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Abstract.   The challenges and status of the application of expert system technology in process plants is 
considered.   In particular the problems of knowledge representation include the need to represent dynamic 
qualitative knowledge, dynamic analytic knowledge and the deep structure of the process.  The application of 
inference in real-time requires paradigms which use metaknowledge to focus the inferencing resources of the 
expert system.   Finally the application of truth maintenance requires a temporal model of the time 
dependence of the truth of data and inferred results.  A structure which includes these considerations is 
presented.  
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 INTRODUCTION 
 
The work done to connect expert systems to on-line processes 
goes back many years (Astrom 1984, Kawakami 1984, Lusk 
and Stratton 1983, Yamada and Motoda 1983).   The early 
activity toward developing a real-time expert system 
technology  (Cartwright and Ruskin 1986, Kramer and 
Palowitch 1985, Moore and co-workers 1984, Sauers and 
Walsh 1983) was intended for the area of on-line process 
diagnosis.  Some early real-time designs  were subsequently 
placed on-line in refineries and other sites (Moore and Kramer 
1986).   Subsequent work (Astrom 1989, Hofmann and co-
workers 1989, Moore and co-workers 1987, Wolfe 1987) has 
extended the working definition of "real-time expert system" to 
include temporal reasoning based on integrated heuristic and 
analytic knowledge, and a full object-oriented representation 
integrated with deep knowledge of the structure of the plant. 
 
This paper presents the current working definition of a real-
time expert system, based on 200 site installations.   The 
many technology-leading organizations involved have provided 
significant contribution to the concepts.  Some public 
references to this are (Arzen 1989a), (Aynsley, Peel and 
Morris 1989), (Byrd, Fisher and Mallett 1989), (Merris 1989),  
(Nevins 1989), and (Noren 1988).    Current installations 
include applications in process monitoring and control, 
manufacturing, spacecraft telemetry, robotics, environmental 
control, network management and others.   The most frequent  
implementations are in the chemical, petrochemical, 
aerospace and nuclear power industries. 
 
 
 KNOWLEDGE REPRESENTATION 
 
Engineers and other plant experts know many types of 
process behavior, ranging from the analytical models of 
reactions to the lessons of past experience. To represent this 
in an expert system requires a knowledge representation that 
integrates several  kinds of knowledge, including not only 
 
 

 
 
rules, but also differential equation models such as material 
balances, energy balances and reaction kinetics.   A paradigm 
which only allows heuristics would, in the case of a process 
plant, only represent part of the expert knowledge of plant 
behavior.    In this view, what is required is an integration of 
heuristic and analytic forms of knowledge. 
 
The object-oriented paradigm is used, with a hierarchical 
frame structure.   Each object has behavior, which is directed 
or represented by  combinations of analytic (model-based)  
and heuristic (rule-based) statements.   In the object-oriented 
paradigm, behaviors may be defined for a class, and be 
inherited by each member of the class or subclass.   However, 
with the object oriented paradigm, a member of a class can 
inherit some behaviors and not other, more specific, 
behaviors.  
 
For the most efficient representation, behavior is defined 
generically, with as much abstraction as possible, so that a 
class hierarchy is defined with behaviors at the highest class 
possible. 
 
Generic Representation of Behavior 
 
In many plants there are sets of objects which have related 
knowledge.   For example, there may be many chemical 
reactors, all of which behave according to their individual 
states and inputs, but all with temperature, pressure and 
reaction relationships functionally defined by the combination 
of these and generic relationships.  All the reactors may need 
inference analysis of a similar sort.   The generic knowledge at 
the various class levels is combined with the parameters, 
states, inputs and specific behaviors of the specific instance to 
determine the overall object behavior, such as;  
   

d/dt( the temperature of any reactor) =(the net-energy-
input of the reactor - the net-energy-output of the 
reactor + the reactor-heat of the reactor) * (the 
.............. 



 

and; 
 

the net-energy-input of any process-equipment = the 
sum over the inputs of the process-equipment of (........) 

 
Representation of the Plant Structure 
 
The process experts reason about the behavior using their 
knowledge of plant structure, knowing how the connected 
process units affect each other.    In some applications the 
connections may change dynamically, as when alternate 
scenarios are being evaluated.    To represent this, it is useful 
to use a graphical form of knowledge representation, so 
experts can define the plant structure and interactions by 
connecting objects on a computer workstation screen. The 
expert system can interpret this deep structure as part of the 
reasoning paradigm.   The inference engine actively interprets 
the schematic representation of plant structure, reasoning 
about up-stream and down-stream causes and effects.    To 
allow this, the object behaviors are defined in terms of data at 
object ports, rather than naming the specific objects providing 
the interactions, such as;    
 

.....the integrated-heat-flux of any reactor = the sum 
over the inputs of the reactor of......... 

 
and; 
 

if the pressure of any reactor > the maximum-allowed-
pressure of the reactor then invoke overpressure  rules 
for every process-equipment connected to the reactor. 

 
Temporal Knowledge Representation 
 
Temporal knowledge is typically very important, as the expert 
may be more concerned with the direction of dynamic behavior 
than with the current values of data.    The differential equation 
models are one analytic representation of temporal 
knowledge.   Other forms, which may be incorporated into 
heuristic or analytic behavior include relationships between 
data or events over time, such as; 
 

If the temperature of any tank as of 2 minutes ago > 
.....then.... 

 
or functions of data over time, such as; 
 

if the rate of change per minute of the temperature of 
any reactor over the last 2 minutes >.....then invoke 
safety rules for the reactor 

 
Integration of Knowledge Representations 
 
The overall knowledge representation is done using a 
combination of heuristic and analytic object behavior, including 
temporal knowledge, some of which is inherited from higher 
classes and some of which is specific, combined with the deep 
structure of the connectedness of the objects as dynamically 
interpreted during operation of the expert system, Fig. 1.  
Hofmann (1989) shows how this knowledge representation 
can be used to rapidly develop large applications using block 
diagrams of objects and their interactions as the user 
interface. 
 
We can say that now there is an increasing realization that a 
full control strategy requires not only parameter identification, 
state estimation and control , but that the validity of the data 

and process models must be checked even before the data 
and models are used in state estimation and subsequent 
control.  As systems get more complex, there is a higher and 
higher probability of some failure occurring.   The systems 
must be fault tolerant, allowing best available information to be 
used in flexible ways.    For large system implementations, a 
productive human interface for the development and 
maintenance of the system, as is described here, becomes a 
necessary condition for practical implementation.   Fig. 2. 
shows how the structured natural language parser can be 
used for building the knowledge base. 
 
 
 REASONING IN REAL TIME 
 
First attempts at using expert systems for process control 
involved taking a "snap-shot" of plant data and using a static 
expert system paradigm to perform inference.  Static expert 
systems use pattern matching of a set of "facts" and a set of 
rules, using some combination of forward and backward 
chaining to combine the inferences.   With no time constraints, 
this might be practical.   However with a time constraint, we 
need more efficient inference paradigms.    
 
Code improvements and computer performance improvements 
can help.  For example the knowledge base can be manually 
partitioned to cut down on the search space.   This is 
conceptually like having separate libraries or separate expert 
systems.    Another efficiency derives from truth-maintenance.  
If only a few data are changing at a time, the truth-
maintenance techniques of unwinding obsolete conclusions 
and only updating conclusions dependent on the new values is 
useful.  However in most real-time applications a considerable 
amount of data is changing, at a rapid rate.    Even with the 
code improvements and the continuing computer performance 
improvements, the static expert system approaches lead to 
slow performance on even small prototypes of a few hundred 
rules and a few hundred rapidly changing data.  
 
Real-Time Reasoning Paradigms 
 
A fundamentally different inference approach is appropriate for 
real-time problems.   One approach that a human expert uses 
in a real-time situation is to maintain a peripheral awareness 
across the domain, watching for performance exceptions, and 
then focusing on areas of interest, using knowledge 
appropriate to the task.   The G2 inference engine operates 
similarly.   This requires various types of metaknowledge, so 
the expert system can invoke the appropriate knowledge.   The 
metaknowledge may involve the problem type, the objects 
involved including connected objects, and other knowledge-
about-knowledge.   A retrieval facility allows the inference 
engine to invoke the requested types of knowledge, such as; 
 
 if.....then invoke safety rules for any reactor where the 
 temperature of the reactor > .... 
 
The initiation of a particular reasoning process may be from 
several causes.   The most obvious is an event, which in the 
process plant is typically an alarm, such as; 
 

whenever the level-alarm of any tank receives a value 
and when the alarm is not return-to-normal then .... 

 
In process plants, one of the more promising roles of the 
expert system is to detect problems earlier, before they lead to 
an alarm condition.   This requires that 



 

some reasoning be done continuously or periodically, 
regardless of the absence of "events" in the plant.    This 
reasoning typically involves multiple measurements and 
dynamic models, analytic or heuristic, which in combination 
represent the way an expert would interpret the data. 
 
The inference engine continually scans some of the 
knowledge which the expert has specified for awareness of 
conditions which are not yet at alarm limits.  If a safety-
threatening condition occurs,  the inference engine uses 
metaknowledge to determine which knowledge to invoke, thus 
focusing on the area of interest.  
 
Performance issues 
 
One benefit of the metaknowledge approach is that very large 
knowledge bases can be run in real time. Since many types of 
problems and behaviors are represented in the knowledge 
base, it can get quite large, with thousands of objects and 
rules.   However G2 does not consume computer time looking 
for patterns.   Rather it focuses attention on the knowledge 
needed.   Thus a knowledge base may contain thousands of 
rules and objects, most of which are not consuming much 
CPU time, since nothing interesting is happening with them at 
the moment. 
 
In static expert systems, truth maintenance involves changing 
inferences when data changes.   In real-time problems there 
may be an additional requirement to change inferences even if 
no new data is available, since measurements cannot be 
assumed to remain valid indefinitely.  
 
One way to express this temporal validity information is to 
attach an expiration time to each value maintained by the 
inference engine, and propagate this when inference is carried 
forward.  Generally, when a conclusion is based on several 
time-sensitive variables, the earliest of their respective 
expiration times will be carried forward.  Expiration times can 
be propagated forward through multiple levels of inference, but 
there are also ways to limit this propagation.  This requires that 
data types be more complex, including validity information as 
well as values.    
 
The inference engine takes advantage of the truth 
maintenance structure to achieve further efficiency.   If a high 
level conclusion is not currently of interest, then there is no 
need to forward-chain from the newest data values to update 
the conclusion.   If the high level conclusion becomes of 
interest, then the validity information determines whether the 
conclusion needs updating, via backward chaining, or whether 
the latest value is still valid.   This reasoning process can be 
overridden by the expert specifying that certain data should 
always drive forward chaining.   The overall result is a 
considerable performance improvement over static paradigms, 
and it seems similar to the way a human expert deals with a 
dynamic domain. 
 
The forward propagation of validity intervals is under control of 
the developer.   An example where the expiration times would 
not be carried forward would be in identification applications, 
where individual data may contribute to the learning of the 
parameter values of a model, and the "learned values" might 
have longer validity than each individual datum that entered 
into the identification. 
 
 
 

The Scheduler 
 
A real-time scheduler maintains the overall operation.   Each 
task is a small one, perhaps a few milliseconds, and then the 
scheduler is in control of the next task.   Some tasks are done 
periodically, such as integration of the state variable models 
and scanning of rules which are looking for problems.   Other 
tasks are scheduled for the next available time-slot, such as 
invoking rules through metaknowledge.   Still other tasks are 
scheduled for specific times, such as procedural checking of a 
batch operation.   The scheduler also manages the data 
acquisition, by scheduling the data servers, and the data 
output which may be setpoint changes or direct control 
actions. 
 
The scheduler has facilities to consider the handling of 
asynchronous  data when making an evaluation, which is a 
frequent problem in distributed applications.   In most 
conventional continuous control theory (especially in state-
variable systems), it is assumed that an entire vector of 
measurements is attained at a particular instant.  All 
calculations are then done instantaneously as well.  Neither 
data acquisition nor calculations are really done so instantly 
and synchronously in the real world.   G2 is designed to 
handle every input, output, and calculation asynchronously 
and with priorities.  This allows generality, allows true 
distributed processing, and insures that the computer never 
rests when there are tasks to be done.  
 
Ensuring Coherence 
 
The asynchronous data arrival time is available through its 
time stamp.  As noted already, this time stamp can be 
propagated through subsequent calculations as a default 
option.  More subtly, consider the following rule, where X is a 
variable that can change quite rapidly;     
    
 If X> 10 and Y > 10  then conclude that ...  
 
G2 may be able to get a value of X quite quickly from a data 
acquisition system or internal calculation.  Suppose, however, 
that it takes a long time to get Y, perhaps from a slow data 
acquisition system, or from a large external simulation.  By the 
time Y arrives, the value of X may have expired due to a short 
validity interval assigned to a rapidly-changing variables.  G2 
will automatically get a new value for X in this case.  G2 
ensures that a coherent data set is acquired - that is, at one 
point in time, all variables have the indicated values, within the 
time resolution indicated by validity intervals.  This data set 
coherence becomes an important issue as larger distributed 
systems are considered, and no single measurement vector 
representing values at a single point in time is available.    
 
Similar considerations exist with rule actions.  They can be 
carried out "in parallel", or "in order".  The difference becomes 
especially apparent  if one of the rule conclusions changes the 
value of one of the antecedent variables either directly or 
indirectly.    For "parallel" rule action execution, the values of 
the antecedent's variables are held constant until all actions 
can be completed.  "In order" execution allows sequential 
execution.   Note that the inference engine is required to 
support "loops" between rule antecedents and consequents.  
While this is forbidden in many static expert systems, it is 
essential if the real-time expert system is going to deal with 
closed-loop systems, which do in fact have "loops".     The 
provisions of validity intervals, data coherence and other 
aspects described above make this possible. 



 

 
Acting Within a Time Limit 
      
Tasks have priorities, and within each basic interval the tasks 
are executed by priority.   Priorities can be changed, and 
whole sections of knowledge can be disabled or enabled 
under rule control as an overload  strategy.   The scheduler 
has active metering, accessible to rules, so that flexible 
overload strategies can be constructed.    
 
Finding an answer within some specific time interval is 
facilitated by a default option.   If a rule cannot be satisfied 
within a specified interval, another rule can be invoked to take 
a backup action.   A typical cause  might be the required data 
not being available.    An alternative is to guarantee the "best" 
answer within a finite time-out period, such as;   
 

If the first of the following that has a current value ( the 
temperature-sensor of the reactor, the model-inferred-
temperature of the reactor, the manual-backup-
temperature of the reactor, the default-temperature of 
the reactor) > 200 
 then....... 

  
In the above expression, if no valid value is currently available 
in the first element of the list, a data acquisition is started.  In 
the meantime, the second element is checked.  If it has no 
current valid value, the calculations for the second one are 
started, and so on.  At the end of the time-out period, the 
"best" answer (closest to the head of the list) is taken, and any 
remaining outstanding calculations are cancelled.    
 
  
 KNOWLEDGE VALIDATION 
 
Consistency and completeness of knowledge are significant 
issues in the process domain, particularly as safety may be 
involved.  The knowledge structure of G2, which allows 
dynamic models to be attached to objects, provides a 
framework for simulation testing as a step toward judging the 
consistency and completeness of the knowledge. 
 
Failure scenarios are a powerful way of validating a knowledge 
base.  Where a dynamic model already exists, a failure 
scenario is created by introducing a problem such as a failed 
sensor or controller, or a physical problem in some component 
such as a leak or breakdown or overheating.  The dynamic 
model will then propagate the effects of the failure, and one 
gets an opportunity to learn what the knowledge base will do in 
this situation.  Many fault conditions, which would otherwise be 
untested until actual plant emergencies, can be simulated in 
this way. 
 
Provisions for locking a knowledge base after validation 
provides security.  At the same time, experimentation with new 
or modified knowledge bases can be done concurrently with 
on-line operation of the validated knowledge base.   This is 
possible because the knowledge base is stored as an ASCII 
file, which can be transported to other G2's and operated on 
by other G2's.   The abstraction of data serving allows multiple 
versions of the knowledge base to operate on the same CPU 
or on networked CPU's, accessing the same on-line data, so 
experimentation with alternative knowledge bases can be done 
concurrently with normal operation. 
 
 
 

 METHODOLOGY EXAMPLE 
 
We consider a typical fault diagnosis using G2.  The first step 
is detecting the problem, which may be indicated by an event 
(alarm).   However the more desirable situation is to detect 
problems before they develop into "events".   To allow this, 
generic rules can scan across the domain looking for 
problems.  This typically involves a combined analysis using 
multiple measurements.   Analytic and heuristic models define 
expected behavior.   The expert system then compares 
expected performance with measured behavior.   This is 
similar in concept to the Kalman filtering or state observer 
technology, except that heuristic as well as analytic behavior 
may be the basis for the expected behavior. 
 
The next step is understanding the problem.   For this purpose 
we use several tools for diagnosis of anomalous behavior.   
These include invoking diagnosis of connected objects, 
distinguishing between measurement errors and domain 
faults, invoking diagnostic knowledge using metaknowledge, 
and focus on problems. 
 
Reacting quickly to problems is facilitated by testing hundreds 
of rules per second, with sometimes multiple focuses of 
attention.   The expert system can give advice or take action. 
 
 
 APPLICATION STATUS 
 
As of this writing, the on-line applications of G2 include 
telemetry monitoring of flight data, manufacturing processes, 
manufacturing assembly, a biochemical process, a variety of 
chemical and petrochemical processes, closed-loop robotics 
and closed-loop process control.   Research prototypes are 
underway in network monitoring, financial transaction 
monitoring, office workflow planning, closed life support 
systems, semiconductor manufacturing and a number of 
nuclear reactor safety projects.   
 
Some of the applications involve implementation of 
conventional multivariable and advanced control, using the 
combination of heuristic and analytic methodology, and taking 
advantage of the framework to facilitate implementation.   
Other applications are extending beyond what is reasonably 
possible with conventional systems, to implement 
measurement validation across a plant with 5000 objects and 
the equivalent of 7500 rules in one case.    Other applications 
are directed toward large-scale fault-tolerant systems, which 
can use heuristics and the facilities for real-time truth 
maintenance to provide backup and "best available solution" 
behavior. 
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Fig. 1.  Examples of heuristic and analytic knowledge using deep structure. 

 

 

 

 

 

 
 

Fig. 2.  Structured natural language for building the knowledge base. 


