

PROCESS CONTROL USING A REAL TIME EXPERT SYSTEM

Proc. IFAC 1990, Estonia, USSR pp. 234-239 (reformatted)

R. Moore, H. Rosenof, and G. Stanley *

Gensym Corporation, 125 CambridgePark Drive, Cambridge, Massachusetts 02140, U.S.A.

Abstract. The challenges and status of the application of expert system technology in process plants is
considered. In particular the problems of knowledge representation include the need to represent dynamic
qualitative knowledge, dynamic analytic knowledge and the deep structure of the process. The application of
inference in real-time requires paradigms which use metaknowledge to focus the inferencing resources of the
expert system. Finally the application of truth maintenance requires a temporal model of the time
dependence of the truth of data and inferred results. A structure which includes these considerations is
presented.

Keywords. Artificial intelligence, Expert systems, Real time computer systems, Process control

 INTRODUCTION

The work done to connect expert systems to on-line processes
goes back many years (Astrom 1984, Kawakami 1984, Lusk
and Stratton 1983, Yamada and Motoda 1983). The early
activity toward developing a real-time expert system
technology (Cartwright and Ruskin 1986, Kramer and
Palowitch 1985, Moore and co-workers 1984, Sauers and
Walsh 1983) was intended for the area of on-line process
diagnosis. Some early real-time designs were subsequently
placed on-line in refineries and other sites (Moore and Kramer
1986). Subsequent work (Astrom 1989, Hofmann and co-
workers 1989, Moore and co-workers 1987, Wolfe 1987) has
extended the working definition of "real-time expert system" to
include temporal reasoning based on integrated heuristic and
analytic knowledge, and a full object-oriented representation
integrated with deep knowledge of the structure of the plant.

This paper presents the current working definition of a real-
time expert system, based on 200 site installations. The
many technology-leading organizations involved have provided
significant contribution to the concepts. Some public
references to this are (Arzen 1989a), (Aynsley, Peel and
Morris 1989), (Byrd, Fisher and Mallett 1989), (Merris 1989),
(Nevins 1989), and (Noren 1988). Current installations
include applications in process monitoring and control,
manufacturing, spacecraft telemetry, robotics, environmental
control, network management and others. The most frequent
implementations are in the chemical, petrochemical,
aerospace and nuclear power industries.

 KNOWLEDGE REPRESENTATION

Engineers and other plant experts know many types of
process behavior, ranging from the analytical models of
reactions to the lessons of past experience. To represent this
in an expert system requires a knowledge representation that
integrates several kinds of knowledge, including not only

rules, but also differential equation models such as material
balances, energy balances and reaction kinetics. A paradigm
which only allows heuristics would, in the case of a process
plant, only represent part of the expert knowledge of plant
behavior. In this view, what is required is an integration of
heuristic and analytic forms of knowledge.

The object-oriented paradigm is used, with a hierarchical
frame structure. Each object has behavior, which is directed
or represented by combinations of analytic (model-based)
and heuristic (rule-based) statements. In the object-oriented
paradigm, behaviors may be defined for a class, and be
inherited by each member of the class or subclass. However,
with the object oriented paradigm, a member of a class can
inherit some behaviors and not other, more specific,
behaviors.

For the most efficient representation, behavior is defined
generically, with as much abstraction as possible, so that a
class hierarchy is defined with behaviors at the highest class
possible.

Generic Representation of Behavior

In many plants there are sets of objects which have related
knowledge. For example, there may be many chemical
reactors, all of which behave according to their individual
states and inputs, but all with temperature, pressure and
reaction relationships functionally defined by the combination
of these and generic relationships. All the reactors may need
inference analysis of a similar sort. The generic knowledge at
the various class levels is combined with the parameters,
states, inputs and specific behaviors of the specific instance to
determine the overall object behavior, such as;

d/dt(the temperature of any reactor) =(the net-energy-
input of the reactor - the net-energy-output of the
reactor + the reactor-heat of the reactor) * (the
..............

and;

the net-energy-input of any process-equipment = the
sum over the inputs of the process-equipment of (........)

Representation of the Plant Structure

The process experts reason about the behavior using their
knowledge of plant structure, knowing how the connected
process units affect each other. In some applications the
connections may change dynamically, as when alternate
scenarios are being evaluated. To represent this, it is useful
to use a graphical form of knowledge representation, so
experts can define the plant structure and interactions by
connecting objects on a computer workstation screen. The
expert system can interpret this deep structure as part of the
reasoning paradigm. The inference engine actively interprets
the schematic representation of plant structure, reasoning
about up-stream and down-stream causes and effects. To
allow this, the object behaviors are defined in terms of data at
object ports, rather than naming the specific objects providing
the interactions, such as;

.....the integrated-heat-flux of any reactor = the sum
over the inputs of the reactor of.........

and;

if the pressure of any reactor > the maximum-allowed-
pressure of the reactor then invoke overpressure rules
for every process-equipment connected to the reactor.

Temporal Knowledge Representation

Temporal knowledge is typically very important, as the expert
may be more concerned with the direction of dynamic behavior
than with the current values of data. The differential equation
models are one analytic representation of temporal
knowledge. Other forms, which may be incorporated into
heuristic or analytic behavior include relationships between
data or events over time, such as;

If the temperature of any tank as of 2 minutes ago >
.....then....

or functions of data over time, such as;

if the rate of change per minute of the temperature of
any reactor over the last 2 minutes >.....then invoke
safety rules for the reactor

Integration of Knowledge Representations

The overall knowledge representation is done using a
combination of heuristic and analytic object behavior, including
temporal knowledge, some of which is inherited from higher
classes and some of which is specific, combined with the deep
structure of the connectedness of the objects as dynamically
interpreted during operation of the expert system, Fig. 1.
Hofmann (1989) shows how this knowledge representation
can be used to rapidly develop large applications using block
diagrams of objects and their interactions as the user
interface.

We can say that now there is an increasing realization that a
full control strategy requires not only parameter identification,
state estimation and control , but that the validity of the data

and process models must be checked even before the data
and models are used in state estimation and subsequent
control. As systems get more complex, there is a higher and
higher probability of some failure occurring. The systems
must be fault tolerant, allowing best available information to be
used in flexible ways. For large system implementations, a
productive human interface for the development and
maintenance of the system, as is described here, becomes a
necessary condition for practical implementation. Fig. 2.
shows how the structured natural language parser can be
used for building the knowledge base.

 REASONING IN REAL TIME

First attempts at using expert systems for process control
involved taking a "snap-shot" of plant data and using a static
expert system paradigm to perform inference. Static expert
systems use pattern matching of a set of "facts" and a set of
rules, using some combination of forward and backward
chaining to combine the inferences. With no time constraints,
this might be practical. However with a time constraint, we
need more efficient inference paradigms.

Code improvements and computer performance improvements
can help. For example the knowledge base can be manually
partitioned to cut down on the search space. This is
conceptually like having separate libraries or separate expert
systems. Another efficiency derives from truth-maintenance.
If only a few data are changing at a time, the truth-
maintenance techniques of unwinding obsolete conclusions
and only updating conclusions dependent on the new values is
useful. However in most real-time applications a considerable
amount of data is changing, at a rapid rate. Even with the
code improvements and the continuing computer performance
improvements, the static expert system approaches lead to
slow performance on even small prototypes of a few hundred
rules and a few hundred rapidly changing data.

Real-Time Reasoning Paradigms

A fundamentally different inference approach is appropriate for
real-time problems. One approach that a human expert uses
in a real-time situation is to maintain a peripheral awareness
across the domain, watching for performance exceptions, and
then focusing on areas of interest, using knowledge
appropriate to the task. The G2 inference engine operates
similarly. This requires various types of metaknowledge, so
the expert system can invoke the appropriate knowledge. The
metaknowledge may involve the problem type, the objects
involved including connected objects, and other knowledge-
about-knowledge. A retrieval facility allows the inference
engine to invoke the requested types of knowledge, such as;

 if.....then invoke safety rules for any reactor where the
 temperature of the reactor >

The initiation of a particular reasoning process may be from
several causes. The most obvious is an event, which in the
process plant is typically an alarm, such as;

whenever the level-alarm of any tank receives a value
and when the alarm is not return-to-normal then

In process plants, one of the more promising roles of the
expert system is to detect problems earlier, before they lead to
an alarm condition. This requires that

some reasoning be done continuously or periodically,
regardless of the absence of "events" in the plant. This
reasoning typically involves multiple measurements and
dynamic models, analytic or heuristic, which in combination
represent the way an expert would interpret the data.

The inference engine continually scans some of the
knowledge which the expert has specified for awareness of
conditions which are not yet at alarm limits. If a safety-
threatening condition occurs, the inference engine uses
metaknowledge to determine which knowledge to invoke, thus
focusing on the area of interest.

Performance issues

One benefit of the metaknowledge approach is that very large
knowledge bases can be run in real time. Since many types of
problems and behaviors are represented in the knowledge
base, it can get quite large, with thousands of objects and
rules. However G2 does not consume computer time looking
for patterns. Rather it focuses attention on the knowledge
needed. Thus a knowledge base may contain thousands of
rules and objects, most of which are not consuming much
CPU time, since nothing interesting is happening with them at
the moment.

In static expert systems, truth maintenance involves changing
inferences when data changes. In real-time problems there
may be an additional requirement to change inferences even if
no new data is available, since measurements cannot be
assumed to remain valid indefinitely.

One way to express this temporal validity information is to
attach an expiration time to each value maintained by the
inference engine, and propagate this when inference is carried
forward. Generally, when a conclusion is based on several
time-sensitive variables, the earliest of their respective
expiration times will be carried forward. Expiration times can
be propagated forward through multiple levels of inference, but
there are also ways to limit this propagation. This requires that
data types be more complex, including validity information as
well as values.

The inference engine takes advantage of the truth
maintenance structure to achieve further efficiency. If a high
level conclusion is not currently of interest, then there is no
need to forward-chain from the newest data values to update
the conclusion. If the high level conclusion becomes of
interest, then the validity information determines whether the
conclusion needs updating, via backward chaining, or whether
the latest value is still valid. This reasoning process can be
overridden by the expert specifying that certain data should
always drive forward chaining. The overall result is a
considerable performance improvement over static paradigms,
and it seems similar to the way a human expert deals with a
dynamic domain.

The forward propagation of validity intervals is under control of
the developer. An example where the expiration times would
not be carried forward would be in identification applications,
where individual data may contribute to the learning of the
parameter values of a model, and the "learned values" might
have longer validity than each individual datum that entered
into the identification.

The Scheduler

A real-time scheduler maintains the overall operation. Each
task is a small one, perhaps a few milliseconds, and then the
scheduler is in control of the next task. Some tasks are done
periodically, such as integration of the state variable models
and scanning of rules which are looking for problems. Other
tasks are scheduled for the next available time-slot, such as
invoking rules through metaknowledge. Still other tasks are
scheduled for specific times, such as procedural checking of a
batch operation. The scheduler also manages the data
acquisition, by scheduling the data servers, and the data
output which may be setpoint changes or direct control
actions.

The scheduler has facilities to consider the handling of
asynchronous data when making an evaluation, which is a
frequent problem in distributed applications. In most
conventional continuous control theory (especially in state-
variable systems), it is assumed that an entire vector of
measurements is attained at a particular instant. All
calculations are then done instantaneously as well. Neither
data acquisition nor calculations are really done so instantly
and synchronously in the real world. G2 is designed to
handle every input, output, and calculation asynchronously
and with priorities. This allows generality, allows true
distributed processing, and insures that the computer never
rests when there are tasks to be done.

Ensuring Coherence

The asynchronous data arrival time is available through its
time stamp. As noted already, this time stamp can be
propagated through subsequent calculations as a default
option. More subtly, consider the following rule, where X is a
variable that can change quite rapidly;

 If X> 10 and Y > 10 then conclude that ...

G2 may be able to get a value of X quite quickly from a data
acquisition system or internal calculation. Suppose, however,
that it takes a long time to get Y, perhaps from a slow data
acquisition system, or from a large external simulation. By the
time Y arrives, the value of X may have expired due to a short
validity interval assigned to a rapidly-changing variables. G2
will automatically get a new value for X in this case. G2
ensures that a coherent data set is acquired - that is, at one
point in time, all variables have the indicated values, within the
time resolution indicated by validity intervals. This data set
coherence becomes an important issue as larger distributed
systems are considered, and no single measurement vector
representing values at a single point in time is available.

Similar considerations exist with rule actions. They can be
carried out "in parallel", or "in order". The difference becomes
especially apparent if one of the rule conclusions changes the
value of one of the antecedent variables either directly or
indirectly. For "parallel" rule action execution, the values of
the antecedent's variables are held constant until all actions
can be completed. "In order" execution allows sequential
execution. Note that the inference engine is required to
support "loops" between rule antecedents and consequents.
While this is forbidden in many static expert systems, it is
essential if the real-time expert system is going to deal with
closed-loop systems, which do in fact have "loops". The
provisions of validity intervals, data coherence and other
aspects described above make this possible.

Acting Within a Time Limit

Tasks have priorities, and within each basic interval the tasks
are executed by priority. Priorities can be changed, and
whole sections of knowledge can be disabled or enabled
under rule control as an overload strategy. The scheduler
has active metering, accessible to rules, so that flexible
overload strategies can be constructed.

Finding an answer within some specific time interval is
facilitated by a default option. If a rule cannot be satisfied
within a specified interval, another rule can be invoked to take
a backup action. A typical cause might be the required data
not being available. An alternative is to guarantee the "best"
answer within a finite time-out period, such as;

If the first of the following that has a current value (the
temperature-sensor of the reactor, the model-inferred-
temperature of the reactor, the manual-backup-
temperature of the reactor, the default-temperature of
the reactor) > 200
 then.......

In the above expression, if no valid value is currently available
in the first element of the list, a data acquisition is started. In
the meantime, the second element is checked. If it has no
current valid value, the calculations for the second one are
started, and so on. At the end of the time-out period, the
"best" answer (closest to the head of the list) is taken, and any
remaining outstanding calculations are cancelled.

 KNOWLEDGE VALIDATION

Consistency and completeness of knowledge are significant
issues in the process domain, particularly as safety may be
involved. The knowledge structure of G2, which allows
dynamic models to be attached to objects, provides a
framework for simulation testing as a step toward judging the
consistency and completeness of the knowledge.

Failure scenarios are a powerful way of validating a knowledge
base. Where a dynamic model already exists, a failure
scenario is created by introducing a problem such as a failed
sensor or controller, or a physical problem in some component
such as a leak or breakdown or overheating. The dynamic
model will then propagate the effects of the failure, and one
gets an opportunity to learn what the knowledge base will do in
this situation. Many fault conditions, which would otherwise be
untested until actual plant emergencies, can be simulated in
this way.

Provisions for locking a knowledge base after validation
provides security. At the same time, experimentation with new
or modified knowledge bases can be done concurrently with
on-line operation of the validated knowledge base. This is
possible because the knowledge base is stored as an ASCII
file, which can be transported to other G2's and operated on
by other G2's. The abstraction of data serving allows multiple
versions of the knowledge base to operate on the same CPU
or on networked CPU's, accessing the same on-line data, so
experimentation with alternative knowledge bases can be done
concurrently with normal operation.

 METHODOLOGY EXAMPLE

We consider a typical fault diagnosis using G2. The first step
is detecting the problem, which may be indicated by an event
(alarm). However the more desirable situation is to detect
problems before they develop into "events". To allow this,
generic rules can scan across the domain looking for
problems. This typically involves a combined analysis using
multiple measurements. Analytic and heuristic models define
expected behavior. The expert system then compares
expected performance with measured behavior. This is
similar in concept to the Kalman filtering or state observer
technology, except that heuristic as well as analytic behavior
may be the basis for the expected behavior.

The next step is understanding the problem. For this purpose
we use several tools for diagnosis of anomalous behavior.
These include invoking diagnosis of connected objects,
distinguishing between measurement errors and domain
faults, invoking diagnostic knowledge using metaknowledge,
and focus on problems.

Reacting quickly to problems is facilitated by testing hundreds
of rules per second, with sometimes multiple focuses of
attention. The expert system can give advice or take action.

 APPLICATION STATUS

As of this writing, the on-line applications of G2 include
telemetry monitoring of flight data, manufacturing processes,
manufacturing assembly, a biochemical process, a variety of
chemical and petrochemical processes, closed-loop robotics
and closed-loop process control. Research prototypes are
underway in network monitoring, financial transaction
monitoring, office workflow planning, closed life support
systems, semiconductor manufacturing and a number of
nuclear reactor safety projects.

Some of the applications involve implementation of
conventional multivariable and advanced control, using the
combination of heuristic and analytic methodology, and taking
advantage of the framework to facilitate implementation.
Other applications are extending beyond what is reasonably
possible with conventional systems, to implement
measurement validation across a plant with 5000 objects and
the equivalent of 7500 rules in one case. Other applications
are directed toward large-scale fault-tolerant systems, which
can use heuristics and the facilities for real-time truth
maintenance to provide backup and "best available solution"
behavior.

REFERENCES

Arzen, K-E. (1989a). Knowledge-Based Control Systems:
Aspects on the Unification of Conventional Control Systems
and Knowledge-Based Systems. Proc. 1989 American
Control Conference, Pittsburgh, Vol. 3, pp 2233-2238.

Arzen, K-E. (1989b). An Architecture for Expert System Based
Feedback Control. submitted to Automatica.

Astrom, K. J. and J. J. Anton (1984). Expert Control. IFAC
World Congress, Budapest.

Astrom, K. J. Towards Intelligent Control - Keynote Speech to
the 1988 American Control Conference. IEEE Control
Systems Magazine, 9:3, 60-64.

Aynsley, M., D. Peel, and A. J. Morris (1989). A Real Time
Knowledge Based System for Fermentation Control. Proc.
1989 American Control Conference, Pittsburgh, 3, 2239-2244.

Byrd, J. S., J. J. Fisher, and W. R. Mallett (1989). Expert
Robots for Process Environments. Robotics and Autonomous
Systems. New York: Elsevier Science Publishers.

Cartwright, C. and P. Ruskin (1986). Musing on the needs of
real-time AI toolkits. Expert System User, V2, N-9, London,
30.

Hofmann, A. G., G. M. Stanley, and L. B. Hawkinson (1989).
Object-Oriented Models and Their Application in Real-Time
Expert Systems. Proc. 1989, Society for Computer Simulation
International Conference, San Diego.

Kawakami, J. (1984). Overview of Artificial Intelligence
Applied to Control Technology in Japan and in Hitachi.
Hitachi Research Laboratory, private communication, Japan.

Kramer, M. A. and B. L. Palowitch, Jr. (1985). Expert
Systems and Knowledge-Based Approaches to Process
Malfunction Diagnosis. Proc. AIChE Annual Meeting, Chicago.

Lusk, E. and R. Stratton (1983). Automated Reasoning in
Man-Machine Control Systems. Proc. Ninth Annual Advanced
Control Conference, West Lafayette, 41-48.

Merris, D. (1989). Gensym real time expert systems move
into applications arena. Flexible Automation, Feb. 1989, 4.

Moore, R. L., L. B. Hawkinson, C. G. Knickerbocker, and L.
M. Churchman (1984). A Real-Time Expert System for
Process Control. Proc. First Conference on Artificial
Intelligence Applications (IEEE), Denver, 569-576.

Moore, R. L., and M.A. Kramer (1986). Expert Systems in
On-Line Process Control. Proc. Third International
Conference on Chemical Process Control, Asilomar, 839-867.

Moore, R. L., L. B. Hawkinson, M. Levin, A. G. Hofmann, B.
L. Matthews, M. H. David (1987). Expert System Methodology
for Real-Time Process Control. Proc. 10th World Congress on
Automatic Control, IFAC, Munich, 6, 274-281.

Noren, C. S. (1988). Rapid Prototyping Network Management
Systems. IEEE Milcom '88, San Diego.

Rosenof, Howard (1989). Real-Time Expert Systems in
Process Control. EPRI Conference on Expert Systems
Applications for the Electric Power Industry, Orlando.

Sauers, R. and R. Walsh (1983). On the Requirements of
Future Expert Systems. Proc. Eighth IJCAI , Karlsruhe, 110-
115.

Stanley, G. (1989). The G2 Real-Time Expert System. Third
International Conference on Expert Systems and the Leading
Edge in Production and Operations Management, Hilton Head.

Wolfe, A. (1987). An Easier Way to Build a Real-Time Expert
System. Electronics, March 5, 1987.

Yamada, N., and H. Motoda (1983). A Diagnosis Method of
Dynamic System using the Knowledge on System Description.
Proc. Eighth IJCAI, Karlsruhe, 225-229.

* Robert Moore may be contacted at

http://www.calventuretech.com/contactus.html

* Howard Rosenof may be contacted at

http://www.linkedin.com/pub/howard-rosenof/5/229/866

* Greg Stanley may be contacted at

http://gregstanleyandassociates.com/contactinfo/contactinfo.htm

Fig. 1. Examples of heuristic and analytic knowledge using deep structure.

Fig. 2. Structured natural language for building the knowledge base.

