunately, Schenker’s rules do not meet the level of precision typically found in 
a traditional treatise. A number of treatises on composition attempt to describe the 
free compositional style [12,16,8] ([50,67] could also be considered in this category), 
but such treatises do not characterize the existing style of any master, and they often 
reflect a particular normative view of music. In general, prescribing rules for the 
music of a master is recognized to be undoable. Nevertheless, this fact alone does 
not imply that good approximations of a real style cannot be obtained with the aid 
of a judiciously chosen set of such rules: for example, [37], which describes real 
16th-century counterpoint rather than school exercises, is a treatise in this direction. 
Moreover, absolute rules are a powerful software tool in an expert system; although 
they appear to impose stringent demands on the knowledge-base designer, in reality 
they are (in our opinion) conceptually clearer and easier to handle than assertions 
with numerical truth values [80,69,6] in an application as complex and as subjective 
as the present one. We therefore decided to take a constructive approach toward the 
use of absolute rules for describing a real style of music, namely the Bach chorales. 

HOW ABSOLUTE RULES CAN BE FOUND 

We will now discuss the sources from which absolute rules are obtained. 
A good source for finding absolute rules is the traditional harmony treatise. In 

the chorale program, we used a number of treatises, such as [47,14,41,4], as useful 

“Mechanizing the evolution of the extension set over time is a potentially more difficult problem that 
has not been attacked in the present research. 
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FIGURE 1. Chorale no. 73 (Bach) 

points of departure, despite their anachronism. However, since treatises are usually 
tailored for school exercises rather than for real Bach chorales, rules from such 
books had to be amended to fit the actual chorales themselves. For example, the 
familiar rule about parallel fifths had to be amended to allow a diminished fifth 
followed by perfect fifth when the parts are moving by ascending step, because of 
the consistent occurrence of these fifths in the chorale style.” We see an example of 
such an occurrence in chorale no. 73 shown in Figure 1 (at the phrase ending, 
between alto and soprano).lg 

Unfortunately, if we try to make our rules comprehensive, such amendments 
seem never to reach an end. We would have liked to have absolute rules that would 

accept every chorale. However, attempting to do so results in the unwieldy prolifera- 
tion of allowable, conditional violations of some rules. Moreover, there are cases 
where the extenuating condition for the violation is hard to find. Consider the fifths 
by contrary motion in chorale no. 18 in Figure 2 (between tenor and soprano). We 
found it difficult to explain this liberty (except perhaps by the remote extenuating 
effect of the first inversion of the dissonant dominant seventh chord).*’ In certain 
cases, we therefore used our own judgement in deciding where to cut the list of 
conditional violations. 

Another source of rules is empirical observation and inductive reasoning on the 
chorales themselves. For example, most chorale phrases end on a chord with the 
root doubled, which suggests an implicit absolute rule. Such rules are also not 
without exception, and it is again impractical to codify the precise reasons for all the 
exceptions. To distinguish which exceptions are truly representative of the style, it is 
necessary to use musical judgement in order to make an educated guess as to where 
Bach did what he wanted to do and where he did what he had to do. For example, 
in chorale no. 100 given in Figure 3, this rule is violated by doubling the third in the 
phrase ending. The reason is obvious: doubling the root would have resulted in a 
parallel octave between the alto and bass, or some other unacceptable violation. 

“It is interesting to note that C. P. E. Bach [2] allows such fifths in the nonextremal parts, declaring 
them to be better than descending fifths where the first is diminished. He also allows quite a few other 
combinations of the diminished and perfect fifth, not often seen in the chorales. Reference [49] is another 
treatise which correctly points out that the ascending diminished-fifth-perfect-fifth sequence is legal in 
the Bach chorale style. 

lqA’All the Bach chorale examples in this article have been reprinted by permission from C. S. Terry 
(ed.), The Four-part Chords of J. S. Buch, copyright 1929 and 1964. Oxford University Press. 

“‘However, it appears that these fifths are not an oversight after all: they also occur in chorale no. 352 
in the same context. They could be a license of the style when a descending fifth in the soprano is 
harmonized in this specific manner. 
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FIGURE 2. Chorale no. 18 (Bach) 

Moreover, it is desirable to keep the cadence as it is because of the nice linear 
progression in the tenor. However, this exception is not a good candidate for 
inclusion in the program, since it would be marginal in loyalty to the style and 
would require complex extenuating conditions to be specified, to prevent the 
backtracking algorithm from using this licence in inappropriate contexts. So we 
overruled Bach in this case and declared that a phrase should end with the root 
doubled as an absolute rule, with exceptions allowing the fifth to be doubled in a 
IV’-V ending in the minor mode (see chorale no. 51 for an example), and the third 
to be doubled in a V-VI ending (commonplace). 

The arbitrariness of this constraint definition mechanism needs some elucidation. 
It would probably be easy to reduce the corpus of chorales to a tractable size and 
write constraints that accept all members of the corpus, thus making the method 
more scientific (it would probably be more difficult to do the same without reducing 
the corpus). However, we know by experience that the property of exact agreement 
of the constraints with the corpus per se would be of little help in improving the 
quality of the music produced by the knowledge base (Baroni and Jacoboni [3] make 
a similar observation). Moreover, we feel that regarding music knowledge-base 
design as more of an art, and giving full liberty to the knowledge-base designer’s 
goodwill and musical intuition in both the heuristics and the constraints, would 
produce more competent programs, without having to restrain the corpus of music 
that the knowledge-base designer would draw upon. We are not saying that it is 
undesirable to have a rule set that would exactly characterize a large musical corpus, 
similar to a theory that explains the outcomes of chemical experiments; however, 
musical pieces apparently do not enjoy the simplicity of some other natural 
phenomena, and for the time being we may have to stay with inexact rule sets rather 
than have none at all. 

FIGURE 3. Chorale no. 100 (Bach) 
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THE SIGNIFICANCE OF HEURISTICS 

The second kind of difficulties faced by the music knowledge-base designer is 
related to finding adequate heuristics. The purpose of heuristics is to estimate, at 
each step, which among the possible ways of extending the partial chorale will lead 
to its best completion. Heuristics are very important, since programs without 
heuristics, which are based solely on absolute rules and random selection, tend to 
quickly get trapped in a very unmusical path, and generate gibberish instead of 
music.21 In the chorale program, we are using a natural extension of a heuristic 
technique we used in an early strict counterpoint program [17,18], which was very 
successful for its purpose. 

Note that in theory it would be possible to characterize any finite set of “best” 
solutions solely with absolute rules. In fact, a research effort for generation of Bach 
chorale melodies [3] has used the absolute-rule approach. However, heuristics have a 
different and more human-composer-like flavor of describing what constitutes a 
good solution, because heuristics, in contrast to constraints, are rules that are to be 
followed whenever it is possible to follow them. 22 The main advantage of heuristics 
over pure absolute rules and random search is the following: heuristics lead the 
solution path away from a large number of unmusical patterns; if there were no 
heuristics, unmusical patterns would probably be generated by the bundle, and 
would have to be painstakingly diagnosed and then carefully ruled out with 
potentially complex constraints. Thus, a system based on heuristics can get away 
with less constraints and/or less complex constraints than a similar system based on 
random search. However, in case the research goal itself is to make a fair measure- 
ment of the musical power of a set of absolute rules, then heuristics cannot be used, 
since heuristics strongly bias the solution path toward a particular style, whereas 
random search can produce a relatively unbiased selection among all the possible 
solutions that are accepted by the rule set. 

AN ALGORITHMIC PROBLEM WITH HEURISTIC ORDERING 

As described in the previous section on the operational details, heuristics are strictly 
prioritized in the chorale program, and tied to a backtracking scheme. This strict 
priority scheme is easy to understand and debug, and avoids dealing with problems 
associated with arbitrary numerical weighting schemes. It is also quite rich and 
expressive, because the prioritized heuristics have the generality of BSL formulas. 

“It should be noted that there are contexts where music generated by extremely naive random-num- 
ber generation methods [79], let alone absolute rules, is not necessarily gibberish; it may offer a refreshing 
sense of liberation from the traditional or modern constraints and cliches, and a sense of beauty from a 
sophisticated aesthetic viewpoint, in fact, a natural evolution of Western art music through the centuries. 
In this particular research we are obviously looking at the problem of computer music from a stubbornly 
traditional aesthetic point of view; in real life, we do not necessarily take such an approach. However, we 
feel that our present approach is useful, because answering the unanswered questions in computer 
generation of traditional music could also help to answer the many (nowadays unasked and) unanswered 
fundamental questions in the field of algorithmic composition. 

“In fact, it would not be desirable to always satisfy a heuristic such as continuing a linear 
progression, because a piece consisting merely of scales could ensue from such a practice. Heuristics are 
therefore only meaningful in conjunction with constraints that prevent them from being satisfied all the 
time. 
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However, there is an algorithmic problem associated with the stack-based back- 
tracking scheme and the heuristic ordering. At a given step, the heuristics may make 
an erroneous estimate; i.e., the item that the heuristics choose among the possibili- 
ties for adding to the chorale may not be on the path that leads to the best 
completion of the partial chorale. The reason such an error is possible is that 
heuristics typically depend only on a simple local property of the partial solution 
and on the item to be added to it. If the erroneous choice leads to a blind alley, the 
choice will eventually be undone by the backtracking mechanism. However, a 
locally good choice dictated by the heuristics may also later force a mediocre 
passage, which could have been avoided by a different, perhaps locally bad choice; 
or a locally good choice may force the program to miss a cliche or other “desirable” 
progression, which would not have been missed by a different, perhaps locally bad 
choice. Although such problems could be remedied by maintaining a priority queue 
of partial chorales, sorted by a numerical evaluation function [57,58,43], and/or by 
using heuristics with several levels of lookahead, we preferred to keep the concep- 
tual simplicity of BSL’S stack-based mechanism, and we used additional constraints 
in an attempt to provide remedies for these problems. In the cases where we 
understood the precise pattern that made a passage mediocre, we made mediocre 
passages either unconditionally forbidden or conditionally forbidden, via con- 
straints of the form “pattern x is not allowed” or “if pattern x could have been 
avoided, then it should have been avoided”, respectively. For the case where a 
locally good choice misses a future cliche opportunity, whereas a locally bad choice 
does not, we used a conditional backtracking scheme to provide a selective degree of 
heuristic lookahead: Whenever there is an opportunity for a cliche progression, the 
chorale program first prefers to generate that cliche and enters a cliche state; while 
the program is in that state, the cliche must be at least partially fulfilled; if this is 
not possible, the program will backtrack to the originating step, where it will not 
enter the same cliche state, and perhaps will choose what is best according to the 
local heuristic criteria. 

HOW HEURISTICS CAN BE FOUND 

Now we come to the problem of finding heuristics. 
One major source of heuristics is the preferences of general good counterpoint 

practice, such as moving by step rather than by skip, avoiding following a scalar 
motion with a skip in the same direction, etc., which a counterpoint treatise will tell 
us in some probably unalgorithmic recipe (e.g. [40]). The knowledge-base designer 

FIGURE 4. Chorale no. 22 (Bach) 
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must possess the minimal ability to make such preferences precise and algorithmic 
in a reasonable way, using his or her musical judgement. 

Another source of heuristics is the chorales themselves. Heuristics from this 
source are style-awareness heuristics, and roughly correspond to the informal 
knowledge acquired by a composer when he or she sets out to understand a style. 
These heuristics are developed by observing a very broad range of chorales. 
Examples are to follow a suspension with another in the same part, and to prefer 
certain recurring patterns-we can call them Bach chorale cliches. We see in chorale 
no. 22 (Figure 4) an example of the repeating suspension pattern in the alto in the 
first measure, and in the fourth measure we see a cliche chord progression, a 
cadence cliche in this case. The chorale program currently knows 11 such cliche 
progressions. However, getting such recurring patterns to be used is a different and 
less predictable matter within the extremely intense computation of chorale genera- 
tion, since whenever the use of a pattern is seemingly appropriate, it may result 
unexpectedly in e.g. a forbidden melodic motion in an inner voice. (Being more 
vulnerable to accusations of unmusicality, our program is more concerned with 
melodic motion in the inner parts than Bach is.) 

A third and valuable source is hand simulation of an algorithm in an attempt to 
generate specific chorales exactly as written by Bach. This exposes all details, causes 
one to find the plausible reasons underlying each choice, and allows postulating 
priorities for heuristics. For example, the heuristics behind the first two measures of 
chorale no. 210, Jesu meine Freude (Figure 5) can be explained as a concern to 
move by step and continue a linear progression in the bass and in the other parts, 
and to prefer a cadence cliche. The layout of the chords is affected by a preference 
to use triads rather than seventh chords and to double the root in triads. The 
inserted diminished seventh on the weak eighth beat of the third chord is explained 
as a desire at the fill-in view to change the plagal progression IV-I in the skeleton to 
one of the more desirable VII-I or V-I progressions. The reasons for the suspension 
in the first measure of the bass are a concern to hide the second inversion of a chord 
and a concern to continue eighth-note movement. 

We have made these concerns heuristics in the chorale program. We can see 
many interesting applications of these particular heuristics in very different contexts 
in the examples of [19]. Unfortunately, there are cases where we cannot find any 
plausible reason for choosing certain possibilities rather than others, or sometimes a 
choice that appears to be locally bad is made by Bach. Such situations tend to agree 
with the backtracking search model. However, because of the labor-intensive nature 
of such very detailed hand simulation, conclusive results for validating the back- 
tracking search model of composition can only be reached by drastically restricting 
the corpus. We were not primarily interested in validating a cognitive model for a 

FIGURE 5. Chorale no. 210: “Jesu 
Meine Freude” (Bach). 
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composer, so we did not push far in this direction. However, we feel that explicating 
the decisions made during such an algorithmic resynthesis of a piece could be an 
instructive future research direction to pursue in the field of music analysis, and is 
likely to yield profound results. 

EMOTIONAL CONTENT OF COMPUTER-COMPOSED MUSIC 

In this section, a final remark must be made about some common misconceptions 
about the “emotional content” of music generated by computers. Often it is taken 
for granted that mechanical music cannot have emotional content. Unfortunately, 
existing computer-generated compositions in traditional styles sometimes confirm 
this opinion. However, the factor responsible for the apparent lack of feeling is 
more often than not an inadequate program which lacks the knowledge base to 
characterize a sufficiently sophisticated style. In all cases of practical interest, the set 
of pieces in the desired style with the desired feelings is finite; thus there is no 
inherent theoretical problem in an algorithmic description of music with emotional 
content.23 A study by Meyer [51] ties emotion to concrete musical events, such as the 
delaying of expectations of chordal and melodic progressions. The whole burden is 
therefore on the expert-system designer, who must algorithmically encode the 
emotional content in rules and/or heuristics, where we are assuming that the set of 
desired solutions largely overlaps the set of solutions with emotional content. This is 
no small burden, however. In fact, actual composition of music in any decent style 
is invariably easier than characterizing precisely what that style is in terms of 
concrete attributes, and such characterization attempts appear to be limited to styles 
that are well understood. What is well understood is of course strictly dependent on 
the competence of the knowledge-base designer. However, each knowledge-base 
designer may also have a limit that applies to him or her: sometimes compositional 
ideas discovered after lengthy unconscious search are not well understood, and these 
ideas, like sufficiently hard proofs, unfortunately tend to be the most valuable ones. 
Thus, it is unknown to what extent human compositional ability can be algorithmi- 
cally replicated. However, there is no obstacle to establishing higher and higher 
standards in algorithmic composition, in fact, substantially higher than the existing 
ones. Moreover, large knowledge bases in an efficient computing environment have 

-‘Hofstadter [35,36], perhaps overly impressed by an older topic in recursive function theory, believes 
that works of art must be a productive set, i.e., given any algorithm, a work of art that is not generated by 
this algorithm can be found, or the algorithm can be shown to generate a non-work-of-art. For the case 
of music, we feel that the set of all “pieces” that can be encoded via digital recordings of some fixed 
sampling rate, and that take less than a reasonable time limit, is a satisfactory superset of the set of 
interesting music. The finiteness of this nevertheless huge set does not of course make the discouen, of a 
practical algorithmic description of music less difficult: it merely points out that productiveness is an 
incorrect model of the true difficulty. Also, even if we momentarily accept that we are dealing with an 
infinite set. Hofstadter’s choice of a productioe set (rather than, say, an WPVW~~ set) actually works 
against the point he wants to make: a productive set has an infinite recursively enumerable subset [64]. 
which by Hofstadter’s hypothesis would mean that there exists an algorithm which will produce infinitely 
many diRerent works of art, but never a non-work-of-art. Note, however, that the conjecture that art 
objects. like the true sentences of a sufficiently complex formal system, could be a productive set was 
indeed elegant in its own right when the repercussions of Giidel’s incompleteness theorem were strong 
[54]: thus, this particular stance of Hofstadter’s is marred primarily by its bad timing. 



174 KEMALEBCIOtiLU 

an encouraging synergistic effect that sometimes transcends the naiveness of the 
individual rules and heuristics (43,441. 

CONCLUSIONS 

In this paper, we have described a knowledge-based heuristic search technique for 
generating tonal music, which seems to work, and which produces musical results. 
While it is imprudent to make claims about the accuracy of this algorithmic model 
for the human composition process, our work indicates that heuristic search, 
coupled with large, complex knowledge bases, can be effective for the purpose of 
music generation. Although a heuristic evaluation function was used in a very early 
program for generating simple serial music [29], research in algorithmic composition 
has since then concentrated mainly on nonheuristic search techniques, such as 
random selection of attributes of notes according to statistical distributions [79,34], 
or generation of music through terse formal grammars [38] or other mathematical 
artifacts [39] (these are mostly aoant-garde approaches; computer-generated tonal 
music has somehow failed to be popular among computer musicians, perhaps 
because of its reactionary overtones). However, the knowledge-based heuristic 
search technique that we described here, which is based on [17,18], is not at all 
restricted to tonal music: with the proper set of rules, it can certainly be used for 
more general algorithmic composition as well. We thus hope that our techniques can 
be of help to computer-music researchers who may be looking for alternative 
approaches to algorithmic composition. 

In this paper, we have also described a multiple-viewpoint knowledge representa- 
tion technique, which is analogous to the multiple levels of knowledge in the 
Hearsay-II expert system [23], but which is based on first-order predicate calculus, 
and which uses different primitive functions and predicates for representing each 
viewpoint. Another point of AI interest concerning the present research is the 
efficient compiled representation of musical knowledge in the CHORAL knowledge 
base, which can be seen as a step toward the goal of knowledge compilation [32], a 
goal which has been predicted to be an important one for the ambitious expert 
systems of the future. Finally, we have adopted a streamlined approach to the 
design of a complex expert system, and we have advocated the reduction of the 
semantic gap. Although a streamlined approach is not easy to defend with a 
“ logical” argument, computer-science experience with large software/hardware 
systems, as well as considerations of mathematical tractability, seems to suggest that 
it is a desirable approach. 

In this paper, we have also described a new logic-programming language BSL, 

which was designed to implement the CHORAL system. Logic programming is a 
clearly desirable means to implement large AI applications. It provides a fuller 
understanding of the declarative meaning of the knowledge in the program and the 
relationship of this declarative meaning to the actual execution of the program (this 
is not at all true for the OPS family and many other inference engines [32], where no 
adequate formalism exists for understanding the declarative meaning of the rules). 
Also, the knowledge-representation techniques in an expert system written in a 
logic-programming language can be more easily made to follow a formal discipline, 
since the properties of the desired outputs of the expert system are specified with 
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precise logic formulas. But we feel that logic-programming research should not 
confine itself to a narrow PROLOG-and-variants paradigm, since PROLOG is not 
the only medium to achieve such benefits of logic programming. In the context of 
the present research, we have designed and implemented BSL, a logic-programming 
language radically different from PROLOG. BSL has a sound formal basis: it allows 
the programmer to use the concepts of first-order logic, including universal and 
existential quantifiers, and is not limited to the clausal form of logic; moreover, it 
allows the benefits of an efficient Algol-class language for coping with substantial 
applications. We hope that our work with BSL will be of use to researchers who 
would like to use the concepts of logic in computation-intensive applications. 

FIGURE 6. Chorale no. 128 (Bach). 

FIGURE 7. Chorale no. 128 
(CHORAL). 
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FIGURE 7. Chorale no. 
(continued) (CHORAL). 
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FIGURE 8. Chorale no. 286 
(CHORAL). 
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FIGURE 8. Chorale no. 
(continued) (CHORAL). 

286 

FIGURE 9. Chorale no. 
68 (CHORAL). 
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FIGURE 9. Chorale no. 68 
(continued) (CHORAL). 
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FIGURE 10. Chorale no. 75 
(CHORAL). 
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FIGURE 11. Chorale no. 48 (Bach). 

FIGURE 12. Chorale no. 48 
w (CHORAL). 
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FIGURE 12. Chorale no. 48 
(continued) (CHORAL). 

APPENDIX 

This Appendix presents actual examples of harmonizations. The CHORAL harmo- 
nization of chorale no. 48 is shown in Figure 12, and Bach’s is shown in Figure 11 
for comparison. The CHORAL harmonization of chorale no. 68 is shown in Figure 8, 
and that of no. 75 is shown in Figure 9. The CHORAL harmonization of chorale no. 
128 is shown in Figure 10, and Bach’s is shown in Figure 11 for comparison. The 
CHORAL harmonization of chorale no. 286 is shown in Figure 8. 
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