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Abstract 

Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent 
uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time 
may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fixed interval 
preventive maintenance (PM) and budget constraint are considered.PM activity is a crucial task to reduce the production efficiency. In the 
current research we focused on a scheduling problem which a job is processed at the upstream stage and all the downstream machines get 
busy or alternatively PM cost is significant, consequently the job waits inside the buffers and increases the associated holding cost. This 
paper proposes a new more realistic mathematical model which considers both the PM and holding cost of jobs inside the buffers in the 
stochastic flexible flow shop scheduling problem. The holding cost is controlled in the model via the budget constraint. In order to solve the 
proposedmodel, three hybrid metaheuristic algorithms are introduced. They include a couple of well-known metaheuristic algorithms 
which have efficient quality solutions in the literature. The two algorithms of them constructed byincorporationof the particle swarm 
optimization algorithm (PSO) and parallel simulated annealing (PSA) methods under different random generation policies. The third one 
enriched based on genetic algorithm (GA) with PSA. To evaluate the performance of the proposed algorithms, different numerical 
examples are presented. Computational experiments revealed that the proposed algorithms embedboth desirable accuracy and CPU time. 
Among them, the PSO-PSAП outperforms than other algorithms in terms of makespan and CPU time especially for large size problems. 
 
Keywords: Stochastic flexible flow shop; Budget constraint, Preventive maintenance; Genetic algorithm; Simulated annealing; Particle 
swarm optimization. 

 

1. Introduction  

 

The flexible flow shop scheduling problem (FFSSP) 
consists of a flow manufacturing line with one or more 
parallel machine on some processing stages (or 
workstation) in series. Multiple products (or jobs) are 
produced in each stage. The objective function of FFSSP 
is on minimizing the total completions of all jobs 
(makespan or Cmax)(Hoogeveen et al., 1996; Gupta, 1998). 
This kind of issue often takes into account an NP-hard 
problem. This means that at a reasonable computational 
time, an optimal answer cannot be obtained. (Brucker and 
Kramer, 1995)have proved that a two-stage FFSSP 
remains  NP-hard even there is only one machine on the 
first stage and two machines on the second stage.Most 
researchers have focused on the system which their 
relevant process time deploy a given deterministic value. 
However, in real circumstances, processing time of jobs at 
each stage is the main part of makespan. Most research 
focused on the system with deterministicprocessing time. 
However, in a real system, theprocessing time is arandom 
variable due to random behaviour of tool wearing, 

operator skill, material variability and so on (Koulamas 
and Kyparisis, 2000). According to Choi and Wang 
(2012) makespan estimationmight become invalid under 
differentcircumstances. Another important factor that 
effects on makespan is interruption caused by machine 
breakdowns (Fahmy and Sharif, 2009). One of the most 
important ways to deal with these types of random 
interruptions is on following preventive and scheduled 
tasks. Hence, unavailability of machines, due to 
preventive maintenance, could be incorporated as a set of 
constraints in the mathematical models. Taking into 
account such disruptions due to preventive maintenance 
and stochastic processing time makes the problem more 
real, but more complicated and has been kept on the 
research gap at yet.The significant contributions of this 
paper are to propose a more realistic scheduling model for 
such production and delivering an efficient solution 
methods.The proposed model integrates FFSSP with 
preventive maintenance (PM) and budget constraint under 
stochastic processing time. Hence,consideringqueues 
between consecutive stages is a respectable alternative. 
When a job is processed at upstream stage and all the 
downstream machines get to busy state or comes under 
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any PM activity, therefore the job should wait in the 
bufferswhichcause holding cost.Because the total budget 
in handhas a given level this leads to interrupt the 
operations and cause increasing of the makespan. 
Consequently, in the proposed model the jobs are 
scheduled in such a way that there is no interruption in 
their operations. By considering all of these affecting 
factors, the optimized makespan will be acquired by the 
model. Obviously, such FFSSP also ruins an NP-hard 
model. Therefore, three hybrid populations based 
metaheuristic algorithms are introduced as solution 
methods. The flexible flow shop scheduling problem has 
been studied extensively in the literature. Koulamas and 
Kyparisis(2000) developed a heuristic method for a two 
and a three-stage FFSSP with random processing time 
based on the makespan objective function. They proved 
the effect of the proposed heuristic by finding the 
solutions which were better than the available lower 
bounds. A Tabu search (TS) algorithm together with a 
procedure for a constructing a complete schedule to solve 
the FFSSP with limited buffers has been given by 
Wardono and Fathi(2004) that minimizes job completion 
time. Their algorithm acts based on the stage-oriented 
decomposition approach. Akrami et al. (2006) presented a 
mixed-integer linear mathematical programming for 
FFSSP. They assumed that there are limited buffers 
among stages. Two meta-heuristics, based on genetic 
algorithm (GA) and TS algorithm, were presented to 
optimality solve the model. A flow shop scheduling was 
investigated with limited intermediate buffers was studied 
by Wang and Tang (2009). They focused on the 
makespan minimizing as a performance criterion and they 
applied a TS algorithm to optimize the problem. In order 
to improve the diversity of the TS, a scatter search 
mechanism was applied. The computational results 
showed the high efficiency of their proposed hybrid 
metaheuristic. Al-Hinai and ElMekkawy(2011) proposed 
a flexible flow shop problem with random machine 
failures and a two stage hybrid GA was applied. The first 
stage was on minimizing the primary objective; the 
makespan, and the second stage was optimized the bi-
objective function and integrates machines assignments 
and operations sequencing with the expected machine 
breakdown. Tran and Ng (2011)presented a water-flow 
algorithm to solve the FFSSP with intermediate buffers. 
They pooled the amount of precipitation and falling force 
to form flexible erosion capability. This work helped the 
erosion process of the algorithm to focus on exploiting 
promising regions strongly. They also utilized an 
improved procedure for constructing a complete schedule 
from a permutation that represents the sequence of jobs at 
the first stage of the scheduling problem. Kianfar et al. 
(2012) investigated a FFSSP with non-deterministic 
arrival of jobs and sequence dependent setup times. They 
used average tardiness of jobs as the objective function. 
To optimize the problem, they presented a novel 
dispatching rule and hybrid GA. A computer simulation 
model was also developed to evaluate the presented 
dispatching rule. The results showed that their proposed 

dispatching rule can lead to much better results in 
comparison with the traditional dispatching rules. Singh 
and Mahapatra (2012) proposed a novel PSO to solve 
FFSSP. An efficient mutation operator was embedded in 
PSO to prevent solutions from falling into the local 
optimums. The performance of the PSO was evaluated 
against GA by a set of test problems taken from the 
literature. According to the obtained results, the 
percentage deviation of the proposed PSO of the lower 
bound is equal to 2.961 and the same measure for GA is 
equal to3.559.In order to deal with uncertain job 
processing times in FFSSP’s, Choi and Wang (2012) 
presented a decomposition-based approach. The method 
combines two reactive approaches with a reactive-
proactive approach. Lin and Ying (2013) proposed a 
hybrid algorithm based on the features of artificial 
immune systems and the annealing process of simulated 
annealing algorithms (SA) to optimize the FFSSP with 
limited buffer storage between stages. Almeder and 
Hartl(2013) studied the FFSSP with limited buffer storage 
in the metal–working industry. The partitioned the 
problem as a two stage problem. The first stage contains a 
single machine and its buffer. The semi-finished parts are 
stored in this buffer until a machine of the second stage is 
available. The second stage contains two parallel non-
identical machines. They applied a hybrid approach based 
on discrete-event simulation and variable neighbourhood 
search to optimize the problem. The hybrid approach was 
led to an improvement between 3% and 10% compared 
with the current production plan of the company. By 
considering unrelated parallel machines, sequence-
dependent setup times, probable reworks and different 
ready times, Rabiee et al. (2014) investigated the no-wait 
two-stage FFSSP. They proposed a novel hybrid 
algorithm based on imperialist competitive algorithm 
(ICA), SA, variable neighbourhood search (VNS) and 
GA. The performance of the proposed hybrid algorithm 
was evaluated against ICA, SA, VNS, GA and ant colony 
optimization (ACO) and high efficiency of their proposed 
hybrid algorithm was revealed. Arnaout (2014) tackled a 
rescheduling problem for the flow shop problem 
associated with stochastic processing and setup time. 
They proposed a new repair rule which and compared it 
with the existing algorithms. The results obtained from 
the computational experiments showed that the proposed 
repair rule can perform better those available algorithms 
in literature. Rahmani and Heydari (2014) studied FFSSP 
under uncertain processing times and unexpected arrivals 
of new jobs. They proposed a new approach to find robust 
schedules in this situation. Their approach was a 
proactive–reactive method which uses a two-step 
procedure. In order to consider stochastic processing time, 
Wang and Choi (2014) introduced a novel decomposition-
based the Holonic approach (DBHA) to solve a FFSSP 
with stochastic processing time. Their proposed method 
was based on genetic algorithm control (GAC) and the 
shorting processing time contract net procontrol (SPT-
CNP). Also, K-means clustering is utilized to divide 
machines into different clusters according to their 
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stochastic environments. The gained results showed that 
DBHA had better quality solutions against GAC and SPT-
CNPA simulation based optimization approach for 
stochastic hybrid FFSSP in a real-world semiconductor 
back-end assembly facility was presented by Lin and 
Chen (2015). In their approach, the optimization strategy, 
based on genetic algorithm, was used to find the optimal 
assignment of the production line and machine type at 
each stage. The simulation model was used to evaluate the 
performance of solutions. They applied a real case study 
to prove the necessity of using simulation optimization 
approaches for practical applications. A novel algorithm 
was developed by Li and Pan (2015) to solve the hybrid 
flow shop with limited buffers. They combine two 
metaheuristic algorithms of artificial bee colony and TS 
and used makespan as the performance criterion. Their 
proposed algorithm was evaluated against several 
algorithms reported in the literature and the experimental 
results showed the high effectively and efficient 
performance of the proposed algorithm. Sangsawang et al. 
(2015) proposed two metaheuristic algorithms to optimize 
a two-stage re-entrant FFSSP. The first algorithm was a 
hybridization of GA and adaptive auto-tuning based on a 
fuzzy logic controller. The second one was a 
hybridization of particle swarm optimization (PSO) and 
Cauchy distribution. Experimental results revealed that 
both hybrid algorithms could present better solutions and 
are more powerful than the classical metaheuristics. The 
statistical analyses indicated that the hybrid PSO and 
hybrid GA can improve the best solutions in the literature 
by averages of 15.60% and 15.51%, respectively. 
Zabihzadeh and Rezaeian(2015) developed a mixed 
integer linear programming model for FFSSP. They 
assumed that there are some robots between stages for 
unloading, transferring and loading parts. Their proposed 
model has ability of determining the number of robots and 
jobs sequence. They applied two meta-heuristic 
algorithms; GA and ACO, to solve their model. 
Computational results showed that the GA is more 
efficient than ACO to optimize the model. Tang et al. 
(2016) presented a new model for dynamic FFSSP’s. By 
taking emergency maintenance, the proposed model 
minimized both objectives of energy consumption and 
makespan. Since they developed model was NP-hard, a 
multi-objective PSO algorithm to optimize the model. For 
finite capacity material requirement planning system in a 
flexible flow shop, Sukkerd and Wuttipornpun(2016) 
presented a hybrid GA and a Tabu search algorithm 
(HGATS). The results showed that the HGATS can 
outperform on comparing with the existing algorithms. 
Correspondingly, computational time of HGATS is 
acceptable when applied to real industrial systems. 
Rahmani and Ramezanian(2016) addressed a stochastic 
FFSSP in which new jobs arrive into the process as 
disruptions. They developed a mathematical model to 
minimize total weighted tardiness. A variable 
neighbourhood search algorithm was used to solve the 
model. The efficiency of the proposed algorithm 
evaluated through a set of test problems. González-Neira 

et al. (2016) presented a multi-criteria FFSSP in which 
criterion is quantitative and the other is qualitative. They 
assumed that job processing time deploys by a stochastic 
manner.The integral analysis method (IAM) was 
implemented to solve the relevant problem.  In the IAM 
method, the problem first was introduced, then, cardinal 
analysis, ordinal analysis and integration analysis are 
done. Results showed that IAM method is able to select 
the alternatives with high efficiency in terms of both types 
of criteria.  
The most important criticism of scheduling problems is 
the gap between academic and practical problems. Even 
though the developed models have tried to be more 
realistic, but they fail to find the exact makespan in real 
life problems. This comes from the fact that the model 
cannot consider all the factors affected on makespan. As a 
result, there is a gap between obtained makespan by 
mathematical models and the makespan occurs in reality. 
In order to bridge this gap, this research presents an 
integrated mathematical model which is capable to 
consider all of the influential factors on makespan. The 
proposed model can simultaneously consider preventive 
maintenance, stochastic processing time and budget 
constraint. By integrating all of these subjects the model 
will reflect the real performance of a FFSSP.  
The rest of the paper is organized as follows: In section 2 
the problem definition, mathematical model formulation 
and assumption of the model is presented. In section 3, 
the proposed hybrid metaheuristic algorithms in which 
three hybrid metaheuristic algorithms, including 
combining parallel SA with two types of PSO algorithms 
(PSO-PSAІ and PSO-PSAП), and a GA with parallel SA 
(GA-PSA) are specially explained. In section 4, 
computational results are presentedwhich actually 
compare the results of proposed metaheuristic algorithms. 
First, the small scale problem size is solved with CPLEX 
software. Then, the metaheuristic algorithms are used to 
find the near optimal solutions for the large scale of the 
problems. Analysis of the results and comparisons 
demonstrate the performance of the proposed solving 
methodologies on different problem sizes. Finally, 
conclusions and future researches are presented in the last 
section. 
 
2. Mathematical Model Formulation  

 
In this section the problem under consideration is 
described. Consider a problem of J jobs and S working 
stages as shown in Figure 1. Each stage s has a number of 𝑁𝑠 identical parallel machines that operate in parallel. All 
jobs visit all stages from the first to the last stage. They 
are processed by one machine at each stage. Each job 
processed all the stages and every machine process 
maximum one job at a time. Thereis a buffer between two 
consecutive stages. The machines are under PM tasks. . 
Consequently, each machine could be available or 
unavailable at each time. All jobs are independent of each 
other and they are available at time zero. The processing 
time of jobs is considered to be stochastic. In order to 
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model such randomly distributed processing time, the 
stochastic programing technique is applied in which each 
possible processing time is called as a scenario. The 
probability of occurrences of each scenario is shown by  
Pr(π). Therefore, the averaged processing time of each 
job at each stage is calculated according to its processing 
times in different scenarios and the probability of 
occurrences of each scenario. The objective is to set a 
sequence of  jobs, allocating  jobs to machines at each 
stage and determining the time between two consecutive 
maintenance activities in such a way that total completion 
time being minimized. Figure 2 shows an example of the 
Gantt chart of proposed stochastic flexible flow shop 
scheduling problem (SFFSSP) with 3 stages and 5 jobs. 
There is2, 3 and 2 machines in stages 1, 2 and 3, 
respectively. In machine 1 in stage 1, maintenance occurs 
after processing job 3. The other maintenance occurs in 
stages 2 and 3. The job 2 is processed in stage 1 from time 
2 to 5 and is started in stage 2 from time 7. Therefore, job 
2 is sent to the buffer of stage 1 and cause holding cost for 
each period of time, until machine 1 in stage 2 gets 
empty. Sometimes more than one job is placed in the 
buffers. For example, in the buffer of stage 2, from time 
11 and 12, jobs 1 and 3 are placed in and increasing the 
holding cost for staying of each period of time in the 
buffer. 
Other constraints as well assumptions are listed as 
follows: 
 There is a set of jobs denoted J (j=1, 2,…, J) jobs 

which are available at time zero and no job may be 
cancelled before completion. 

 The set of  L consecutive stages denoted by (s=1, 
2,…, L), 

 Each stage is equipped with non-identical parallel 
machines denoted by (m=1, 2,…, 𝑁𝑠 ). 

 The set of R, denoted by (r=1,2,…, R) indicated the 
number of intermediate buffers. 

 All jobs have to process serially through all machines 
at each stage for only once time. 

 The interruption processing of each job on all 
machines at each stage is not acceptable. On the other 
hand, once a job is started, it must be processed to 
completion without any interruption either on or 
between machines. 

 All machines are continuously available at time zero, 
in another word; non-machines are failing at the 
starting time. 

 Each machine could process only one job at the same 
time, and each job has to visit each machine exactly 
once. 

 The preventive maintenance activities are performed 
on each machine at the fixed intervals (𝑃𝑚𝑠). 

 Once the preventive maintenance activity is carried 
out, there is no probability of a subsequent machine 
breakdown. 

 All jobsat each intermediate buffer havea same 
holding cost, but different at each stage. 

 
Fig.1.The framework of the flexible flow shop problem of 

this study 
2.1.  Notations 

To present the model using mathematical terms, consider 
the following notations. 
 
Indices 

s      Indexofstages{s= 1,2,…, L} 

m     Index of machines at s {m= 1, 2, …,𝑁𝑠} 
j       Index of jobs{d, j= 1, 2,…, J} 

r      Index of intermediate buffers{r= 1,2,…, R} 

h     Index of job sequence{h, u=1 ,2,…,𝐾𝑚} 

n Index of maintenance activity which is done on  
machine j {n= 1,2,…,𝑉𝑚𝑠} 𝜋Index of probabilistic scenarios{𝜋 = 1, 2,…,𝛱} 

 

Parameters 𝑝𝑗𝑠(𝜋)The processing time of job j at stage s in scenario 
π 𝑃𝑟(𝜋)The probability of occurrences scenario π ℎ𝑟𝑠𝑗 Holding cost of job jinintermediate buffer ofr 
at stage s 𝜇𝑚𝑠The repair rate of machine m at stage s 𝜆𝑚𝑠The failure rate of machine m at stage s 𝐷𝑚𝑠The duration time of maintenance activity of 
machinematstages �̅�𝑚𝑠The mean number of jobs that are performed on 
machine m at stage s 𝛽The minimum of availability of the system 

M         An arbitrary large position number 

B         Total budget 
Dependent decision variables 𝑆𝑗𝑠Starting time for the processing of job j at stage s 𝐶𝑗𝑠Completion time of job j at stage s 𝑃𝑚𝑠The time between two consecutive maintenance 
activities on machine m at stage s 𝑚𝑚𝑠The number of maintenance activities on machine 
m at stage s 𝑑𝑟𝑠𝑗 Waiting time of job j atintermediate bufferr 

at stage s 𝑍𝑗𝑟(𝑡) {1 ifjob𝑗isinintermediatebuffer𝑟attime𝑡0 otherwise  𝑇𝑚𝑠The completion time of the last PM action on 
machine m at stage s 𝐴𝑚𝑠(𝑡)The availability of machine m at stage s at timet 𝐴𝑠(𝑡)The unavailability of stage s at time t 𝐴𝑠𝑦𝑠(𝑡)The unavailability of system at time t 
W      0 or 1 
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 Independent decision variables 𝑋𝑗ℎ𝑚𝑠 {1 ifjob𝑗isprocessedinsequenceℎbymachine𝑚atstage𝑠0 otherwise  𝑌𝑛𝑚𝑠 {1 if𝑛thmaintenanceactivityonmachine𝑚atstage𝑠isexecuted0 otherwise  

 

2.2 Mathematical model 

 

In our proposed model,availability of machine min stage s 

at time t under PM activities could be calculated 
according to Villemeur(1991) by Eq. 1.  
 𝐴𝑚𝑠(𝑡) = 𝜇𝑚𝑠𝜇𝑚𝑠+𝜆𝑚𝑠 + 𝜆𝑚𝑠𝜇𝑚𝑠+𝜆𝑚𝑠 𝑒𝑥𝑝[−(𝜇𝑚𝑠 + 𝜆𝑚𝑠)(𝑡 − 𝑇𝑚𝑠)](1)re  

 
we considered system configuration as a parallel-series 
system in which machines ateach stage are parallel and 
stages are a series. A stage is said to be unavailable if all 
of its machines are unavailable. Therefore, the 
unavailability of stage s is calculated by Eq. 2 and 
unavailability of the total system by Eq. 3. 𝐴𝑠(𝑡) = ∏(1 − 𝐴𝑚𝑠(𝑡))𝑁𝑠

𝑚=1 (2) 
𝐴𝑠𝑦𝑠(𝑡) = 1 −∏(1 − 𝐴𝑠(𝑡))(3)𝐿

𝑠=1  

Therefore, the proposed model as an extension to basic 
model was taken fromGonzález-Neira et al. (2016) will be 
as follows. 
 
 𝑀𝑖𝑛{𝑚𝑎𝑥(𝐶𝑗𝑠)}(4) 
St:

 

 ∑ ∑𝑋𝑗ℎ𝑚𝑠𝐾𝑚
ℎ=1

𝑁𝑠
𝑚=1 = 1∀𝑗 ∈ 𝐽; 𝑠 ∈ 𝐿(5) 
∑ ∑𝑋𝑗ℎ𝑚𝑠𝐽

𝑗=1
𝑁𝑠

𝑚=1 = 1∀𝑠 ∈ 𝐿; ℎ ∈ 𝐾𝑚(6) 
𝐶𝑗𝑠 ≥ 𝑆𝑗𝑠 +∑𝑃𝑟(𝜋)𝑝𝑗𝑠(𝜋)𝛱

𝜋 (7) 
𝐶𝑗𝑠−1 −𝑀 (1 − 𝑍𝑗𝑟(𝑡)) ≤ 𝑡 ≤ 𝑆𝑗𝑠 +𝑀(1 − 𝑍𝑗𝑟(𝑡)) 

∀𝑗 ∈ 𝐽; 𝑠 ∈ 𝐿; ∀𝑟 ∈ 𝑅|𝑠 = 𝑟(8) 𝑆𝑗𝑠 + (1 − 𝑋𝑗ℎ𝑚𝑠)𝑀 ≥ 𝐶𝑑𝑠 − (1 − 𝑋𝑑𝑢𝑚𝑠)𝑀 ∀𝑗, 𝑑 ∈ 𝐽⎹𝑗 ≠ 𝑑; ℎ, 𝑢 ∈ 𝐾𝑚⎹𝑢 < ℎ,𝑚 ∈ 𝑁𝑠; 𝑠 ∈ 𝐿(9) 

∑∑𝑑𝑟𝑠𝑗 ℎ𝑟𝑠𝑗𝑅
𝑟=1

𝐽
𝑗=1 ≤ 𝐵(10) 𝑑𝑟𝑠𝑗 ≥ 𝑆𝑗𝑠+1 − 𝐶𝑗𝑠(11) (𝑛𝑃𝑚𝑠𝑌𝑛𝑚𝑠 − 𝐶𝑗𝑠)𝑋𝑗ℎ𝑚𝑠 ≥ −𝑀(1 −𝑊) ∀𝑗 ∈ 𝐽; ∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿; ℎ ∈ 𝐾𝑚; 0 ≤ 𝑛 ≤ 𝑉𝑚𝑠(12) (𝐶𝑗𝑠−𝑝𝑗𝑠(𝜋) − 𝑛𝑃𝑚𝑠𝑌𝑛𝑚𝑠 −𝐷𝑚𝑠)𝑋𝑗ℎ𝑚𝑠 ≥ −𝑀(𝑊) 0 ≤ 𝑛 ≤ 𝑉𝑚𝑠(13) 
𝑃𝑚𝑠 = ∑ ∑ 𝑋𝑗ℎ𝑚𝑠∑ Pr(𝜋) 𝑝𝑗𝑠(𝜋)𝛱𝜋𝐾𝑚ℎ=1𝐽𝑗=1 𝑚𝑚𝑠  

∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿(14) 𝑇𝑚𝑠 ≤ 𝑛𝑃𝑚𝑠(15) 1 − 𝐴𝑠𝑦𝑠(𝑡) ≥ 𝛽(16) 
𝐶𝑗𝑠,𝑑𝑟𝑠𝑗 ≥ 0∀𝑗 ∈ 𝐽; ∀𝑠 ∈ 𝐿(17) 𝑋𝑗ℎ𝑚𝑠 ∈ {0,1}∀𝑗 ∈ 𝐽; ∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿; ℎ ∈ 𝐾𝑚(18) 𝑌𝑛𝑚𝑠 ∈ {0,1}∀𝑚 ∈ 𝑁𝑠; ∀𝑠 ∈ 𝐿; 𝑛 ∈ 𝑉𝑚𝑠(19) 
 
Eq. (4) indicates the objective function. The constraint (5) 
ensures that the assignment of each job to one and only 
one machine at each stage. Constraints set (6) determines 
that the position of a machine sequence is takes by only 
one job at each stage. Constraints set (7) states that it is 
not allowed starting processing jobs at the next stage 
unless they have completed processing at the previous 
stage. Constraint sets (8) and (9) indicate that no 
interference should be taken among jobs on a common 
machine at any stage if the machine is available. On the 
other words, the difference between the processing times 
of any two jobs assigned to the same machine should not 
have any overlap.The constraint set (10) guarantees that 
the holding costs should be less than the available budget. 
Constraints set (11) determines the waiting time of jobs in 
each buffer.Constraints set (12) and (13) ensure that there 
are no overlap among operations and maintenance task. 
Constraint sets (14)-(16) are related to control the system 
availability.Finally, constraint set (17)-(19) controls the 
decision variable types. 
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Fig. 2. An example of proposed SFFSSP Gantt chart of this study 
 

 

3. Solution Methodologies 

 

As mentioned earlier, the proposed modelof SFFSSP is an 
NP-hard problem and solving this problem with exact 
methods in reasonable CPU time is impossible, so we 
should use heuristic or metaheuristic algorithms to solve 
it(Pinedo& Chao, 1999). Pinedo (2002) proved that some 
exact methods have been developed for solvingSFFSSP’s, 
but they are not suitable for more than 20 jobs and 10 
machines. Also, heuristic algorithms are often may be 
trapped onsome local solutions, but metaheuristic 
algorithms can be described as a master strategy that 
guides and modifies subordinate heuristics to explore the 
solutions beyond the local optimally (Osam et al., 
1996).We describe threehybridmetaheuristic algorithms, 
including combining parallel SA with two types of PSO 
algorithms (named PSO-PSAІ and PSO-PSAП), and a 
GA with parallel SA (named GA-PSA) which have good 
solution quality in the literature(Singh and Mahapatra, 
2012; Kianfar et al., 2012; Rabiee et al., 2014; Tang et al., 
2016; Sukkerd and Wuttipornpun, 2016). Theproposed 
metaheuristic algorithms are explained in the 
nextsubsections on details. 
 
3.1. Hybrid PSO-PSA algorithms 

 
PSO algorithm is an evolutional solution method 
performed on a population of candidate solutions called 
particles. These particles move around in the search-space 
according to simple routine. The particles movements are 
guided by the best found positions in the search-space, 
which are continually updated as better positions are 
found by the particles. At each iteration, the in position of  
a particle (X vector) is updated by calculating the velocity 
(Vel vector) using the differences between the current 
position of the particle and the two following vectors 
(Kennedy and Eberhart, 1995): 
 

 The best position experienced by the particle in all 
previous iterations. This is called the particle best 
(Pbest). 

 The best position experienced by all particles in 
population in all previous iterations. This is called the 
global best (gbest). 

Generally, a PSO is a continuous algorithm inherently, 
while SA is a discrete one. Experiments show that 
combining PSO with a discrete algorithm such as SA 
creates better performances. Poli, Kennedy and Blackwell  
(2007) presented a review on the variation and the 
hybridization of the PSO. We proposed two types of 
hybrid PSO-PSA algorithms named PSO-PSAІ and PSO-
PSAП to have both advantages of these methods. The 
basic idea of the hybrid PSO-PSA algorithm is running 
the PSO algorithm and improving the best results by 
applying parallel SA (PSA). In order to have variety in 
the proposed algorithm, we consider every bad, normal 
and good solutions could be selected with same 
chances.Combining PSO and PSA decreases the 
probability to be trapped in the local optimal solutions. 
Also, by introducing a suitable neighbourhood formation 
structure, the search process is enhanced and finds the 
near global optimum solution. The essential components 
of our proposed PSO-PSAІ and PSO-PSAП are similar, 
except in generating initial solutions as described below. 
The pseudo-code for our PSO-PSA algorithm is shown 
Figure 6. 
 
3.1.1. Initial solution of PSO-PSAІ 
 
The random generation policy is used to generate the 
initial population of PSO-PSAІ.  
 
3.1.2. Initial solution of PSO-PSAП 
 

In PSO-PSAП a new procedure is applied to generate 
initial solutions. First, we consider SFFSSP with relaxed 
conditions in which the binary constraints of model are 
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relaxed. In other word the 𝑋𝑗ℎ𝑚𝑠is considered to be a real 
number between 0 and 1. Next, the relaxed model was 
solved by CPLEX. The optimum values of decision 
variables are numbers between 0 and 1 which are looked 
as a probability distribution.  These values are used as 
primal inputs of initial solutions for PSO-PSAП. For 
example, if is X2312 = 0.8 then we set X2312 = 1 with the 0.8 
and X2312 = 0 with the 0.2. The initial solutions obtained 
by this methodare distributed in the high quality of 
solution space. In order to perform a comprehensive 
search the low quality of solution space must be 
investigated. Therefore, some initial solutions are 
generated, unlike the obtained probability distributions. 
For example, if X2312 = 0.8, then we set X2312 = 1 with the 
0.2 and X2312 = 0 with the 0.8, the two groups if initial 
solutions are merged and formed initial solutions of PSO-
PSAП.  
The input parameters of both proposed PSO-PSAІ and 
PSO-PSAП are: the population size (Npop), the number of 
successive iterations in which the best solution does not 
change (M), the cognition learning factor (C1), The social 
factor (C2) the inertial weight (w), the population size 
(Npop), the number of internal loop (In loop), and the 
temperature decreasing rate (α). The other components of 
proposed PSO-PSAІ and PSO-PSAП are the same and 
described as follows: 

3.1.3. The solution structure of PSO-PSA 

 
The solution is represented by two sub-matrixes, each of 
them are associatedto a special area of decision variable. 
The first sub-matrix presents the sequence of jobs 
contains S*J matrix where S is the number of stations and 
J is the number of jobs. An enhanced version of random 
key representation, proposed by Norman and Bean (1999) 
is used to show the sequence of jobs which is capable to 
preserve the solution feasibility. In this way, each job at 
each station is assigned a real number between(1, 𝑁𝑠). 
The integer part is the number determines the machine 
number to which the job is assigned and the fractional 
part is used to sort the jobs assigned to that machine. For 
example, consider a problem with 4 jobs, 5 stations and 4 
machines at each station. An example of a solution for 
this problem is presented in Figure 3.  According to 
Figure 4, in station 2, the jobs 1 and 4 are both processed 
on machine 3, and the job 2 is processed on machine 1, 
and the job 3 is processed on machine 2. Also the order of 
jobs to be scheduled on machine 3 is job 1 followed by 
job 4.The second sub-matrix is related to the number of 
maintenance activity on machines. It is a S*M matrix 
where S is the number of stations and M is the number of 
machines at each station. Each cell of this matrix is filled 
with a random number between 1 and the maximum 
number of allowable maintenance activity. Figure 4 is an 
example of a problem with 5 stations and 4 machines at 
each station. As shown in Figure 4, three, one, three and 
four maintenance activities are performed on machines 1, 

2, 3 and 4 in station 1, respectively. Therefore, the 
decision variables 𝑌111 , 𝑌211 and 𝑌311will be equal to one. 
 

 
Fig.3.  An example of representation of solution 

 (Sequence of jobs) 
 

 
Fig. 4.  An example of representation of solution 

(Maintenance activity) 
 

3.1.4. Particle movements 

 
For particle movements, the following formulas are used 
to update the velocity and position vectors of a particle: 𝑉𝑒𝑙𝑖(𝑘 + 1) = 𝑤 ∗ 𝑉𝑒𝑙𝑖(𝑘) + 𝐶1 ∗ 𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑘)) +𝐶2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑘))  (19) 𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑘) +𝑉𝑒𝑙𝑖(𝑘 + 1)   (20) 
 
In equation (19), Veli(k) is the velocity of particle i in the 
k

th iteration and Xi(k) states the position of particle i in 
iteration k. Also, Pbesti is the vector for the best known 
position of particle i and gbest is the best position vector 
of all particles in the whole population. 𝑤 is called the 
inertia weight that determines the impact of the current 
velocity of a particle on its velocity at the next iteration. 
The parameters C1 and C2 are acceleration coefficients 
which have constant values to determine the impact of 
Pbest and gbestvalues in defining the velocity, 
respectively. r1 and r2 are two random numbers uniformly 
distributed in [0,1]. 
 
3.1.5. Local search improvements 

 
One of the challenges of the algorithms is trapped in local 
optimal solutions. In the other words, it is possible that 
the near optimum solution which has found yet, is 
selected and the algorithm accepts this solution as a final 
optimum solution and stops. The hybrid algorithms are 
used to combine the base algorithm with different 
strategies to improve the algorithm performances. We 
utilized medium radius local search for the proposed 
hybrid PSO-PSA algorithms. In this method, the local 
searches are not used on each swarm, and we used the 
double change technique. If the improvements on the 
convergence of fitness function are achieved, we replace 
it to the previous swarm, but, if no improvements have 
been seen, we accept this by Bultzen probability.  
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3.1.6. Initial temperature 
 

A suitable initial temperature is the one that results in an 
average increase of acceptance probability near to one. 
The value of initial temperature will clearly depend on the 
scaling of fitness and, hence, it should be problem-
specific. Therefore, we first generate a large set of random 
solutions, then a standard division of them is calculated 
and is used to determine the initial temperature in the way 
that the acceptance probability of primary generations 
reach to 0.999. Consequently, the initial Tk is set to 
1000based on some preliminary examinations. 
 

3.1.7. Cooling Schedule 
 

The performance of this algorithm also depends on the 
cooling schedule, which is essentially the temperature 
updating function. In the proportional decrement scheme, 
temperatures at the k and k+1 steps of the outer loop, 𝑇𝑘and  𝑇𝑘+1, are related by: 𝑇𝑘+1 = 𝛼𝑇𝑘(21) 
 

Where 𝛼 is cooling rate and is obtained by some 
experiment. 
 
3.1.8. Stopping criteria 
 

To limit the number of iterations of PSO-PSA algorithms, 
some convergence experiment was performed and the 
best criterion was applied as follows: 
PSO-PSA will be stopped when the best solution does not 
change after a pre-determined number of successive 
iterations (M). Also, the PSA is allowed to search in a 
temperature level, for In-loop iterations. The optimum 
value of M and In-loop is determined by Taguchi 
experiments. The pseudo-code of the proposed PSO-PSA 
is described in Figure 5. 
 

Procedure of hybrid PSO-PSA algorithms 

 
P: initial particle with random positions and velocities 
Untiltermination condition is met Do 

For each particle ido 
Update the velocity of particle i 
Update the position of particle i 
Evaluate particle i 
Update Pbest and gbest 
Endfor 

Start PSA with some of the best and the worst chromosomes  

 

Set repetition counter k = 0 
Untiltermination condition is met Do 

Set repetition counter M = 0 
UntilM= in_loopDo 

Generate a neighbour solution: ω2 
Calculate Δω1, ω2= f(ω) - f(ω0) 

If Δω1, ω2 ≤ 0, then ω1 = ω2 
If Δω1, ω2 >0, then ω1 = ω2  with probability exp (-Δω1, ω 2 / tk) 
m = m + 1 
End 

Tk+1= α Tk 

k = k + 1 
End 

Transfer the improved solution to the particles 

End 
Fig. 5. Pseudo-code of hybrid PSO-PSA  

 
3.2. Hybrid GA-PSA algorithm (GA-PSA) 

 
Genetic algorithm (GA) has no ability to search 
effectively to find the best global optimum solution. Also, 
this algorithm isn’t a capable to complete local searches 
on solutions. Therefore, we can combine the power of GA 
in global search with simulated annealing (SA) local 
searches to address the global optimum solution. This 
hybrid algorithm which combines GA and SA has both 
advantages of these algorithms and help to improve 
solution performances.In this hybrid algorithm, first the 
GA generates initial solutions with crossover and 
mutation operators. Next, some of these solutions have 
been selected for the parallel SA (PSA) as initial 
solutions. Then, the parallel local search process on the 
selected solution starts. To have variety in the proposed 
algorithm, we consider every bad, normal and good 
solutions could be selected with same chances. The PSA 
procedure in the same applied in PSO-PSA. The other 
components of PSO-SA are as follows: 
 
3.2.1. Initialization 

 
The input of GA-PSA is the population size (Npop), the 
number of successive iterations in which the best solution 
does not change (M), the crossover probability (Pc), and 
the similarity coefficient (SC), and the mutation 
probability (Pm) the number of internal loops (In loop), 
and the temperature decreasing rate (α) are first 
initialized. Then, to generate an initial population, a 
random generation policy is utilized in this step. Since the 
solutions obtained by a metaheuristic algorithm are 
sensitive to their parameter values, a statistical procedure 
based on the Taguchi parameter tuning method is used to 
tune the parameters. 
 

3.2.2. Selection operator 

 

One of the most key elements of a GA is the selection 
operator which is used to select chromosomes (parents) 
which lead to generate new chromosomes (offspring). The 
proposed selection operator is roulette wheel selection 
method in which parent chromosomes are 
probabilistically selected based on their fitness function 
value. The better chromosomes are selected with the 
highest probability. Using the roulette wheel selection 
each chromosome in the population occupies a slot with a 
slot size proportional to the chromosome fitness. When 
the wheel is randomly spun, the chromosome 
corresponding to the slot where the wheel stopped is 
selected as the first parent. This process is repeated to find 
the second parent. Clearly, since better chromosomes 
have larger slots, they have better chances to be chosen in 
the selection process. 
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3.2.3. The chromosome structure  

 
The chromosome structure of the GA-PSA is just like that 
used in “solution structure” in PSO-PSA. 
 
3.2.4. Chromosome evaluation 

 

In order to evaluate chromosomes, each chromosome is 
simulated for 30 times. Then, the obtained results are 
averaged and considered as the chromosome fitness 
function. In the other word, by changing the stochastic 
input parameters, the fitness function of the chromosome 
will change. Therefore, the fitness function of each 
chromosome is not under deterministic value and show 
the stochastic nature of the model.  
 
3.2.5. The crossover operator 

 
As defined in the previous section, the chromosomes have 
two parts, so a crossover operator is applied in these two 
parts. For each part of the chromosome a single-point 
crossover is applied. For the first part of the chromosome, 
a cross point between (1, J) is generated (J is the number 
of jobs). Then, the crossover operator is applied according 
to Figure 8. The same procedure is applied to generate the 
second of the offspring chromosomes. 
 
3.2.6. The mutation operator 

 
The mutation operator is used in only some iterations. The 
similarity coefficient (SC) determines if mutation is 
applied or not. We can calculate the SC as follows: 
 𝑆𝐶𝑎𝑏 = ∑ ∑ ∑ ∑ 𝜕(𝑋𝑗ℎ𝑚𝑠(𝑎),𝑋𝑗ℎ𝑚𝑠(𝑏))𝐿𝑠=1𝑁𝑠𝑚=1𝐾𝑚ℎ=1𝐽𝑗=1 𝑆 × 𝐽  

(22) 

 
Where 𝑋𝑗ℎ𝑚𝑠(a)and𝑋𝑗ℎ𝑚𝑠(𝑏) are decision variables in 
chromosomes a and b. For comparing the similarity 
between two chromosomes, we consider the similarity of 
each gene that can be expressed as follows: 
 𝜕(𝑋𝑗ℎ𝑚𝑠(𝑎),𝑋𝑗ℎ𝑚𝑠(𝑏)) = {1𝑖𝑓𝑋𝑗ℎ𝑚𝑠(𝑎) = 𝑋𝑗ℎ𝑚𝑠(𝑏)0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (23) 

 
The average similarity coefficient of the population is 
calculated as follows: 
 𝑆𝐶̅̅̅̅ = ∑ ∑ 𝑆𝐶𝑎𝑏𝑁𝑏=𝑎+1𝑁−1𝑎=1 (𝑁2)  

(24) 

 
WhereN is the number of chromosomes in the population. 
Considering a pre-defined threshold similarity coefficient, 
the specified mutation operator will be automatically 
applied. Two swapping types are used in proposed GA-
PSA. Swapping type 1 is used to define the 
neighbourhood N(s) in local search (PSA) and swapping 
type 2 is used as mutation operator of GA. 

 
 Swapping type 1 

The mutation operator is applied on both two parts of 
chromosomes. To this aim, a column of each chromosome 
sub matrix is randomly selected and is inversely arranged. 
Figure 6 shows an example of the mutation operator.  
 

 
Fig.6.  An example of mutation operator of swapping type 1 

(Sequence of jobs) 
 
 
 Swapping type 2 

The swapping type 2 works which select two rowsof each 
chromosome sub matrix is randomly selected and 
swapped (see Figure7). 
 

 
Fig. 7.  An example of mutation operator of swapping type 2 

(Sequence of jobs) 
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Fig. 8.  An example of crossover operator (Sequence of jobs) 

 
 

3.2.7. Stopping criteria  
 

The stopping criteria in the GA-PSA is similar to the ones 
described for PSO-PSA. Figure 9 shows the pseudo-code 
of the proposed GA-PSA algorithm. 

 
Procedure of hybrid GA-PSA algorithm 

 

P: generate the initial population (Npop) 
Untiltermination condition is metDo 

Evaluate the chromosomes  
Apply the crossover operator 
Apply the mutation operator 
Start PSA with some of the best and the worst chromosomes  

For all the selected chromosomes Do 

Set repetition counter k = 0 
Untiltermination condition is met Do 

Set repetition counter M= 0 
UntilM= in_loopDo 

Generate a neighbour solution: ω2 
Calculate Δω1, ω2= f(ω) - f(ω0) 

If Δω1, ω2 ≤ 0, then ω1 = ω2 
If Δω1, ω2 >0, then ω1 = ω2  with probability exp (-Δω1, ω 2 / tk) 
m = m + 1 
End 
Tk+1= α Tk 

k = k + 1 
End 

         End 

Transfer the improved solutions to the genetic population and combine 
all the generated populations 

End 
Fig. 9. Pseudo-code of GA-PSA 

 
 
 

4. Computational Evaluation 

 
All experimental results have been carried out on an 
ASUS laptop with a 2.4 GHz, core i5 processor using a 
4GB of RAM. All metaheuristic algorithms have been 
implemented in MATLAB Software (Version 7.10.0.499, 
R2010a) and the linear programming models have been 
solved using CPLEX 12. Also, the Minitab 17 software 
has been used to apply theTaghuchi design of experiment 
method for parameters tuning.Two sets of test problems 
are applied to solve the model. These test problems are 

generated based on the data given in Table 1. Here, we 
considered 5 scenarios, each of which has equal 
probability to be occurring.Three machines workat each 
station, considering the number of jobs and the numbers 
of stations, the two test sets aregeneratedin small and 
large problem sizes. First, 18small sized test problems are 
generated and the solutions, obtained by the algorithms, 
are evaluated against global optimum 
amounts.Furthermore, 60 large sizedtest problems are 
applied to compare the performance of the algorithms. 
We considered two kinds of total budget called 
hereinafter by type 1 and 2. Both budget types are 
associated to the number of jobs. The budget types 1 and 
2 are respectively calculating by multiplying of number of 
jobs in 1200 and 1000. Therefore, the budget type 2 is 
more strict than type 1. 
 
 
Table 1 
Factor and their levels 
Factors Levels 
Number of jobs (j) [4, 5, 6, 20, 50, 60, 100] 
Number of stations (s) [2, 3, 4, 6, 9] 
Holding cost ($/sec) Uniform [50, 100] 
Process times (sec) Uniform [1, 99] 
The minimum of availability 0.95 
The repair rate of machine (sec) Uniform [10, 50] 
The failure rate of machine (sec) Uniform [150, 450] 
Number of scenarios 5 

 
4.1. Parameter tuning 

 
As mentioned before, the initial parameters of hybrid 
PSO-PSA algorithms (including both PSO-PSAІ and 
PSO-PSAП) are the population size (Npop), the number of 
successive iterations in which the best solution does not 
change (M), the cognition learning factor (C1), The social 
factor (C2) the inertial weight (w), the population size 
(Npop), the number of internal loop (In loop), and the 
temperature decreasing rate (α). Also, the population size 
(Npop), the number of successive iterations in which the 
best solution does not change (M), the crossover 
probability (Pc), and the similarity coefficient (SC), and 
the mutation probability (Pm) the number of internal 
loops (In loop), and the temperature decreasing rate (α) 
were used in GA-PSA.To investigate the influence of 
those parameters on the performance of the algorithms, 
we implement the Taguchi’s method in the design of 
experiments (DOE) (Montgomery, 2005).In the Taguchi’s 
method, the results are converted into an estimator called 
single to noise ratio (S/N). The S/N ratio shows both the 
mean and the variation in the response variables. To 
minimize the objective function the S/N ratio is calculated 
as the following formula: 𝑆 𝑁⁄ = −10 log (1 𝑛⁄ ∑ 1𝑦𝑖2𝑛

𝑖=1 )(23) 
Which, n and yiindicate number of replications and 
process response value at i’th replication. We chose the 
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orthogonal array L27 for both PSO-PSA and GA-PSA. In 
Taguchi’s design of experiments, the relative percentage 
deviations (RPD’s) transform into S/N ratio, we figure out 
the response value of each parameter in the proposed 
algorithms.After testing the different parameter levels and 
analysing the obtained results, the better initial parameter 
levels were gained. The initial and optimumparameter 
levels of each proposed hybrid algorithm are shown in 
Tables 2.According to the parameter values in Table 2, 
we illustrate the trend of each factor level of PSO-PSA 
and GA-PSA are in Figures 10 and 11, respectively. Also, 
the results of each test problem solved by the proposed 
algorithms are shown in Figure 12. The statistical results 
of the objective function (makespan)and CPU time for the 
small and large sized problems are presented in Tables 5 
and 6.Additionally, we utilized the relative percentage 
deviation (RPD) to test the performances of applied 
metaheuristics as below: 
 𝑅𝑃𝐷 = 𝐴𝑙𝑔𝑠𝑜𝑙 − 𝐿𝑠𝑜𝑙𝐿𝑠𝑜𝑙 𝑖 = 1, … , 𝑛(32) 
 

Where, Algsolis the objective function value for a given 
algorithm, Lsolis the best value of the objective function 
between algorithms and n is the number of small size or 
large size problems. 
 
 
Table 2 
Initial and optimum parameter levels of hybrid algorithms 
Algorithms Parameters Factor levels Optimum 

amount 1 2 3 
 
 
 

PSO-PSA 

Npop PSO-PSA 100 200 300 200 
M 10 20 30 20 
C1 1 1.5 2 1.5 
C2 0.7 1 1.5 1 
Ω 0.3 0.4 1 0.4 

In loop 5 10 15 10 
α 0.87 0.91 0.95 0.91 

      
 
 
 

GA-PSA 

Npop GA-PSA 100 200 300 200 
M 10 20 30 20 
Pc 0.85 0.9 0.95 0.9 
SC 0.6 0.7 0.8 0.7 
Pm 0.005 0.01 0.015 0.01 

In loop 5 10 15 10 
α 0.87 0.91 0.95 0.91 

 
 
 
 

 
 
 

Fig. 10. Factor level trend of PSO-PSAalgorithm 
 
 

Fig. 11. Factor level trend of GA-PSAalgorithm 
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Table 5 
Solutions found by the algorithms of the small-sized test problems 

    CPLEX PSO-PSAП PSO-PSAІ GA-PSA 
Problem 

# 
Budget 

type 
NOJ 
(j) 

NOS 
(s) 

Makespan CPU 
time 

Gap 
(%) 

Makespan CPU 
time 

Makespan CPU 
time 

Makespan CPU 
time 

1 1 
2 

4 2 205 
210 

22 
22 

0 
0 

205 
210 

22 
23 

205 
229 

26 
37 

205 
233 

29 
39 

2 1 
2 

  209 
217 

35 
36 

0 
0 

209 
218 

37 
35 

216 
225 

52 
47 

219 
228 

55 
49 

3 1 
2 

 3 214 
240 

95 
91 

0 
0 

214 
241 

97 
94 

215 
248 

109 
117 

227 
253 

115 
122 

4 1 
2 

  218 
223 

155 
150 

0 
0 

218 
224 

156 
152 

227 
237 

160 
182 

249 
250 

163 
186 

5 1 
2 

 4 232 
236 

185 
184 

0 
0 

235 
238 

191 
187 

243 
246 

305 
287 

247 
249 

321 
328 

6 1 
2 

  249 
250 

235 
234 

0 
0 

249 
252 

238 
236 

257 
264 

398 
382 

260 
262 

415 
402 

7 1 
2 

5 2 237 
241 

645 
647 

0 
0 

238 
245 

651 
650 

248 
252 

1039 
1077 

251 
255 

1100 
1138 

8 1 
2 

  253 
262 

822 
830 

0 
0 

256 
268 

831 
833 

265 
273 

1005 
1015 

270 
276 

1176 
1165 

9 1 
2 

 3 270 
280 

882 
890 

0 
0 

274 
282 

890 
893 

280 
292 

996 
1016 

284 
298 

1034 
1086 

10 1 
2 

  289 
304 

918 
922 

0 
0 

292 
308 

923 
931 

302 
317 

987 
1083 

305 
321 

1150 
1154 

11 1 
2 

 4 335 
348 

1012 
1048 

0 
0 

337 
350 

1024 
1055 

346 
355 

1056 
1088 

350 
369 

1149 
1047 

12 1 
2 

  326 
351 

943 
950 

0 
0 

329 
353 

951 
958 

336 
363 

1008 
1032 

339 
368 

1062 
1094 

13 1 
2 

6 2 349 
362 

1083 
1116 

0 
0 

352 
366 

1099 
1128 

361 
374 

1125 
1176 

367 
379 

1139 
1182 

14 1 
2 

  351 
366 

1043 
1055 

0 
0 

355 
371 

1074 
1094 

363 
381 

1133 
1156 

369 
385 

1273 
1258 

15 1 
2 

 3 350 
372 

1103 
1144 

24.54 
28.55 

354 
376 

1127 
1185 

367 
392 

1176 
1192 

369 
395 

1201 
1282 

16 1 
2 

  347 
360 

1078 
1123 

29.17 
31.47 

351 
363 

1112 
1175 

358 
371 

1185 
1211 

363 
374 

1246 
1267 

17 1 
2 

 4 361 
367 

1197 
1255 

68.35 
66.92 

364 
371 

1225 
1292 

373 
379 

1312 
1332 

377 
383 

1424 
1487 

18 1 
2 

  358 
394 

1205 
1270 

74.18 
78.53 

363 
398 

1243 
1293 

370 
384 

1294 
1345 

376 
399 

1431 
1481 

Average 
 

1 
2 

  268.28 
299.06 

703.22 
720.39 

10.90 
51.37 

288.61 
301.89 

716.17 
734.11 

296.22 
310.11 

798.11 
820.33 

301.50 
315.39 

860.17 
875.94 

Gap (%) = CPLEX optimality gap 
 
 

 
Fig. 12. The performance of proposed hybrid algorithmsof the large-sized test problems in terms of average makespan 
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Table 6 
Solutions found by the algorithms of the large-sized test problems 
Problem 

# 
Budget  

type 
NOJ 
(j) 

NOS 
(s) 

PSO-PSAП PSO-PSAІ GA-PSA 
Makespan CPU time Makespan CPU time Makespan CPU time 

1 1 
2 

20 3 958 
1005 

2231 
2277 

937 
996 

2265 
2309 

1009 
1055 

2319 
2393 

2 1 
2 

  941 
994 

2226 
2202 

959 
1002 

2261 
2278 

992 
1038 

2318 
2373 

3 1 
2 

  964 
1032 

2230 
2282 

988 
1042 

2278 
2266 

1031 
1086 

2302 
2285 

4 1 
2 

  984 
1034 

2236 
2224 

981 
1034 

2279 
2273 

1035 
1088 

2333 
2383 

5 1 
2 

  952 
993 

2227 
2265 

985 
1071 

2291 
2281 

993 
1039 

2329 
2382 

6 1 
2 

 6 1127 
1179 

2385 
2463 

1138 
1197 

2450 
2408 

1161 
1231 

2483 
2479 

7 1 
2 

  1152 
1223 

2397 
2467 

1131 
1174 

2438 
2464 

1201 
1276 

2508 
2579 

8 1 
2 

  1080 
1147 

2395 
241 

1097 
1142 

2428 
2426 

1119 
1165 

2469 
2486 

9 1 
2 

  1188 
1252 

2373 
2434 

1149 
1223 

2443 
2406 

1245 
1297 

2471 
2532 

10 1 
2 

  1164 
1218 

2380 
2379 

1170 
1228 

2431 
2426 

1104 
1159 

2468 
2464 

11 1 
2 

 9 1174 
1210 

2417 
2490 

1178 
1234 

2458 
2524 

1216 
1278 

2529 
2531 

12 1 
2 

  1120 
1190 

2416 
2490 

1155 
1225 

2471 
2450 

1178 
1249 

2521 
2480 

13 1 
2 

  1197 
1260 

2433 
2476 

1233 
1304 

2443 
2441 

1257 
1307 

2471 
2457 

14 1 
2 

  1143 
1215 

2421 
2437 

1145 
1213 

2465 
2495 

1169 
1233 

2500 
2549 

15 1 
2 

  1187 
1250 

2417 
2412 

1233 
1293 

2476 
2485 

1236 
1309 

2511 
2521 

16 1 
2 

50 3 2617 
2706 

2903 
2990 

2684 
2793 

3021 
3030 

2767 
2912 

3197 
3137 

17 1 
2 

  2652 
2758 

2911 
2945 

2730 
2881 

3028 
3058 

2813 
2936 

3134 
3216 

18 1 
2 

  2562 
2693 

2910 
2956 

2639 
2753 

3074 
3124 

2697 
2799 

3251 
3339 

19 1 
2 

  2635 
2740 

2908 
2952 

2697 
2813 

3010 
3013 

2768 
2916 

3159 
3130 

20 1 
2 

  2589 
2676 

2901 
2936 

2680 
2789 

3050 
3042 

2757 
2858 

3180 
3270 

21 1 
2 

 6 2839 
2992 

3010 
3097 

2920 
3035 

3141 
3085 

3055 
3218 

3300 
3378 

22 1 
2 

  2815 
2922 

3009 
3085 

2918 
3036 

3115 
3075 

2994 
3106 

3240 
3233 

23 1 
2 

  2620 
2725 

3010 
3103 

2698 
2801 

3116 
3146 

2770 
2873 

3255 
3319 

24 1 
2 

  2843 
2996 

3031 
3019 

2933 
3035 

3199 
3286 

3050 
3169 

3352 
3444 

25 1 
2 

  2568 
2687 

3022 
3073 

2637 
2727 

3184 
3260 

2750 
2860 

3300 
3269 

26 1 
2 

 9 2827 
2943 

3181 
3178 

2911 
3024 

3324 
3427 

3004 
3153 

3491 
3571 

27 1 
2 

  2825 
2989 

3186 
3225 

2898 
3064 

3318 
3399 

3009 
3187 

3516 
3460 

28 1 
2 

  3109 
3296 

3164 
3137 

3214 
3373 

3288 
3273 

3325 
3478 

3399 
3465 

29 1 
2 

  2827 
2948 

3181 
3203 

2931 
3043 

3280 
3369 

3051 
3210 

3390 
3338 

30 1 
2 

  3087 
3245 

3193 
3292 

3178 
3322 

3344 
3380 

3299 
3489 

3517 
3476 

31 1 
2 

60 3 4117 
4388 

3578 
3690 

4525 
4793 

3834 
3926 

4900 
5726 

4070 
4084 

32 1 
2 

  3861 
4059 

3596 
3616 

4194 
4466 

3837 
3763 

4468 
4823 

4035 
4125 

33 1 
2 

  4026 
4327 

3594 
3470 

4304 
4684 

3847 
3786 

4752 
5026 

4097 
4179 

34 1 
2 

  3828 
4043 

3586 
3670 

4192 
4452 

3876 
3968 

4507 
4910 

4134 
4243 

35 1   4048 3589 4424 3839 4787 4112 
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2 4412 3694 4675 3840 5185 4207 
36 1 

2 
 6 4406 

4650 
3709 
3692 

4712 
5107 

3999 
3922 

5205 
5487 

4221 
4180 

37 1 
2 

  4331 
4711 

3729 
3764 

4658 
4993 

4025 
3975 

5161 
5487 

4246 
4230 

38 1 
2 

  4123 
4479 

3701 
3788 

4403 
4675 

4030 
4128 

4860 
5256 

4351 
4483 

39 1 
2 

  4250 
4513 

3700 
3809 

4570 
4916 

3912 
3988 

5072 
5392 

4240 
4342 

40 1 
2 

  4236 
4552 

3722 
3745 

4641 
4982 

3916 
3943 

5060 
5322 

4157 
4256 

41 1 
2 

 9 4668 
4927 

3954 
4002 

5008 
5350 

4221 
4189 

5415 
5760 

4494 
4638 

42 1 
2 

  4443 
4749 

4024 
3961 

4793 
5051 

4248 
4177 

5155 
5592 

4499 
4553 

43 1 
2 

  4249 
4607 

3947 
4001 

4626 
4958 

4156 
4232 

4943 
5218 

4431 
4511 

44 1 
2 

  4705 
4857 

3958 
3937 

5156 
5283 

4227 
4232 

5302 
5673 

4449 
4477 

45 1 
2 

  4569 
4985 

3949 
4037 

4761 
4912 

4226 
4168 

5018 
5325 

4554 
4537 

46 1 
2 

100 3 9395 
10037 

4845 
4805 

10169 
11081 

5459 
5445 

11358 
12081 

6083 
6024 

47 1 
2 

  9416 
10112 

4857 
5003 

10344 
11193 

5313 
5335 

11573 
12201 

6022 
5913 

48 1 
2 

  9712 
10299 

4799 
4866 

10521 
11197 

5446 
5561 

11681 
12717 

5957 
5860 

49 1 
2 

  9279 
9762 

4811 
4962 

10184 
10869 

5301 
5307 

10896 
11522 

5982 
5906 

50 1 
2 

  9137 
9880 

4824 
4756 

9879 
10651 

5423 
5410 

11125 
11700 

6040 
6227 

51 1 
2 

 6 9938 
10733 

4968 
5022 

11013 
11748 

5629 
5732 

11839 
12457 

6274 
6258 

52 1 
2 

  9725 
10589 

4972 
4932 

10744 
11570 

5587 
5544 

11916 
12867 

6240 
6367 

53 1 
2 

  9747 
10378 

4920 
5059 

10919 
11581 

5415 
5340 

11947 
12926 

6167 
6248 

54 1 
2 

  10115 
10917 

4937 
4948 

11005 
11661 

5566 
5489 

12176 
13142 

6305 
6327 

55 1 
2 

  9844 
10468 

5017 
4972 

10732 
11580 

5479 
5498 

11919 
12673 

5978 
6091 

56 1 
2 

 9 10733 
12093 

5428 
5366 

11540 
12239 

6568 
6677 

12597 
13491 

7390 
7630 

57 1 
2 

  11007 
11613 

5799 
5817 

12329 
13058 

6558 
6643 

13316 
14096 

7855 
7953 

58 1 
2 

  10873 
11434 

5849 
5997 

12069 
12826 

6557 
6438 

13537 
14717 

7462 
7577 

59 1 
2 

  11654 
12466 

5892 
6020 

13002 
13705 

6694 
6782 

14018 
15217 

7583 
7467 

60 1 
2 

  10650 
10987 

5824 
5742 

11537 
12587 

6502 
6697 

12880 
13879 

7893 
7834 

Average 
 

1 
2 

    4547.18 
4842.08 

3579.70 
3617.55 

4900.02 
5211.50 

3850.98 
3867.98 

5307.42 
5656.53 

4158.90 
4193.93 

NOJ (j) =number of jobs 
NOS (s) =number of stations 

 

After solving all test problems, the results showed that in 
the all test problems, PSO-PSAПhas better performances 
in terms of makespan and CPU time. The comparisons of 
makespan show that the PSO-PSAП provides better 
solution quality with difference average RPD (ARPD) of 
5.24, and 12.02 in comparison to PSO-PSAІ, and GA-
PSA, respectively. Also, we can see that in the 
comparison of CPU times, PSO-PSAП give better results 
in terms of difference ARPD of 6.04, and 13.42 against 
PSO-PSAІ, and GA-PSA. Figures 13 and 14 show the 
mean plot of the CPU time and makespan of the proposed 
metaheuristic algorithms, respectively.According to 
computational results, it can be inferred that in small-
sized test problems, all the algorithms approximately have 

the same computational effort. Therefore, it can be proved 
that all the metaheuristic algorithms are able to reach 
optimal/near optimal solutions.But, as the sizes of the 
problems are increased, the difference between algorithms 
is more revealed so that PSO-PSAП overcomes all other 
algorithms. However, the PSO-PSAІ, and GA-PSA are 
highly affected by the problem size so that by increasing 
it, the CPU time is exponentially increased. Figure 15 
depicts the 95% confidence intervals of makespan and 
Figure 16 showsthe 95% confidence intervals for RPD 
among the proposed algorithms. 
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Fig. 13. Means plot of CPU time of hybrid algorithms 

 
 

 
Fig. 14. Means plot of makespan of hybrid algorithms 

 
5. Conclusion 
 
In this study, we developed the stochastic flexible flow 
shop scheduling problem (SFFSSP) considering fixed 
interval preventive maintenance (PM) and budget 
constraint. This new type of problem which is the main 
contribution of the research is presented an integrated 
mathematical model which is capable to consider all of 
the influential factors on makespan. In theproposed 
SFFSSP, there is a buffer between each stage, if all 
machines are busy or under PM action, the job can wait in 
the buffer. The budget constraint controls the holding 
costs of total jobs in all buffers should not be greater than 
available budget. The proposed model considers not only 
the preventive maintenance, but also stochastic processing 
time and budget constraint. By integrating all of these 
subjects the model will reflect the real performance of a 
SFFSSP. Since the problem was strongly NP-hard, three 
hybrid algorithms, including PSA with two types of PSO 
algorithms (PSO-PSAІ and PSO-SAП), and a GA (GA-
PSA) were proposed to solve the model, which have 
suitable quality solutions in the literature.To compare the 
computational results, we tested two types of test 
problems containing 18 small sized test problems and 60 
large sized test problems. As the results showed, the PSO-
PSAП algorithm provided better quality solutions in both 

makespan and CPU time among the test problems. Also, 
the higher performance of proposed PSO-PSAП 
algorithm with respect to other algorithms is more 
revealed in the large sized test problems.  
The presented model is still open to considering other 
options, such as sequence dependent setup time, machine 
random breakdown, and the problem of job availability at 
time zero. Also, it might be exciting in working on bi-
objective SFFSSP’s, which the other objective function 
could be minimizes the maximum tardiness.Another 
research direction could be incorporating different 
transportation types to transport jobs between each stage. 
Additionaleffort can try to solve model by developing a 
new solution methodology such as a new hybrid 
algorithm or a new population-based algorithm can be 
investigated.We assumed that each job has a same 
holding cost at each intermediate buffer, but it is different 
at each stage. Another aspect deserving future efforts is to 
consider that the holding costs of each job are different at 
any intermediate buffer. 
 

 

 
Fig 15. The 95% confidence intervals of  makespanof the small-

sized test problems 
 

Fig 16. The 95% confidence intervals of makespanof the large-
sized test problems 
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