
Computers Math. Applic. Vol. 21, No. 11/12, pp. 111-116, 1991 0097-4943/91 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright~) 1991 Pergamon Press plc

F U Z Z Y D E C I S I O N T A B L E S F O R E X P E R T S Y S T E M S

ART LEW
Department of Information and Computer Science

University of Hawaii

(Received July 1990)

Abstract--The use of fuzzy decision tables as a programming language for representing both the
knowledge and the procedures in expert systems is discussed. Examples of their use for the generation
of procedural code and for the generation of if-then rules are given.

I. INTRODUCTION

The main a~Ivantages of decision tables [1,2] are that:

(a) they provide a systematic way to design algorithms;
(b) they are amenable to certain forms of automated error-checking (such as for consistency [3])

and to formal verification (by correctness proofs [4]); and
(c) a processor to compile and execute them is relatively easy to implement [5].

Decision tables (DTs) are compatible with most programming languages, including general-
purpose languages such as Ada and C as well as special-purpose languages such as LISP [6]
and Prolog; the processor described in [5] can be adapted, with varying degrees of difficulty,
to translate DTs into any of these languages. We previously discussed the use of DTs as a
general-purpose programming language [7]; here, we discuss their use for the implementation of
rule-based expert systems.

2. F U Z Z Y A L G O R I T H M S

In an earlier paper [8], we demonstrated that any (nonfuzzy) algorithm can be implemented by
a DT. In principle, any fuzzy algorithm [9,10], if it is to be realized (i.e., executed on an actual
computer) , can also be implemented using a DT, albeit possibly a nondeterministic one [11]. For
example, a fuzzy version of the DT in [7] for finding the shortest path in a graph can be based on
fuzzy optimization algorithms [12]; some other examples of fuzzy optimization algorithms appear
in [13-15].

3. A P P L I C A T I O N O F D T S T O E X P E R T S Y S T E M S

It is natural to use DTs to express the knowledge base of an expert system [16]. Each IF-THEN
rule of the form

IF P1
. o .

AND Pn

THEN CI

AND Cm

{with certainty factor of=n}

can be represented by a rule (or column) of a DT

Typ~et by A~-~_X

111

112 A. L~.w

P1 : T

Pn : T

Cl :X

am: X

{cf = n}

where the premises and consequents of the productions are the conditions and the actions of
the DT. This idea is quite old; numerous rule-based expert systen~ incorporating decision-table
concepts in their design and analysis have been reported (see, for example, [17219]). Much of
this prior work concerned methods of detecting ambiguities, regarded as a problem in that other
context; here, we regard ambiguities as a desirable way to express fuzziness.

We distinguish between "procedural" DTs, in which the consequents are general actions (which
may include "call" statements), and "nonprocedural" DTs in which the consequents are simple
actions (i.e., value assignments). Generally speaking, we liken procedural DTs to forward-chaining
production systems such as OPS5 [20], and nonprocedural DTs to backward-chaining inference
systems such as Mycin [16]. Decision table processors can be designed to perform both forward
and backward chaining. In this paper, we focus our attention on procedural DTs.

4. FUZZY DTS

DTs are suitable for expressing fuzziness in expert systems in a number of ways. The fuzzi-
ness may be in multi-valueness of conditions, nondeterminism of rules, or a variety of forms of
uncertainty in the entries of any of the four DT quadrants or with respect to any row or column.
For example, in the above DT, Pn or Cm may be fuzzy expressions, their values may be fuzzy
rather than truth-valued possibly with varying degrees of certainty, and rules themselves may
have associated certainty factors and may or may not be mutually exclusive. These variations
can all be accommodated within the framework of "ambiguous" DTs. Ambiguous procedural
DTs can be implemented as nondeterministic algorithms.

One problem in the handling of fuzziness for which there is no clear-cut solution relates to
how fuzzy certainty factors should be defined and blended. Even in nonfuzzy contexts, different
expert systems have adopted different conventions, none of which may be appropriate for a given
application [21]. Use of DTs permits users to program their own blending formulas; unlike the
case in most systems, many different formulas may be used in the same application and these
formulas may be dynamically defined.

5. EXAMPLES

Examples of the application of fuzzy procedural DTs to the design of expert systems appear
in [12], in which the nonfuzzy DTs used to solve the stock market problem as given in [2] were
modified in what are rather minor ways. Even so, there are several errors in the fuzzy DTs of
[12], such as the one given here as Table 1.

Table 1.

~1 ~2 R3 R4
trading possible? : Y Y N
stkavg (X1)\

} : XI+X2 XI.X2
bndavg (X2)/

XI/X2

call(stocks) : <=0.2 >0
call(bonds) : <=0.2 =0
call(account) : <=0.2 X
process R4 : <=0.4
go again : <=0.2 X
stop >0.4 X

Fuzzy decision tables for expert systems

Table 2.

trading possible ? :

stkavg (X1)\
)

bndavg (X2)/

R1 R2 R2 ~ R3 : R4
Y Y Y N

XI+X2 Xl.X2 Xl/X2

update averages : X X X
call(stocks) : <=0.2
call(bonds) : <=0.2
call(account) : <=0.2

process R4 {goto~ : <=0.4
go again {repeat} : <=0.2
stop ~exit} : >0.4 X

=0

>0

X

X

113

(Here, + , . , and / are fuzzy max, min, and diff operators.) A corrected version is given in Table
2; note the reversal of the relations X1/X2 > 0 and Xl/X2 = 0.

The adoption in these procedural tables of a left-to-right interpretation convention with implicit
ELSE rules, as well as of conditional rules associated with "goto" statements (such as to rule R4),
is, we believe, undesirable. Table 3 shows an equivalent table which utilizes different conventions
in which the "logic" is expressed in the upper right quadrant.

Table 3.

trading possible? : T T T T F
stkavg+bndavg : <=0.2 >0.2 >0.2 >0.2 -
stkavg.bndavg : - <=0.4 <=0.4 >0.4 -
stkavg/bndavg : - >0 =0 - -

update averages : X X X X -
call(stocks) : X - X - -

call(bonds) : X X - - -

call(account) : X X X - -

repeat : X X X - -

exit : - - - X X

One advantage of this format, in which the rules can be evaluated in any order, is that optimal
conversion algorithms (such as in [22]) may then be applied. (To simplify lexical processing, we
used a slightly different "syntax" in our implementation, as illustrated below.)

6. IMPLEMENTATION

We attribute the errors in Table 1 and the other fuzzy DTs of [12] to the unavailability of a
programming system with which the tables could be tested. This provided us with the motivation
to design such a programming system. Our system [which at this writing is not yet complete]
is essentially a preprocessor which translates fuzzy DTs, expressed in a format similar to that
used in Table 3, into a conventional (procedural) language in a manner like that described in [5].
The precise DT format we adopted is given in the Appendix 1; its translation into a procedural
language (which can be executed using an ordinary compiler) is shown in Appendix 2. Using the
slightly different syntax given in Appendix 3, the DT can be translated into the set of IF-THEN
rules shown in Appendix 4, which in turn can be processed using a simple expert system such as
in [23].

7. CONCLUSION

Fuzzy DTs can be used to express the knowledge base of an expert system. DTs can also be
used as the programming language in which expert systems are implemented (i.e., programmed,

114 A. L~.w

in a choice of environments , such as LISP and C). T h a t use of DTs is an advantageous way
for h u m a n s to in teract with computers , especially as a means to represent p roduc t ion rules, is
demons t r a t ed by their frequent adopt ion in the AI l i terature (e.g., see [13,20,24]). Of course,
since tables are commonly used for a variety of other kinds of information, such as relational
databases , design of an in tegrated sys t em employing tabular representat ions of knowledge and
procedures is wor th serious consideration.

Ano the r advantage of the use of fuzzy DTs to implement exper t sys tems is flexibility. DTs
permi t bo th forward and backward chaining, and allow the incorpora t ion of different ways of
handl ing fuzziness (such as blending cer ta inty factors) within the same applicat ion. (Details of a
design which is comparable to Sys tem Z-11 [25] will be discussed in a for thcoming paper.)

We conclude tha t the design of exper t systems utilizing fuzzy DTs is worthwhile and warrants
fur ther research and development , and we are so proceeding. One open research problem is
whether be t te r exper t sys tems can be implemented using fuzzy D T processors, i.e., by incorpo-
ra t ing fuzziness in the processor ra ther than in the tables upon which they operate .

REFEIIEN CES

1. CODASYL Task Group, A Modern Appraisal of Decision Tables, ACM, New York, (1982).
2. R.B. Hurley, Decision Tables in Software Engineering, Van Nostrand Reinhold, New York, (1983).
3. P.J.H. King, The interpretation of limited entry decision table format and relationships among conditions,

Computer Journal 12,320-326 (1969).
4. A. Lew, Proof of correctness of decision table programs, Computer Journal 27,230-232 (1984).
5. A. Lew, A decision table processor, University o] Hawaii, technical report (1988).
6. B.M. Schwartz, LISP 1.5 decision tables interpreted for a small computer and proposed for parallel com-

puters, SIGPLAN Notices 6 (8), 93-103 (1971).
7. A. Lew, Decision tables for general-purpose scientific programming, Software-Practice and Experience 13,

181-188 (1983).
8. A. Lew, On the emulation of flowcharts by decision tables, Commun. ACM 25, 895-905 (1982).
9. L. Zadeh, Fuzzy algorithms, Information and Control 12, 94-102 (1968).

10. L. Zadeh, The role of fuzzy logic in the management of uncertainty in expert systems, Fuzzy Sets and
Systems 11, 199-227 (1983).

11. A. Lew, Decision table programmlng-some new perspectives, University o.f Hawaii, technical report (1983).
12. A. Kandel, Fuzzy Mathematical Techniques with Applications, Addison-Wesley, Reading, Mass., (1986).
13. R. Bellman and L.A. Zadeh, Decision-making in a fuzzy environment, Management Sci. 17 (4), B141-164

(1970).
14. R.L.P. Chang, Fuzzy decision tree algorithms, IEEE Trans. Sys. Man Cyb. 7, 28-35 (1977).
15. A.O. Esogbue, Dynamic programming, fuzzy sets, and the modeling of R & D management control systems,

IEEE Trans. Sys. Man Cyb. 13, 18--40 (1983).
16. B. Buchanan and E. Shortliffe, Rule-Based Expert Systems, Addison-Wesley, Reading, Mass., (1984).
17. M. Trigoboff and C.A. Kulikowski, IRIS: A system for the propagation of inferences in a semantic net, Proc.

5th IJCAI, 274-280 (1977).
18. B.J. Cragun and H.J. Steudel, A decision-table-based processor for checking completeness and consistency

in rule-based expert systems, Int. J. Man-Machine Studies 26,633-648 (1987).
19. R. Maes and J.E.M. VanDijk, On the role of ambiguity and incompleteness in the design of decision tables

and rule-based systems, Computer Journal 31,481-489 (1988).
20. T. Cooper and N. Wogrin, Rule-Based Programming in OPSS, Morgan Kaufmarm, San Mates, Calif.,

(1988).
21. D. Kopso, L. Pipino and W. Rybolt, A comparison of the manipulation of certainty factors by individuals

and expert system shells, J.MIS 5, 66-81 (1988).
22. A. Lew, Optimal conversion of extended-entry decision tables with general cost criteria, Commun. A CM

21,269--279 (1978).
23. B. Sawyer and D. Foster, Programming Expert Systems in Pascal, Wiley, New York, (1986).
24. M.A. Carrico, J.E. Girard and J.P. Jones, Building Expert Systems, McGraw-Hill, New York, (1989).
25. K.S. Leung and W. Lava, Fuzzy concepts in expert systems, Computer 21 (9), 43-53 (1988).

Fuzzy decision tables for expert systems 115

A P P E N D I X A

A F~zz~ Procedural DT.

dtbegin!
trading possible
max(stkavg,bndavg)
min(stkavg,bndavg)
diff(stkavg,bndavg)

update averages
c a l l (s t o c k s)
call(bonds)
call(account)
repeat!
exit!
dtend!

:T T T T F
!<=0.2 >0.2 >0.2 >0.2 -
!- <=0.4 <=0.4 >0.4 -

!- >0 =0 - -

:X X X X -
:X - X - -
:X X - - -
:X X X - -
:X X X - -

:- - - X X

A P P E N D I X B

Translation oJ the DT of Appendix A.

while not(lambda<O) do begin
if (trading possible)

and (max(stkavg,bndavg)<=0.2)
then begin

update averages;
call (stocks);
call (bonds);
call (account);
lambda:=1;

end else
if (trading possible)

and (max(stkavg,bndavg)>0.2)
and (min(stkavg,bndavg)<=0.4)
and (diff(stkavg,bndavg)>O)

then begin
update averages;
call (bonds);
call (account);
lambda:=l;

end else
if (trading possible)

and (max(stkavg,bndavg)>0.2)
and (min(stkavg,bndavg)<=0.4)
and (diff(stkavg,bndavg)=O)

then begin
update averages;
call (stocks);
call (account);
lambda:=1;

end else
if (trading possible)

and (max(stkavg,bndavg)>0.2)
and (min(stkavg,bndavg)>0.4)

then begin
update averages;
lambda:=-1;

end else
if not(trading possible)

then begin
lambda:=-1;

end else
begin lambda:=-2; end;
end;

116 A. Lsw

A P P E N D I X C

A F~zz~ Exper~ S~/8~em (in ~ DT Formal).

dtbegin)
t r a d i n g poss ib le=
max(stkavg,bndavg)
min(etkavg,bndavg)
diff(stkavg,bndavg)

update averages
c a l l (s t o c k s)
ca l l (bonds)
call(account)
exit
dtend!

IT T T T F
!<=0.2 >0;2 >0.2 >0.2
! <=0.4 <=0.4 >0.4
! >0 =0

!, m

X X

A P P E N D I X D

R~le8 Asaociated wi~A the Expert S~mtern of A~pe.dix C.

Rule 1.1: if
trading possible=T and
max(stkavg,bndavg)<=0.2

then
update averages, and
call(stocks), and
call(bonds), and
call(account).

Rule 1.2: if
trading possible=T and
max(stkavg,bndavg)>0.2
min(stkavg,bndavg)<=0.4
diff(stkavg,bndavg)>O

then
update averages, and
call(bonds), and
call(account).

Rule 1.3: if
trading possible=T and
max(stkavg,bndavg)>0.2
min(stkavg,bndavg)>=0.4
diff(stkavg,bndavg)=O

then
update averages, and
call(stocks), and
call(account).

Rule 1.4: if
trading possible=T and
max(stkavg,bndavg)>0.2
min(stkavg,bndavg)>0.4

then
update averages, and
exit.

Rule 1.5: if
trading possible=F

then
and

exit.

and
and

and
and

and

