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Abstract

An electronic business transaction among untrusted bodies without consulting a

mutually trusted party has remained widely accepted problem. Blockchain resolves

this problem by introducing peer-to-peer network with a consensus algorithm and

trusted ledger. Blockchain originally introduced for cryptocurrency that came with

proof-of-work consensus algorithm. Due to some performance issues, scientists

brought concept of permissioned Blockchain. Hyperledger Fabric is a permissioned

Blockchain targeting business-oriented problems for industry. It is designed for effi-

cient transaction execution over Blockchain with pluggable consensus model; how-

ever, there is limitation of rapid application development. Hyperledger introduced a

new layer called Hyperledger Composer on top of the Fabric layer, which provides an

abstract layer to model the business application readily and quickly. Composer pro-

vides a smart contract to extend the functionality and flexibility of Fabric layer and

provides a way of communication with other systems to meet business requirements.

Hyperledger Composer uses role-based access control (RBAC) model to secure

access to its valuable assets. However, RBAC is not enough because many business

deals require continuous assets monitoring. Our proposed model, BlockU, covers all

possible access control models required by a business. BlockU can monitor assets

continuously during transactions and updates attributes accordingly. Moreover, we

incorporate hooks in Hyperledger Composer to implement extended permission

model that provides extensive permission management capability on an asset. Subse-

quently, our proposed enhanced access control model is implemented with a minimal

change to existing Composer code base and is backward compatible with the current

security mechanism.
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1 | INTRODUCTION

Before Blockchain, performing a trusted transaction in an untrusted network was either not possible or it was only possible using complex

methods such as remote attestation (Ismail, Syed, & Musa, 2014; Jaeger, Sailer, & Shankar, 2006). With the advent of Blockchain, it became very

simple to perform a secure transaction between two unknown and untrusted systems. Blockchain was initially introduced in 2008 by Satoshi

Nakamoto for Bitcoin transactions. Bitcoin provided a distributed ledger with no trusted or central party, offering secure Bitcoin transactions

among peer-to-peer parties. The order of transactions is validated using a consensus algorithm, that is, a proof-of-work algorithm (Nakamoto,

Received: 19 September 2018 Revised: 15 July 2019 Accepted: 15 November 2019

DOI: 10.1111/exsy.12507

Expert Systems. 2020;1–12. wileyonlinelibrary.com/journal/exsy © 2020 John Wiley & Sons, Ltd 1

https://orcid.org/0000-0002-5731-6650
https://orcid.org/0000-0001-8434-4887
https://orcid.org/0000-0002-7787-6305
https://orcid.org/0000-0001-8698-866X
mailto:fbranco@utad.pt
http://wileyonlinelibrary.com/journal/exsy
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fexsy.12507&domain=pdf&date_stamp=2020-01-20


2008). Blockchain has been useful in meeting the needs of today's businesses, and it has the potential to radically change future business applica-

tions and models. According to a recent report by Gartner (2018), Blockchain's value may reach $3.1 trillion by 2030.

Each transaction among two untrusted parties involves a trusted party, such as a bank or a certification authority. To perform a transaction

between unknown parties, many blockchain-based frameworks have been proposed (Abdeen, Ali, Khan, & Yagoub, n.d.; Ali, Ali, Alsaawy, Khalid, &

Musa, 2019; Crosby, Pattanayak, Verma, & Kalyanaraman, 2016; Khan, Zuhairi, Ali, Alghamdi, & Marmolejo-Saucedo, 2019; Kwon, 2014; Wood, 2014)

and are categorized as public and private blockchain frameworks. One of them is the Hyperledger project supported by IBM and other renown indus-

tries, for example, Intel, Cisco, and SAP. Hyperledger Fabric provides a decentralized operating system for next-generation business applications

(Androulaki et al., 2018; Cachin, 2016). It overcomes performance issues that were a rather big concern in public blockchain systems. Hyperledger Fab-

ric implements smart contracts called chaincodes among various distributed nodes; they contain the details of a contract, for example, the selling policy

of a car, and are disclosed to all nodes that represent different stakeholders (e.g., buyer, seller, and manufacturer). These nodes or peers are called

endorsers and are defined in the endorsement policy of the chaincode (Androulaki et al., 2018). Once the contract is finalized, only the transaction is

stored on the distributed ledger. This process is conducted by the Orderer node in Hyperledger Fabric. The Orderer node maintains the order of trans-

actions, for example, which transaction comes first and then second and so on in the ledger. The Orderer node in Hyperledger Fabric uses practical Byz-

antine fault tolerance as a consensus algorithm instead of a proof-of-work algorithm, which is used in Bitcoin (Castro & Liskov, 1999). Hyperledger

Fabric provides various APIs for application developers to design and develop their own applications based on their business networks (Cachin, 2016).

However, writing applications in Hyperledger Fabric is to an extent different due to the provided APIs. In addition, although Hyperledger Fabric uses

role-based access control (RBAC) security model, it has been shown in the past that RBAC cannot perform attribute updates or the fined-grained usage

control of assets (Park & Sandhu, 2004). RBAC is a very popular security model that has shaped the security domain for decades. This model is mainly

used in operating systems like Windows, Linux, and Solaris and databases like Oracle. There are many permissioned blockchains like Ethereum, Hyper-

ledger Fabric, Swatooh, Iroha, and many more. However, to the best of our knowledge, all these frameworks are using traditional access control models

such discretionary access control, mandatory access control model, and RBAC. We have opted for Hyperledger Fabric, introduced by IBM in 2017

(Dhillon, Metcalf, & Hooper, 2017), for this research because it is open source and is widely used in different business applications. Hyperledger Com-

poser provides application development APIs very easily and rapidly. Hyperledger Composer also implements smart contracts based on clients, assets,

users, and access control lists. In this paper, we proposed a detailed usage control model that is more effective than the existing RBAC model that is cur-

rently implemented in Hyperledger Composer. Our newly proposed access control model has the capability to design a variety of business scenarios.

In this research, we formally constructed a usage control model for Hyperledger Composer to clarify examples based on the model. In addi-

tion, we described a detailed permission model that enables the members of a business network and the owner of assets to specify usage-based

constraints while performing transactions. The new model is tailored specifically to Hyperledger Composer. The model has the capability to spec-

ify various types of policies depending on business needs, for example, allowing a specific asset to be accessed only for a specific time, with a spe-

cific computational power, or revoking an asset access from a user based on the occurrence of some defined condition. Finally, we implemented

an extended usage control model on the smart contract implementation of Hyperledger Composer, which uses a blockchain to record every trans-

action on the distributed ledger.

1.1 | Use case

In a blockchain business network, many business deals rely on resource/asset usage control. Businesses share resources instead of buying them,

and although based on the usage of assets, we can grant and revoke access to resources; this is called access decision continuity. Renting/

accessing a resource for a specific time is common, such as when renting a car or releasing health records. In the example of renting a car, multiple

parties are involved including the owner of the car, the renter of the car, the bank, and vehicle-tracking entities. The assets involved in this trans-

action are the car and the money. The renting authority rents the car for a specific time frame and zone the user can drive it in. The renter can

order a car online, and the car will be reserved for them. The renter pays money to rent the car, and the asset's ownership is exchanged for a spe-

cific duration. For example, a car may be rented for 24 hr, and the driver can only drive the car in New York City. The vehicle-tracking entities

track the car closely using defined GPS coordinates. If the car exits the approved zone, alerts are sent to the owner and the renter. After a few

warnings, if the car is still not in the approved range, the ownership of the car may be revoked. The car will be locked or tracked further by gov-

ernment authorities. Similarly, if the car is not returned in the agreed amount of time, the owner can send alerts to the renter. The owner can also

request the bank to deduct money from the renter's account. In this case, the bank can check the policy defined between the two parties and

transfer money from the renter's account to the owner's account. If the renter account does not have enough money to comply, the bank can

send a message to the vehicle-tracking system to lock the car unless the owner responds and pays the money. Once the money is paid, access

can be granted again. This business model cannot be implemented in Hyperledger Composer, as an extended usage control model is needed.

The rest of the paper is organized as follows: Section 2 elaborates the background of blockchain studies, and Section 3 explains the UCON

model in detail, Section 4 presents the proposed model, whereas Section 5 explains its implementation, and Section 6 concludes the paper,

whereas Section 7 presents future directions of the studies.
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2 | BLOCKCHAIN BACKGROUND

In this section, brief background studies are provided related to Blockchain, Hyperledger, and Hyperledger Fabric. Moreover, certain access con-

trol types that involve usage access control are also elaborated.

2.1 | Blockchain

Blockchain is a distributed ledger that was initially introduced for Bitcoin transactions. Each block has a block number that is generated using min-

ing techniques, the details of the transaction, the previous block, and the newly generated block hash. Using a previous hash to generate a new

block creates a chain of blocks known as a blockchain. There are two types of blockchains, that is, public and private blockchains. Using a

blockchain, two untrusted networks can easily perform a transaction in a secure manner, as a blockchain can maintain a distributed ledger and

record every transaction on the ledger nodes. A distributed ledger uses mining or a consensus protocol to solve double spending problems and

malicious transactions. Once a block is created, any small change in the transaction or other details of the block are detected and further accepted

by the rest of the nodes in the network.

2.2 | Hyperledger

Hyperledger is a permissioned blockchain technology with various private blockchain projects. The one we opted for in these studies

is Hyperledger Fabric. Hyperledger Fabric is a pluggable and generic smart contract framework that is implemented on top of

blockchain to design any kind of application, including cryptocurrency applications (though it was not developed specifically for crypto-

currency applications). Apart from Hyperledger Fabric, Hyperledger also offers Hyperledger Burrow, Hyperledger Sawtooth, Hyper-

ledger Indy, and Hyperledger Iroha for various purposes. The following section further elaborates on the components of Hyperledger

Fabric.

2.3 | Hyperledger Fabric

Initially, blockchain was designed as a public ledger, which means that every transaction performed by the blockchain network should be visible to

all nodes. However, cases exist in which two or more parties do not wish to disclose their transaction details but would still like to benefit from

blockchain technology. Therefore, IBM started a generic private blockchain implementation known as Hyperledger Fabric. In a private network, a

new participant cannot be added unless it receives an invitation to become part of the business network.

2.3.1 | Execute-order-validate architecture

Hyperledger Fabric uses an execute-order-validate architecture (Androulaki et al., 2018), whereas traditional blockchains use an order-execute

architecture. In an order-execute architecture, once a transaction is generated, it requires mining to generate a hash. In addition, it is generated by

peers or minors. Once one of the peers can generate an acceptable hash, it disseminates it to the rest of other peer nodes. Further, every peer on

the local system validates the block based on the value of its previous block hash. This order-execute architecture suffers from a few problems,

such as sequential execution, nondeterministic code, confidential execution, fixed trust, and hard-coded consensus. To overcome these shortcom-

ings, Hyperledger Fabric offers a permissioned, blockchain-backed smart contract that uses an execute-order-validate architecture with a

chaincode, an enforcement policy, and a Hyperledger Fabric network.

In Hyperledger Fabric, a chaincode implements the smart contract. The chaincode runs in the execution phase of Hyperledger Fabric's archi-

tecture. Using the application, one can design their own logic in any programming language and perform a transaction with any other application

in the network. Once a transaction is performed, it is stored on a distributed ledger. The endorsement policy can specify an endorser for a specific

transaction.

Hyperledger Fabric's use of an enforcement policy is a novel concept in permissioned-based smart contracts. In a public smart contract, there

is no privacy, meaning that all transactions are visible to everyone on the network. In addition, a transaction details need to be specified

exchanged between two parties to successfully execute a transaction. In contrast, smart contracts have endorsers that only enable the transaction

to be visible to select parties. However, once the endorsers agree on certain parameters, a final transaction is propagated and validated based on

the consensus algorithm.
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Every blockchain-based system involves a network of nodes with various roles, including Hyperledger Fabric. However, the nodes in the net-

work have identities in permissioned blockchain-based systems, including client nodes, peer nodes, and ordering service nodes. Client nodes initi-

ate transactions and send them further to the execution phase. Peer nodes perform certain tasks like maintaining the ledger and validating the

transactions between endorsing nodes. Of these nodes, some endorsing nodes respond to the transaction proposals requested by the client.

Ordering service nodes first complete the transactions of clients via the chaincode, and then they complete the transactions of the endorsers.

Ordering service nodes handle the consensus and maintain the order by which transactions are updated on the ledger.

3 | UCON FOR HYPERLEDGER COMPOSER

The first and most popular model for usage control is UCON, which was proposed by Park and Sandhu (2004) and was later formalized by Zhang

et al. (2005). The following discussion is taken mostly from this formalization. This model is based on two core concepts: decision continuity and

attribute mutability.

Decision continuity refers to the concept that a decision to grant access is not a singular operation but rather a continuous action that is car-

ried out in parallel to subjects' access. Once access has been granted, UCON's reference monitor tracks the usage and can perform several useful

tasks based on it. For this purpose, the second aspect of UCON, attribute mutability, is of paramount value. Attribute mutability enables changes

to a subject or object's attributes because of accessing or trying to access an object. UCON allows policy writers to define certain types of

attribute mutability (Figure 1). UCON includes the following states: initial, requesting, denied, accessing, revoked, and end. The model puts each

(s, o, r) triple in one of these states, where s is the subject, o is the object, and r is the right. Consider the following:

• t1 = (s1, o1, r1) state(t1) = accessing.

Subject s1 is currently exercising right r1 on object o1; the reference monitor tracks this usage as soon as s1 tries to access o1. This is the non-

bypassability feature of the reference monitor, which ensures that access is mediated by the security policy enforced by the reference monitor. Immedi-

ately after trying to access o1, the state of the triple is changed to requesting. The referencemonitor can performone of the following actions at this stage:

• permitAccess: Allow s1 to access o1; in this case, the state changes to accessing.

• denyAccess: Disallow access, which changes the state to denied.

One of these two decisions must be made by the reference monitor, and they are, of course, mutually exclusive. The reference monitor can

also perform the following action:

• preUpdate: Update the attributes of the subject or the object. This is a pre-update operation and is highly useful for keeping track of how many

times a subject has tried to access an object. Hence, repeated attempts by a subject to access a restricted object can be detected by the refer-

ence monitor, after which the subject would be penalized for misbehaviour.

If the subject is denied access, the session finishes, and the triple must return to the initial state before performing any restricted action. How-

ever, if the state changes to accessing, the subject is free to access the object. At any point in time during access, the reference monitor might

revoke the granted permission. The following four operations can potentially occur:

F IGURE 1 UCON model states
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• endAccess: The subject voluntarily gives up the object. In this case, the reference monitor does not have to perform any task.

• revokeAccess: Because of the usage or due to changes in the operating environment, the reference monitor revokes access. In this case, the

subject is no longer able to access the object, and the state of the system changes to revoked.

• onUpdates: During access, the reference monitor might update some attributes to keep track of the usage. This is a clean method for gauging

usage.

• postUpdates: The reference monitor can perform updates to a subject or object's attributes based on whether the subject voluntarily gave up

the object or if it was taken back forcefully.

In the following section, we formally define UCON's access and usage control.

4 | BLOCKU: EXTENSION OF USAGE CONTROL

Usage control must not be limited to granting access to a right only once; instead, it should constantly keep track of the usage of

objects and decide continuously whether to allow a subject access to objects or not. If a subject exceeds the allowed quota or if another

constraint is violated during the use of an object, the subject's right should be revoked. This simple but powerful idea enables various

policy specifications and thus extends the expressiveness of access control systems immensely. With this new capability, it is possible

for an organization to specify a policy that dictates that an object can be accessed only within the premises of its offices and within a

certain time frame. It also allows for the specification of constraints, such as allowed usage time per session and the revocation of usage

after a specified limit.

4.1 | Model definition

Hyperledger Composer's architecture is based on assets, participants, transactions, and conditions. According to our proposed usage control for

Hyperledger Composer, we defined the models based on the new requirements. These models are extensions to Hyperledger Composer and can

aid in the development of business applications based on blockchains.

Definition 1: Participants and assets. We denote the set of participants in an active business network with P and the set of all assets within a transac-

tion with A. Assets in a specific transaction can be accessed by the participant association function (ζ: A ! P). Each asset is associated with a

unique participant.

Definition 2: Permissions. We denote the set of all permissions with S. Permissions are the collection of labels that allow access to an asset. A permis-

sion requires Ps: A ! A to provide access s ∈ S, which p ∈ P requires the user to have.

Definition 3: Access association with assets. The access association function (ψ : P ! 2s) returns the set of permissions that belong or were given to par-

ticipant p ∈ P at runtime.

4.2 | Extension to the core Composer model

To define extended usage control permissions over assets, we introduce the concept of the participant state as well as updates to the operation,

condition, and policies. The participant state decides which set of attributes belongs to the participant, including arbitrary characteristics about

participants that are related to their permissions.

Definition 4: Participant state t: γ (P) ! com (γ(P)) is a function that maps a participant's attributes to their values. This is a dictionary of

attributes that is associated with each participant. γ is a function that provides the set of attributes that belongs to a participant, and

the set of all possible values for an attribute (a) is denoted with com(a). These attributes can be updated via the attribute update

function.
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4.2.1 | Pre-authorization models

Before a participant accesses an asset in our Hyperledger Composer extension, we added a usage decision function.

Definition 5: According to the above additional usage functions, our model has the following components:

• P, A, S, ATT(S), ATT(A), befA (participants, assets, permissions, participant attributes, asset attributes, and asset attributes before authoriza-

tion), and

• granted (p,a,s) = befA((ATT(p)), ATT(a), S).

Similarly, an additional step before an update is sometimes required, which is defined in our model as follows:

Definition 6: befUpdate(ATT(P)) and befUpdate(ATT(a)) are optional operations to update the attributes of participants and assets, respectively.

4.2.2 | Ongoing-authorization model

In the ongoing-authorization model, the composer requests asset usage without any pre-decision making. However, the authorization of assets is

monitored constantly. In this model, each participant is initially allowed to use an asset; however, this model does remove their access if certain

requirements are not met. In Hyperledger Composer, such a model is very useful when assets are accessed for a long duration of time. This func-

tionality can be further extended into four different models:

• the A0 model (no pre-updates)

• the A1 model (with pre-updates)

• the A2 model (with continuous updates)

• the A3 model (with post-updates)

Definition 7: In the A0 model, P, A, S, ATT(S), and ATT(A) remain the same as in the pre-authorization model.

• onA (continuous authorization)

• allowed (p,a,s) ) true

• stopped (p,a,s) ( ¬ conA(ATT(p),ATT(a),S)

Definition 8: The A1 model is like the A0 model except it updates using the following pre-update processes: preUpdate(ATT(p)) and onUpdate(ATT(a)),

which are optional procedures to perform update operations on ATT(p) and ATT(a), respectively.

Definition 9: The A2 model is also similar to the A0 model except it adds the following continuous-update processes: onUpdate(ATT(p)) and

onUpdate(ATT(a)), which are optional procedures to perform update operations on ATT(p) and ATT(a), respectively.

Definition 10: The A3 model adds the following post-update processes to the A0 model: postUpdate(ATT(s)) and postUpdate(ATT(o)), which are

optional procedures to perform update operations on ATT(s) and ATT(o), respectively.

4.2.3 | Pre-obligation models

Hyperledger Composer introduced a new obligation feature in its architecture. Using this feature allows a participant to access an asset if and only

if they provide information during the authentication process. Hyperledger Composer verifies this information using participants. However, the

existing architecture of Hyperledger Composer only supports first-time authentication. Our model can check this information continuously.
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Definition 11: The pre-obligation model has the following components:

• P,A,S,ATT(P) and ATT(A) are the same as in the pre-authorization model

• OBS, OBO, and OB (obligation subjects, obligation objects, and obligation actions, respectively)

• preB and preOBL (pre-obligation predicates and pre-obligation elements, respectively)

• preOBL ⊆ OBS × OBO × OB

• preFulfilled: OBS × OBO × OB ! {true, false}

• getPreOBL: P × A × S ! 2preOBL, a function to select pre-obligations for a requested usage

• preB(P,A,S) = ^ (obsi, oboi, obi) ∈ getPreOBL(P,A,S) preFulfilled(obsi, oboi, obi)

• preB(P,A,S) = true by definition if getPreOBL(P,A,S) = φ

• allowed(P,A,S) ) preB(P,A,S).

Definition 12: The preB1 model is identical to the befB0 model except it adds the following pre-update processes: preUpdate(ATT(P)) and

preUpdate(ATT(a)), which are optional procedures to change certain attributes because of pre-obligations.

Definition 13: The preB3 model is identical to the befB0 model except it adds the following post-update processes:

• postUpdate(ATT(p)) and postUpdate(ATT(a)), which are optional procedures to change certain attributes because of pre-obligations.

4.2.4 | Continuous-obligation models

The continuous-obligation model is like the pre-obligation model except it requires the verification of obligations periodically or con-

stantly. To implement this model, we introduce a time parameter (T), which depends on a time- or element-based period; for example,

we can ask a participant to submit information every hour or to provide information after a specific amount of resource usage. Based on

mutability issues, the continuous-obligation model can implement the following four models: the B0 model, which includes an ongoing-

obligation predicate instead of a pre-obligation predicate; the B1 model; the B2 model; and the B3 model. The B1, B2, and B3 models

are the same as the B0 model except that they add pre-updates, ongoing updates, and post-updates, respectively.

Definition 14: The B0 model has the following components:

• P,A,S, ATT(S), ATT(A), OBS, OBO, and OB are the same as in the befB model

• T, which represents a set of time or event elements

• onB and onOBL, which represent ongoing obligation predicates and ongoing obligation elements, respectively

• onOBL ⊆ OBS × OBO × OB × T

• getOnOBL: P,A,S ! 2OnBL, which is a function to select ongoing obligations for a requested usage

• onFulfilled: OBS × OBO × OB × T ! true, false

• onB(P,A,S) = ^(obsi, oboi, obi,ti) ∈ getOnOBL (P,A,S) onFulfilled(obsi, oboi, obi, ti)

• onB (P,A,S) = true by definition if getOnOBL (P,A,S) = θ

• allowed(P,A,S) ) true

• stopped(P,A,S) ( ¬onB(P,A,S).

Definition 15: The B1 model is identical to the B0 model except it adds the following pre-update processes: preUpdate(ATT(p)) and preUpdate(ATT(a)),

which are optional procedures to change certain attributes as a result of pre-obligations.

Definition 16: The B2 model is identical to the B0 model except it adds the following ongoing update processes: onUpdate(ATT(p)) and onUpdate(ATT

(a)), which are optional procedures to change certain attributes as a result of pre-obligations.
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Definition 17: The B3 model is identical to the B0 model except it adds the following post-update processes: postUpdate(ATT(p)) and postUpdate(ATT

(a)), which are optional procedures to change certain attributes as a result of pre-obligations.

4.2.5 | Pre-condition model

Some conditions define environmental variables through which we can enforce certain policies; for example, employees of an organization can use its

resources only when they are in the premises of the organization. Such restrictions are not directly associated with any assets in Hyperledger Com-

poser. In the pre-condition model, such conditions are checked each time the assets are accessed. The pre-condition model introduces the pre-condition

predicate (preC), which must be evaluated before the requested rights are exercised. The following definitions formalize the preC model.

Definition 18: The preC model has the following components:

• P,A,S, ATT(S), and ATT(O) are the same as in the preA model

• preCON (a set of pre-condition elements)

• getPreCON: P × A × S ! 2 preCON

• preConChecked: preCON ! true, false

• preC(P,A,S) = ^preConi∈getPreCON(P,A,S)preConChecked(preConi)

• allowed(P,A,S) ) preC(P,A,S).

4.2.6 | Ongoing-conditions model

In many cases, environmental restrictions must be satisfied while rights are in active use. This can be supported using the onC0 model. In the

onC0 model, usage is allowed without any decision process at the time of the request. However, there is an ongoing condition predicate to check

certain environmental statuses repeatedly throughout usage. As mentioned earlier, the onC0 model is intrinsically immutable. The following defi-

nitions formalize the onC0 model.

Definition 19: The onC0 model has the following components:

• P,A,S, ATT(S), and ATT(A) are the same as in the preA model

• onCON (a set of ongoing conditions)

• getOnCON: P × A × S ! 2 onCON; onConChecked: onCON ! true, false

• onC(P,A,S) = onConi∈getOnCON(P,A,S) onConChecked(onCon i)

• allowed(P,A,S) ) true

• stopped(P,A,S) ( ¬ onC(P,A,S).

Herein, we extended the core Hyperledger Composer model with the above additional models. This enriches future applications with a vari-

ety of permissions based on business needs.

5 | UCON INCORPORATION IN HYPERLEDGER FABRIC

Hyperledger Composer is a high-level layer in Hyperledger Fabric's architecture. Hyperledger Composer uses a generic chaincode to communicate

with Hyperledger Fabric. Hyperledger Composer provides some extra layers and features that are not directly part of Hyperledger Fabric. To

implement our proposed model, we extended Hyperledger Composer with extra features and introduced new transaction calls to be saved on the

blockchain's trusted ledger and state database. To achieve this, we added hooks in the current JavaScript transaction processor, connecting us to

the extra models we defined earlier. Similarly, we introduced automatic blockchain transactions that are stored on the blockchain. Whenever an

asset or participant is added to the system using Hyperledger Composer's API, our proposed model automatically creates different transactions

that are stored on the blockchain and state database. The purpose of these transactions is to monitor the activity of the participants while they

are accessing and using any asset. Our model automatically responds to the global configuration that is set to monitor asset usage.
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To incorporate the extended version of the access control, we updated three sections of the Composer as depicted in Figure 2.

• Access control: In ACL module, we introduced new tags that support our UCON policies. These tags are declared in the development phase of

any BNA.

• Composer runtime: The second module that affected our proposed solution is the Composer runtime. Composer runtime is basically connected

with Fabric, which is the backbone of the blockchain infrastructure. The newly defined access control models are linked with the Composer

runtime, so it can be hooked to the application execution.

• JavaScript transactions processor: In the third module of UCON incorporation, we created a BlockU reference monitor that continuously moni-

tors the assets and records all transactions in the blockchain against a participant. An asset can have multiple attributes, and we can define sep-

arate transactions for each of the attributes; similarly, we can create various BlockU rule for each attribute (for instance, a vehicle asset that

contains attributes, such as millage, price, manufacture, and current state). Our newly introduced functions can retrieve an attribute—for exam-

ple, millage—via the transaction asset vehicle millage. There are two types of restrictions on the usage of an asset. One constraint is developed

in the business logic of the application; for example, a person cannot buy an asset if his payment is less than the product amount; such kind of

constraints are also handled in the chaincode transaction functions.

rule SampleConditionalRule {

description: "Description of the ACL rule"

participant(m): "org.example.SampleParticipant"

operation: ALL //CREATE, UPDATE, DELETE or ALL

resource(v): "org.example.SampleAsset"

condition: (v.owner.getIdentifier() == m.getIdentifier())

action: ALLOW // ALLOW, DENY

// BlockU Tags

blockU: onOBL //befA, onA, befOBL, onOBL, preCON, onCON

blockUcondition: (v.blockUReferenceMonitor.usage(m.getIdentifier(), DATETIME) < 10)

}

F IGURE 2 Proposed usage control framework for permissioned Blockchain
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Our proposed model verifies each request against the generated policy before allowing or denying participants to use the assets (Figure 3). The

model adds this failure request as a new transaction on the blockchain that can be seen by a different network and the system administrator who

can monitor and respond to participants as and when needed. It also helps to resolve business disputes. This detailed permission model enables

members of a business network and owners of assets to specify usage-based constraints while performing transactions. The new model is tailored to

Hyperledger Composer. As mentioned earlier, attribute mutability includes three states in the UCON engine, that is, the first “pre-update,” the sec-

ond “upon update,” and the third “post-update.” Pre-update attributes are set before accessing an asset. In our use case, we set the start time to zero

initially, ensuring that after 24 hr, the asset would be revoked. Once an asset is moved to the accessing state, the mutable attribute is updated

accordingly. We also set the warnings to zero to ensure that once the number of warnings reaches the allotted time, the access would be revoked.

Each state change of UCON is stored in a transparent ledger, in case of a dispute or if the bank would like to deduct money from the renter. Our sec-

ond condition involves constantly monitoring the defined zone. In the case of the car rental, we set the current coordinates of the car as a pre-

update attribute to constantly monitor the car's location. In addition, we set the warning attribute. In case the car travels out of range, the user

receives five warnings. If the user does not respond to these warnings, access to the car is revoked, and all transactions are locked.

6 | CONCLUSION

In the recent past, permissioned Blockchain got acceptance due to the various issues in public Blockchain, such as performance, security, and

other business requirements. Among these Blockchain frameworks, the Hyperledger project gained popularity due to its modular, open source

architecture and huge industry support. The research done can be adopted by any permissioned Blockchain framework; however, the proof of

concept is demonstrated in Hyperledger Composer. The study contributes in extending the permissions model of Hyperledger Composer by intro-

ducing BlockU. BlockU covers various business applications that need continuous access to their assets by a participant. Many business use cases

cannot be implemented using the RBAC model. Usage control models are difficult to implement; thus, extending permissions are necessary to

meet the needs of current and future business applications. The proposed model allows developers and end users to define their own access poli-

cies for their shared assets rather than using fixed policies developed and instantiated at the start of the application. They can also define asset's

F IGURE 3 Extended usage control model for Blockchain

10 KHAN ET AL.



access rules violation policy and set environmental constraints to the usage of their assets. Such violation policies can trigger consequent

responses, which helps organizations with real-time monitoring and tracking the participant's activities.

7 | FUTURE WORK

To identify future work, further investigation can be made to improve the policy execution engine and to deploy it on the underlying Fabric archi-

tecture. Similarly, we aim to develop a new blockchain history track for our proposed model policies, which will be separated from the application

level chaincode. A new system can be introduced, that is, system chaincode in the fabric architecture; it will have its own private data

section where the proposed policies shall be stored, and its core functionality will be the execution engine logic. Similarly, a high-level language

interface is required for the user to write their policies, which ultimately can be transformed to the core Hyperledger Composer engine.
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