
A hybrid ant colony optimization for continuous domains

Jing Xiao a,⇑, LiangPing Li b

a School of Computer Science, South China Normal University, No. 55 Zhongshan West Road, Guangzhou 510631, China
b Department of Computer Science, Sun Yat-sen University, No. 132 WaiHuan East Rd., Guangzhou Higher Education Mega Center, Guangzhou 510006, China

a r t i c l e i n f o

Keywords:
Continuous optimization
Ant colony optimization
Continuous population-based incremental
learning
Differential evolution

a b s t r a c t

Research on optimization in continuous domains gains much of focus in swarm computation recently. A
hybrid ant colony optimization approach which combines with the continuous population-based incre-
mental learning and the differential evolution for continuous domains is proposed in this paper. It utilizes
the ant population distribution and combines the continuous population-based incremental learning to
dynamically generate the Gaussian probability density functions during evolution. To alleviate the less
diversity problem in traditional population-based ant colony algorithms, differential evolution is
employed to calculate Gaussian mean values for the next generation in the proposed method. Experimen-
tal results on a large set of test functions show that the new approach is promising and performs better
than most of the state-of-the-art ACO algorithms do in continuous domains.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Inspired by the ants’ foraging behavior, the first ant colony algo-
rithm was proposed in (Dorigo, 1992). The core idea of an ant sys-
tem is based on the fact that each ant deposits pheromone on the
foraging path. In the early research, ant colony algorithms have
been successfully applied for solving combinatorial optimization
problems, including the traveling salesman problem (TSP) (Dorigo
& Gambardella, 1997), the quadratic assignment problem (QAP)
(Maniezzo, Colorni, & Dorigo, 1999) and the job shop scheduling
problem (JSP) (Colorni, Dorigo, Maniezzo, & Trubian, 1994).

The extension of the original ant colony algorithm to
continuous domain can be accomplished by either discretizing
the continuous domain into several regions or shifting from using
a discrete probability distribution to using a continuous one such
as a Gaussian probability density function (pdf). The first extension
of ant colony algorithms to continuous domain is CACO (continu-
ous ant colony optimization) (Bilchev & Parmee, 1995). CACO
discretized the continuous neighborhood with nest structure. It
initialized a nest on a given point of the search space and generates
random vectors. The direction vector chosen was updated by the
ants with better fitness values. In API (ant pachycondyla apicalis)
(Monmarché, Venturini, & Slimane, 2000) each ant searched
independently for a solution and the ants’ nest is periodically
moved. CIAC (continuous interacting ant colony) (Dréo & Siarry,
2002) used some attractive points on the search space and direct
communication between ants to improve the exploration. COAC

(continuous orthogonal ant colony) (Hu, Zhang, & Li, 2008) also
discretized the continuous search space and utilized the orthogo-
nal design method to search the continuous domain completely.

Another ensemble of ant colony optimization algorithms for
continuous domain is mainly based on Gaussian probability den-
sity function sampling. CACS (continuous ant colony system)
(Pourtakdoust & Nobahari, 2004) employed a Gaussian probabil-
ity density function whose mean and variance are adjusted dur-
ing evolution to sample the continuous search space. MACACO
(multivariate ant colony algorithm for continuous optimization)
(Franca, Coelho, Von Zuben, & de Faissol Attux RR, 2008) opti-
mized the search space with multivariate Gaussian pdf which
is created by the information contained in the covariance matrix
of the ant population. Speak of population, there are some work
which fully utilize the information in previous ant population to
generate the next one. PB-ACO (population-based ACO) (Guntsch
& Middendorf, 2002) kept track of a certain number of best solu-
tions found so far and used the archive to update the phero-
mone. PB-ACO was applied to the TSP and QAP problems while
ACOR (ant colony optimization in Rn) (Socha & Dorigo, 2008) ex-
tended the population-based ACO with Gaussian pdf as phero-
mone update. ACOR evolved several Gaussian pdfs in parallel
and adopted the rank-based selection mechanism. ACOR also al-
lowed exploiting the correlation between variables by coordinate
rotation which is time-consuming.

Inspired by PB-ACO and ACOR, our motivation for introducing a
population based scheme is the dynamic generation of probability
density functions in continuous domains. A hybrid ant colony opti-
mization (HACO) incorporating with continuous population-based
incremental learning (PBILc) and differential evolution (DE) (Sebag

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.02.151

⇑ Corresponding author. Tel.: +86 20 85211352 401
E-mail address: xiaojing@scnu.edu.cn (J. Xiao).

Expert Systems with Applications 38 (2011) 11072–11077

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2011.02.151
mailto:xiaojing@scnu.edu.cn
http://dx.doi.org/10.1016/j.eswa.2011.02.151
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


& Ducoulombier, 1998) is proposed in this paper. HACO employs
the multi-Gaussian pdfs sampling in parallel and learns the next
generation’s mean and variance values dynamically by PBILc. The
rank-based selection method in ACOR may suffer local optima
when the solutions in the archive are very close to each other. To
alleviate this, HACO involves a differential evolution operator with
linear combination of the one best and two random individuals
(Montes and Velazquez-Reyes, 2006) in the current population.
The combination of differential evolution and ant colony has been
applied to feature selection and power systems (Chiou, Chang, &
Su, 2004; Khushaba, Al-Ai, Alsukker, & Al-Jumaily, 2008).

The rest of this paper is organized as follows. Section 2 de-
scribes HACO in detail. The pheromone representation and Gauss-
ian pdf generation are elaborated in Section 2. Experimental results
and analysis are presented in Section 3. Section 4 discusses how
two different DE operators affect HACO. We conclude this paper
and outline the future works in Section 5.

2. HACO: A hybrid ant colony optimization for continuous
domains

In this section, we introduce the HACO in detail. First, we describe
the pheromone representation in HACO and the overall framework
of the algorithm is given then. The solution construction and Gauss-
ian pdf generation by two methods are introduced finally.

2.1. Pheromone representation

In traditional ACO algorithms, ants use pheromone to commu-
nicate with each other. In combinatorial optimization problem,
ACO algorithms use a table to store pheromone information. At
each construction step, an ant uses the table to form a discrete
probability distribution. While in continuous optimization, differ-
ent representation should be adopted.

In this paper, we use the same idea to that proposed by Marco
Dorigo in ACOR (Socha & Dorigo, 2008). HACO stores a number of
solutions in a solution archive. Each solution contains the values
of its n variables. The solution archive stores the solutions and also
their values of the objective functions.

As the pheromone information is not explicitly stored as in tra-
ditional ACO, pheromone cannot be updated directly. In HACO,
pheromone update is accomplished by updating the solution ar-
chive. When a better solution is found, it will be added to the solu-
tion archive with a worst solution being removed. With the best
solutions ever found keeping in the solution archive, the ants can
explore the domain effectively.

2.2. HACO framework

The framework of HACO algorithm is described in Algorithm 1
and the notations of the algorithm are presented in Table 1.

Algorithm 1. HACO Algorithm.

set iteration t = 0; initialization_of_k_solutions();
while t < maxNumIterations do

t = t + 1;
for j = 1 to m/2 do

for each dimension i do
sampling the value of dimension i by the Gaussian

kernel pdf by ranking;
for j = m/2 + 1 to m do

for each dimension i do
sampling the value of dimension i by the Gaussian pdf by

PBILc;
for each ant do

update_solution_archive();
generate_Gaussian_functions();

For an n-dimension problem, an ant constructs a solution in n
steps. At each step i, an ant samples a value for variable xi. HACO
keeps k solutions in the archive for pheromone update calculation.
The ith variable of jth solution is denoted by sj

i. intializa-
tion_of_k_solutions() initially generate k solutions from the scratch
by uniform sampling. update_solution_archive() means that the
pheromone update is accomplished by adding the set of newly
generated better solutions according to the ranking or PBILc meth-
od, then the same number of worst solutions in the archive is re-
moved accordingly. In HACO generate_Gaussian_functions()
performs two kinds of Gaussian generation. One of the ant groups
applies the rank-based selection mechanism as in ACOR and the
other applies the PBILc method which will be introduced later
on. Then the two ant groups use the corresponding Gaussian func-
tions to sample their values for each dimension.

2.3. Generate Gaussian functions by rank-based scheme

For each dimension i, HACO generates a probability density
function called Gaussian kernel pdf. First, each solution constructs
an individual Gaussian pdf Ni(li, ri) for each dimension. Then the
Gaussian kernel pdf is making up by the k separate Gaussian func-
tions with different weights. These weights are associated with the
fitness value of the objective function. Better solution will have
higher weight. The weight wl of the solution sl is calculated by
the following equation (Socha & Dorigo, 2008):

wl ¼
1

qk
ffiffiffiffiffiffiffi
2p
p e

�ðl�1Þ2

2q2k2 ; ð1Þ

which defines the weight to be a value of the Gaussian function
with argument l, mean 1.0, and standard deviation qk, where q is
a parameter to balance between diversification and intensification.
When q is small, the best-ranked solutions are strongly preferred,
and when it is large, the probability becomes uniform (Socha & Dor-
igo, 2008).

Sampling the Gaussian kernel pdf is done in two phases. First,
choose one of the individual Gaussian function that compose the
Gaussian kernel with probability pl given by Eq. (2). Then sample
the chosen Gaussian function.

pl ¼
wlPk
r¼1wr

: ð2Þ

We consider the chosen Gaussian function by (2) with li a standard
solution for other ant solutions to explore. To establish the value of
the standard deviation ri at step i, we calculate the average distance
from li to all solutions in the archive, and multiply it by the param-
eter n:

Table 1
Notations in HACO.

Symbol Description

X = {x1, x2, . . . , xn} A set of n continuous variables in a certain problem
k Size of the solution archive
m Number of ants used in each iteration
n Speed of convergence
q Locality of the search process
n Dimension of the problem
a Learning rate
N(l, r) Gaussian function with mean l and standard deviation r
s Solution in the solution archive
F Coefficient in differential evolution

J. Xiao, L. Li / Expert Systems with Applications 38 (2011) 11072–11077 11073



https://isiarticles.com/article/7724

