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Abstract

Often a rule-based system is tested by checking its performance on a number of test cases with known solutions, modifying the system until
it gives the correct results for all or a sufficiently high proportion of the test cases. This method cannot guarantee that the rule-base has been
adequately or completely covered during the testing process. We introduce an approach to testing of rule-based systems, which uses coverage
measures to guide and evaluate the testing process. In addition, the coverage measures can be used to assist rule-base pruning and
identification of class dependencies, and serve as the foundation for a set of test data selection heuristics. We also introduce a complexity
metric for rule-bases.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Evaluation of a knowledge-based system is a multi-
faceted problem, with numerous approaches and techniques.
The results generated by the system must be evaluated,
along with its features, the usability of the system, how
easily it can be enhanced, and whether or not it has a posi-
tive impact on the people who are using the system in place
of an approach which is not computer based. The system’s
performance must also be evaluated in light of its intended
use [1]. If the expert system is meant to function as an
intelligent assistant then it must satisfy the criterion of
being a useful adjunct to the human problem solver. If the
system is expected to emulate the reasoning of a human
expert then a more rigorous evaluation of the system is
needed.

During the last 20 years there has been considerable
development and use of knowledge-based systems for medi-
cal decision support. In this period there has been heavy
emphasis on functional analysis, addressing two primary
questions:

• Does the system give the results we expect on test cases?
• Does the system improve the effectiveness of those who

use it?

The emphasis on functional analysis can lead to seemingly
strong statistical statements about the correctness of a
system, demonstrating that it gives the correct result, or

the same result as a human expert, in a high percentage of
test cases. However, functional testing does not guarantee
that all parts of the system are actually tested. If a section of
the rule-base is not exercised during the functional test then
there is no information about that section of the system and
whether it is correct or contains errors. Further, many
performance problems for rule-bases result from unforeseen
rule interactions [2]. A test suite of known cases may never
trigger these interactions, though they should be identified
and corrected before a system is put into actual use.

The method we present enhances functional analysis of
rule-based classification systems with arule-base coverage
assessment, overcoming limitations of common methods for
rule-based expert systems evaluation. The underlying
premise of this work is that an ideal testing method is one
that guarantees that all possible reasoning paths through a
rule-base have been exercised. As with procedural software,
this is often an unreasonable and/or unattainable goal, possi-
bly due to a lack of test data, to un-executable program
paths, or to the size of the rule-base. Further, even if each
possible path is exercised, we cannot realistically do so with
each distinct set of test values that could cause its traversal.
A reasonable goal is for the rule-base testing process to
exercise every inference chain or provide information
about the failure of the testing process to do so.

Usually verification and validation (V & V) of rule-based
systems involves a static structural analysis (verification)
method to detect internal inconsistencies, followed by a
dynamic, functional, validation in which system behavior
on a set of test cases is compared with expected results. The
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weakness of a strictly functional approach to validation is
that the test data available may not adequately cover the
rule-base, and, at best, limited information about coverage
will be obtained. System performance statistics are usually
presented as if they apply to the entire rule-base, rather than
just to the tested sections. This can lead to false estimates of
system performance in actual use. The system performance
indicated by the comparison of actual and expected results is
relevant only for the tested sections, while performance in
the untested sections cannot be predicted.

We must also consider completeness of the test set and
age of the rule-base by the test data.Completenessof the test
set refers to the degree to which the data represents all types
of cases, which could be presented to the system under
intended conditions of use.Coverageof the rule-base refers
to how extensively possible combinations of inference rela-
tions are exercised during test data evaluation. In the trivial
case, with a correct rule-base and a complete test suite, the
test data would completely cover the rule-base, all actual
results would agree with expected results, and we could
predict completely correct performance of the rule-base in
actual use. In the more usual situation we may have errors
and incompleteness in the rule-base, as well as inadequacies
in the test data. If we only judge the system based on a

comparison of actual and expected results, the rule-base
could perform well on the test data, but actually contain
errors which are not identified due to incompleteness of
the test data. This could lead to a false prediction of correct
performance on all cases, when in fact we cannot make any
accurate prediction about performance of the rule-base in
those areas for which there is an absence of test data.

Our testing approach, as outlined in Fig. 1, allows clear
identification of incompleteness in the test data and poten-
tial errors in the rule-base through identification of sections
of the rule-base that have not been exercised during func-
tional test. This can indicate weaknesses in the test set and/
or sections of the rule-base that may not be necessary. An
incomplete test set can be supplemented with additional
cases chosen from the available population, guided by a
series of heuristics and the coverage analysis information.
Alternatively, if there is no test data which covers certain
parts of the system, it is possible that those sections should
be pruned from the rule-base or modified.

Our approach carries out structural analysis of the rule-
base using five rule-base coverage measures (RBCMs)
which identify sections not exercised by the test data. This
makes it possible to improve completeness of the test suite,
thereby increasing the kinds of cases on which the rule-base
will be tested and improving coverage of the rule-base.

In addition to the coverage analysis, we employ a rule-
base representation which facilitates application of the
coverage measures; a set of heuristics for re-sampling the
population of available test cases, based on coverage infor-
mation, as shown in Fig. 2; strategies for rule-base pruning
and identification of class-dependencies; a rule-base
complexity metric. In another study [3] the utility of the
aforementioned is illustrated extensively using rule-bases
which were prototypes for the AI/RHEUM system [4] and
the TRUBAC (Testing with RUle-BAse Coverage), a tool
which implements the coverage analysis method.

2. Related work

This work builds on both coverage-based testing methods
for procedural software (see [5] for a review of methods and
[6,7] for a data-flow approach to testing) and earlier work on
rule-base analysis. Early approaches for rule-base analysis
carried out only verification or validation. A number of
systems, such as the ONCOCIN rule checker program
(RCP) [8], CHECK [9,10], ESC (expert system checker)
[11], and KB-Reducer [12,13] carry out only verification.
Beyond their limitation to verification, these systems have
additional weaknesses. RCP is limited to identification of
static problems at the rule level, and cannot identify
problems that result along longer reasoning chains. The
CHECK system has better complexity than the RCP, but
can be used only for systems developed using LES, the
Lockheed expert systems development environment. ESC
is very efficient if there are no conflicts or redundancies in
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Fig. 1. Rule-base evaluation with coverage analysis.

Fig. 2. Evaluation with coverage analysis and data re-sampling.



the rule-base, but can require exponential time if such
problems exist. KB-Reducer is a verification tool, which
operates on an implied network of rules. It has the advantage
of checking a rule-base for inconsistency and redundancy
over inference chains, and not just pairs of rules.

A number of dynamic analysis tools have also been
developed, such as TEIRESIAS [14], and SEEK2 [15].
TEIRESIAS aids in debugging and knowledge acquisition
by allowing the alternation, deletion or addition of rules in
order to fix errors in the rule-base that led to incorrect
conclusions. However, this process requires that the system
tester is sufficiently expert in the problem domain to identify
errors in the reasoning the system used to reach a conclu-
sion. SEEK2 is an automated rule-base refinement tool
which tries out various rule refinements based on the
system’s performance on known cases. However, the qual-
ity of the refinements produced will be determined by the
breadth of the test cases used. SEEK2 does not judge how
well the test cases cover the range and domain of the system
being evaluated.

2.1. Causal-associational network

Graph-based methods for rule-base analysis involve the
creation of a graph representation of the rules. An early
example of such a representation (though not specifically
used for V & V) is the causal-associational network
(CASNET) for glaucoma diagnosis [16]. While our
approach is similar to the approach used in CASNET,
there are a number of differences, which stem from the
ways the two methods use the graph structure. In CASNET
the network serves as a direct representation of the knowl-
edge, with interior nodes representing intermediate stages of
disease progression. In our approach the graph is a direct
representation of the knowledge base and intermediate
nodes represent intermediate hypotheses in a logical
sense, but may have no particular meaning relative to the
problem domain unless the system designer built that into
the rules.

2.2. KB-Reducer

As mentioned earlier, KB-Reducer [12,13] uses the
implied network of rules to do the rule-base analysis. The
process of knowledge base reduction involves calculation of
all possible logically independent and minimal sets of inputs
under which the knowledge base will conclude each asser-
tion (each class). In order for the reduction process to work,
the rules of the knowledge base must form an acyclic
network under thedepends-onrelation, defined in Ref.
[12]. If the network is acyclic, then KB-Reducer proceeds
to label each hypothesisH with the set of environments that
lead to the assertion ofH, where an environment is itself a
set of findings. KB-Reducer carries out the labeling process
on the rules in an order such that no rule is processed before
any rules on which it depends. As each rule is processed,

KB-Reducer updates the partial label for the hypotheses the
rule asserts, and checks for redundancy and contradiction.

2.3. Completeness Verifier

COVER (COmpleteness VERifier) [17–19] is another
approach which combines both a functional and structural
analysis of the rule-base. COVER carries out seven verifica-
tion checks: redundancy, conflict, subsumption, unsatisfi-
able conditions, dead-end rules, circularity and missing
rules. The rules must either be written in or converted to a
language based on first-order logic, and COVER must be
given the set of final hypotheses (classes), as well as infor-
mation about any semantic constraints.

A primary difference between COVER and the work
described here is in the granularity of the graph constructed.
In COVER the nodes of the graph represent rules, and the
edges represent dependencies or relations between rules,
while in our representation each rule is itself represented
by a small sub-graph, which allows us to carry out a more
detailed analysis of which inference relations have and have
not been exercised by the test data.

2.4. Pr/T nets

The graph representation we are using is closer in some
respects to the Pr/T net representation of a rule-base than it
is to any of the other graph-based methods. In the majority
of the graph-based methods a rule from the rule-base is
equivalent to a node in the graph, while in our graph
nodes correspond to individual findings or hypotheses, not
to entire rules. Similarly, in the Pr/T net representation [20]
the level of details is the findings and hypotheses, not the
rules. However, only static analysis of the rule base is
carried out using the Pr/T net representation.

2.5. Path Hunter and Path Tracer

The VV & T approach based on the execution path
model, incorporated in Path Hunter and Path Tracer
[21,22], shares the fundamental premise upon which our
work is based: functional validation may show that the
system performs well on the test cases, but there may still
be problems in portions of the rule base that were never
exercised during testing. The goal of Path Hunter/Path
Tracer is the selection of a set of test cases that exercise
the structural components of the rule-base as exhaustively as
possible. This involves firing all rules, and also firing every
“causal sequence” of rules. The model used to identify all
possible dynamic causal rule firing sequences is therule
execution path(equivalent to a sub-DAG in our representa-
tion).

Path Hunter uses structural path analysis to detect poten-
tial interactions between rules in a rule-based and to identify
problems within the rule-base, essentially using a path
enumeration step. The complexity is controlled by precom-
puting the logical completion for each subproblem and by
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the use of equivalence classes of rules, formed by collecting
redundant rules together into one class, which reduces the
number of paths that Path Hunter must generate. (In our
approach the step of explicit identification of redundant
and ambiguous rules is unnecessary, as they will be identi-
fied through the graph construction process. Therefore,
while there may be redundant rules in the rule-base, there
will be no duplication of those rules within our graph repre-
sentation.)

Path Tracer is a tool for structural rule-base testing, using
the paths generated by Path Hunter, in conjunction with
traces of dynamic rule firings, to determine how extensively
the possible execution paths are covered by the test data.

While there are a number of similarities in the premises
which underlay our approach and Path Hunter/Path Tracer,
there are also significant differences between the two
approaches. First, the graph we construct models the rule-
base at the level of findings and hypotheses, rather than at
the rule level as is carried out in the Path Hunter representa-
tion. While this may make the graph somewhat larger, it
allows us to carry out both V & V with one representation.
This is in contrast to COVER, which requires two represen-
tations, the first-order logic translation of the rules and the
dependency graph, in order to carry out verification alone.

Second, the methods by which rule-base coverage are
determined or measured are quite different. Path Tracer
does its assessment of path coverage based on the number
of causal dependencies observed in the trace file after the
test data is run, using a number of strategies to map concrete
paths observed at run time to the abstract paths generated by
Path Hunter. In our approach, as the effect of concrete
firings is indicated directly in the graph representation of
the rule-base, we can determine rule-base coverage directly
from the graph after the test data is run. We determine
the extent of rule-base coverage by considering whether
the state of the graph after the test data is run satisfies
the four rule-base coverage measures.

2.6. Logical path graph model

The logical path graph (LPG) model [23,24] is based on
program control flow analysis. It attempts to apply cyclo-
matic complexity and basis path testing to the rule-base
environment to find a graphical representation of rule-
bases which could then be used to determine rule-base
complexity and determine a set of paths through the rule-
base that, when executed, would adequately test the rules
and their interactions.

The logical path graph is a directed graph in which the
nodes represent individual rules and the edges are deter-
mined by logical paths through the rule base. The goal of
Kiper’s work [23,24] is to use the LPG to determine a set of
paths through the rule-base such that traversal of those paths
during system testing represents an adequate test of the rules
and their interactions. However, there are certain problems
that arise in the use of logical paths. If there are multiple

edges entering a node in the graph, they can be interpreted
either as an AND or an OR relation. In order to avoid the
possibility of OR edges the node must be replicated, in
effect creating in the LPG the kind of redundancy which
we usually try to remove from rule-bases. This results in
the possibility of a single rule being represented by multiple
nodes. If both AND and OR edges are to be allowed then the
person evaluating the LPG must know what type each edge
is. In addition, because of the possibility of multiple nodes
representing a single rule, each node has to be labeled not
just with the rule number but also with thecondition set, the
set of all conditions asserted by nodes on the path leading to
the node.

There are significant differences between the LPG and
our approach. The graph structure we propose is based on
findings and hypotheses and directly models the logical
relations within rule antecedents, whereas the structure
used for the LPG is built at the rule level. This difference
in the graph construction allows us to avoid putting identi-
fying information on edges or replicate rule representations,
as is the case in the LPG.

3. Testing with rule-base coverage measures

The first step in rule-base testing with coverage measures
is to build a graph representation of the rule-base. Our
method uses a directed acyclic graph (DAG) representation.
We assume a generic propositional rule-base language [3]
into which other rule-base languages can be translated.
During construction of the DAG, pairwise redundant
rules, pairwise simple contradictory rules and potential
contradictions (ambiguities) are identified. After DAG
construction is complete, static analysis (verification) of
the rule-base reports dangling conditions (an antecedent
component that is not defined as a finding and is not
found as the consequent of another rule), useless conclu-
sions, and cycles in the rule-base. At this point the rule-
based could be modified to eliminate or correct any static
problems.

The static analysis phase is followed by dynamic analysis
of the rule-base using test cases. As test cases are processed,
one or more of several rule-base coverage measures
(RBCMs) can be reviewed in order to determine the quality
of the test data supplied thus far. Additional information
about the rule-base and its testing can also be used by the
system tester to guide the selection of future test data. The
tester would start by providing sufficient test data to satisfy
the simplest functional measure (conclude each class of the
system) and proceed to the more difficult structural
measures. Finally, if the user is not able to provide sufficient
data to attain the desired degree of rule-base coverage
(according to the selected criterion), the user can use the
DAG representation to synthesize data, which can then be
reviewed by an expert to determine if the data represents a
valid case in the problem domain.
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This testing approach, described more fully later, has
been implemented in the TRUBAC tool (Testing with
RUle-BAse Coverage) [3,25].

3.1. Rule-base representation

In order to evaluate the rule-base coverage, the rule-base
must be in a form which allows identification of sections
which have and have not been covered by the test data. Our
representation is based on the AND/OR graph implicit in the
rule base [26]. The DAG has a source node, corresponding
to working memory, and a sink node, corresponding to
success in reaching one of the classes (diagnoses or goals)
of the system. Interior nodes are sub-class nodes (SUBs),
representing intermediate hypotheses, and operator nodes,
representing the allowable operators AND, OR, and NOFM1

nodes. These operator nodes represent the fact that the
conjunction and/or disjunction of multiple components of
an antecedent must be true in order for the conclusion of a
rule to be entered into working memory. There are edges
from the source to each finding and from each class to the
sink. The antecedent of each rule is represented by a
subgraph, which connects findings and sub-class nodes to
operators as indicated by the antecedent. Each antecedent-
consequent connection represented by a rule is also repre-
sented by an edge from the subgraph for the antecedent to
the node for the consequent:

For example, the representation of the two rules

If P1 andP2 thenR1

If R1 andR2 thenQ

is shown in Fig. 3. P1, P2 and R2 could be findings or sub-
class nodes, while R1 and Q are either class or sub-class
nodes. The complete graph of a rule-base is constructed by
linking together the individual structures for successive
rules. Using this framework we can easily represent rule-
bases, including those in which the certainty factors are hard
coded within the consequent definitions (rather than
computed during the inference process) such as the rules
in Fig. 4.

3.2. Rule-based coverage measures

Using the DAG structure described earlier, we define

execution pathsin a rule-based system. Each reasoning
chain through the rule-base corresponds to a sub-DAG,
which includes all nodes and edges in the DAG correspond-
ing to the rules fired during a particular chain of inferences.
This include: source node; sink node; all nodes correspond-
ing to the findings involved; the node for the concluded
class; all nodes corresponding to antecedent components,
operators, and rule consequents; and all edges involved in
antecedent–consequent links formed by the rule connec-
tions used in the reasoning chain. An individual rule firing
involves all edges and nodes in the graph that corresponds to
that rule. Anexecution pathis, therefore, the sub-DAG that
corresponds to all the rules fired along a particular reasoning
chain executed due to a specific set of findings.

Ideally, in testing a rule-base, we would like to provide
sufficient test data to cause every possible execution path of
the DAG to be traversed. This corresponds to firing all rules
in every combination possible. As this is usually not
reasonable in the testing environment, we propose the
following hierarchy of rule-base coverage measures
(RBCMs) in order to guide the selection of test data and
give an objective measure of how well a test suite has
covered the rule-base.

Each-class:Satisfied if the test data causes traversal of
one execution path to each class of the system. This is
equivalent to providing, for each class, one test case that
concludes that class. This is a very minimal coverage
measure, which should be satisfied by all expert systems
developers, regardless of their overall testing strategy.
Each-hypoth: Satisfied if the test data causes traversal of
execution paths such that each sub-class is reached, as
well as each class. This shows that each sub-class is actu-
ally reachable from the source andappearsto be a rele-
vant part of the system. The set of test data which satisfies
this coverage measure is a superset of that which satisfies
Each-class.
Each-class-every-sub: There may be many execution
paths that connect each sub-class to each class (and no
execution paths for some sub-class to class combina-
tions). This coverage measure is satisfied if, for each
sub-class to class combination connected by some execu-
tion path, at least one execution path, which includes the
combination is executed. This coverage measure is stron-
ger thanEach-hypoth.
Each-class-every-finding: There may be many execution
paths that connect each finding to each class (and no
execution paths for some finding-class combinations).
This coverage measure is satisfied if, for each finding-
class combination connected by some execution path, at
least one execution path which includes the combination
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Fig. 3. DAG representation of two related rules.

Fig. 4. Rules with hard coded certainty factors.

1 NOFM nodes represent the construction “ifN of the followingM things
are true, then…”, which is a feature of EXPERT [27] rule-bases.



is executed. This coverage measure is stronger thanEach-
classbut is incomparable toEach-hypothasEach-hypoth
can be satisfied without complete traversal of any execu-
tion paths for some finding-class combinations.
All-edges: This RBCM is satisfied if the data causes
traversal of a set of execution paths such that every infer-
ence relationship (every edge in the graph) is utilized
along some inference path. While this will not guarantee
that all rules will be used in every combination possible, it
will guarantee that every rule is used in all possible ways
along some execution path. In a rule-base with no NOFM
nodes, the data that satisfies this RBCM will be a superset
of the data necessary to satisfyEach-class-every-finding
andEach-class-every-sub.

In typical usage the tester will run a number of test cases
and then query TRUBAC to determine whether each RBCM
has been satisfied. If a coverage measure is not satisfied then
TRUBAC will show what relationships remain to be
covered in order to satisfy the RBCM.

We assume the existence of an oracle that determines if
the result given by the rule-base for a test case is correct2 or
not. In this work we do not consider the issue of specifica-
tions and how we determine if an answer is correct or not. If
an answer is wrong, then the execution path that led to its
conclusion is suspect and must be studied for errors. If the
answer is right then the path is only of interest to the extent
that it helps satisfy the coverage measure(s) chosen by the
tester.

In a very complex rule-base, or one for which there is
very little test data, the RBCMs help the tester determine
ways in which the data is deficient in testing portions of the
rule-base. The coverage measures provide the user with
information that can lead to the acquisition or development
of additional test cases, or will indicate errors in the rule-
base. This approach can also address a difficulty often faced
by those who test expert systems, which is a paucity of test
data. An additional feature of this approach to rule-base
testing can help the user gain insight into the correctness
of the system even when little test data is available. In
addition to evaluating the five coverage measures, the
DAG framework can be used to generate test data, which
would lead to traversal of any execution paths not exercised
by the test data. This synthesized data can then be shown to
one or more experts in order to determine if each synthe-
sized test case, which is a reflection of the logic embodied
within a section of rule-base (corresponding to an execution
path), makes sense in the context of the problem domain
which the rule-base was designed to handle. If the expert

does not agree that the data represents a plausible case in the
problem domain then the section of the rule-base repre-
sented by that section of the graph must be reviewed for
errors.

4. Applications of coverage analysis

In addition to providing information about the testing
process itself, the coverage analysis can be used to enhance
testing and facilitate other kinds of rule-base analysis, as
described below.

4.1. Heuristics for test data selection

There may be a large redundant pool of available test
data, from which a subset of cases must be selected for
the test suite. Running all available cases can be infeasible
due to the length of time it may require. A random selection
of test cases may give statistical confirmation that the
system works properly for the tested situations, but a poor
selection of cases will lead to an incomplete test set which
then leads to incomplete coverage of the rule-base. If a test
set which we know is incomplete leads to complete cover-
age of the rule-base then the rule-base is incomplete and is
not capable of handling precisely those types of cases that
are absent from the test suite. If an incomplete test set leads
to incomplete coverage, we can use the coverage informa-
tion as the foundation for a set of heuristics for test data
selection from the available population, in order to construct
a test set that will maximize rule-base coverage.

To date we have restricted our work to classification
systems in which each goal of the system is a class and
we consider each intermediate hypothesis to be a sub-
class. Assuming that we have a degree of meta-knowledge
about the make-up of individual test cases (e.g. what facts or
intermediate hypotheses are involved in each case), a set of
heuristics for data selection is:

1. For each class, select a test case which concludesonly
that class.

2. For each class not yet tested, select a test case which will
conclude it (and additional classes). At this pointEach-
classwill be satisfied.

3. Select test cases which will conclude unused sub-classes.
This satisfiesEach-hypoth.

4. Select test cases which will cover sub-class to class rela-
tions, and direct finding to class relations for findings
which do not lead to an intermediate sub-class. This
satisfiesEach-class-every-sub.

5. Select test cases which will cover finding to class rela-
tions for findings which represent alternative ways to
conclude sub-classes. That is, while a sub-class to class
relation may have been covered, there may be multiple
ways to conclude the sub-class. This satisfiesEach-class-
every-finding.

In [3,29] we show that the use of coverage information,
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along with meta-knowledge about the pool of available
cases, can successfully be used to select the test cases in a
way that contributes to a useful test of the rule-base. This
results in greater assurance that the system has been tested
and works correctly for the situations that we expect to
encounter most often, as well as clearly identifying those
parts of the system that still require more examination, test-
ing, or refinement.

4.2. Class dependence

Another aspect of rule-base analysis or evaluation is the
identification of class dependencies, in which the rules that
lead to the conclusion of one class are also highly involved
in the conclusion of another class. If two classes, C1 and C2,
are dependent, and we have a large number of test cases that
will be classified as C1, it may be that some of those cases
will also be classified as C2, although with differing
certainty factors. Because of this, testing for one class
may help achieve coverage for the other. Further, if C1
and C2 are dependent classes and we change rules for C1
then we should rerun test cases, which conclude C1, and
rerun test cases, which conclude C2. This will verify that
changing rules for C1 did not inadvertently affect the
system’s ability to properly classify C2 as well.

To determine if two classes have rules in common we
look at sharing or overlap among the sets of sub-classes
that can lead to a class. A high degree of overlap among
sub-classes implies overlap among the rules and a degree of
dependency between those classes.

This information can be obtained immediately from data
collected while the DAG representation is built. For each
class a list of all the sub-classes which can help to conclude
the class is formed, and then these lists are compared for
pairs of classes. Table 1 shows the overlap figures for a
small prototype of the AI/RHEUM system for rheumatology
diagnosis [4]. These figures indicate that 57% of the sub-
classes, which lead to RA (rheumatoid arthritis) lead to
MCTD (mixed connective tissue disease), while 36% of
the sub-classes, which can lead to MCTD also lead to RA.
There is asymmetry in these figure’s results because the
absolute number of sub-classes which can lead to the classes
is different. These figures indicate that modifications made
to the rules for RA would possibly also affect the perfor-
mance of the system on cases that should be classified as

MCTD, while there would be a lesser affect on the system’s
classification of cases as RA if the rules for MCTD were
modified.

These results are consistent with those found in [30],
which uses Monte-Carlo simulation-based techniques to
carry out rule-base evaluation. However, in our approach
we obtain this information as a by-product of DAG
construction, without the overhead of rule-base execution.

4.3. Rule-base pruning

Once a rule-base has been constructed, it is possible that
not all the rules are necessary for the rule-base to perform
correctly. For example, during incremental development
some early rules may be supplanted by rules added later.
If the system can be pruned by removing rules or compo-
nents within rules, and the performance on test cases is not
affected, then it is possible that there were unnecessary rules
or that the test cases are not adequate to evaluate the entire
rule-base [30]. Further, we expect that a smaller rule-base
will run more efficiently.

Coverage information can focus the pruning steps on
sections of the rule-base which have not been executed
by the test data. If a section of the rule-base is never
executed during test suite execution then either there are
unnecessary rules, which can be pruned, or the test suite is
not sufficiently rich. In the latter case, additional test cases
are necessary to cover the un-executed section of the rule-
base. In general the developer and/or the expert will decide
whether the proper approach is to prune or to add test
cases.

If the test suite is truly representative of cases that will be
found in the application environment, and the rule-base
performs correctly on the test set, then it is likely that the
uncovered portion of the rule-base is in fact unnecessary and
can be pruned. If the test set is complete and the rule-base
performs incorrectly then the uncovered sections of the rule-
base are candidates for rule refinement. The coverage
measures provide information about why the rules were
never used, based on findings and sub-classes which appear
in rule antecedents but are not present in any test cases.
Removal of these antecedent components from the rules
may generalize them sufficiently that they will correctly
handle some of the test cases and will be covered by an
existing portion of the test suite.

In experiments run on the RHEUM rule-base, the first
phase of pruning was based on TRUBAC’s static analysis
results. We were able to prune 5 rules out of 76, as well as
eliminate 85 findings and 3 classes. This significantly
reduced the overall size of the graph over which coverage
was evaluated from 333 nodes to 241 nodes [3]. Two addi-
tional pruning iterations, based on the coverage data and the
assumption that the test set was complete, eliminated 20
rules, 6 findings, and 15 components of rule antecedents.
This resulted in an overall 34% reduction in the number of
rules and a 40% reduction in the graph size.
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Table 1
Overlap of sub-classes for class pairs

PM PSS SLE MCTD RA

PM 0 0 22.22 22.22
PSS 0 16.67 16.67 16.67
SLE 0 9.09 0 0
MCTD 18.18 9.09 0 36.36
RA 28.57 14.29 0 57.14



4.4. A metric for rule-based systems

The coverage measures can be very useful for the testing
process. However, it would also be useful to have a way to
predict or measure the complexity of the system and of the
testing process before testing is begun. We would also like
to be able to compare the complexity of different rule-bases,
particularly if there are multiple rule-bases that handle
problems within a common domain. This raises the issue
of whether there is a reasonable analog to the control flow
graph and, more importantly, a complexity metric for rule-
bases which would reflect the relationship between rule-
base structure and system complexity.

The graph representation proposed here serves as a suita-
ble foundation for such a complexity metric for rule-based
systems. The graph imposes no particular execution order
on the rules, and it represents all logical relations that are
inherent within the rule-base. However, graph-based
metrics such as McCabe’s cyclomatic complexity metric
cannot adequately determine the number of execution
paths in a rule-base. The actual number of execution paths
is based on the logical relationships in the rule-base, using
the following mechanism:

• For each finding, we assume there is only one path to it.
• For each OR or SUB node, consider the parent nodes.

The number of paths to the OR or SUB node is the sum of
the paths to the parent nodes.

• For each AND node, compute the product of the number
of paths that lead to each parent of the AND.

• Class nodes are treated like OR or SUB nodes. The total
number of paths through the rule-base is computed by
adding up the number of paths to each class node. In Fig.
5 there are a total of five paths toG based on three paths
to the SUB node and two paths to the OR node.

This metric can be computed fairly easily by visiting the
nodes in topological order and saving in each node the
number of paths to that node.

This execution path metric can serve a number of
purposes in rule-base development and analysis. The total
number of execution paths represents the maximum number
of test cases needed for complete coverage of the rule-base
according to the strongest rule-base coverage measure (All-
edges).

However, usually the actual number of data sets needed
will be less than the number of execution paths, as often,
particularly in diagnosis systems, one test set may cover a
number of execution paths to different diagnoses.

5. Conclusions and future work

This work shows that there are numerous uses of rule-
base coverage data in the testing process. Rule-base perfor-
mance evaluation can be misleading unless care is taken to
identify problems with both the test data and the rule-base.
Both the test data and the rule-base can be improved by
using information about the extent to which the test data
has covered the rule-base under test.

This work can be extended in a number of directions.
Quantitative performance prediction can be computed
based on performance of the system on test cases, a measure
of how well the test data covers the rule-base, and a measure
of the degree to which the test set is representative of the
population for which the system is intended. A second area
of extension is for systems which have dynamic computa-
tion of certainty factors, which requires modification of the
rule-base coverage measures [3] as well as changes to the
implementation and the data selection heuristics. It would
also be useful to extend the approach to systems that are not
acyclic and prepositional. This would greatly increase the
practicality of this method for testing rule-bases in a variety
of application areas.

Another area which should be studied in the future is that
of the relationship between rule-base complexity and the
difficulty of carrying out the testing process. While intui-
tively it may seem that a more complex rule-base should
undergo more complex and stringent testing, it may in fact
be the impact of an incorrect result that should determine the
quality of the testing. For example, in a medical diagnosis
system if an incorrect result could lead to not providing
treatment to an ill patient then all steps possible should be
taken to ensure that the system works correctly, no matter
how complex or simple the rule-base is.

Finally, it may be possible to extend this approach to
analyze the Bayesian belief networks. The probabilistic
relationships between nodes of the network, with informa-
tion flow which is bi-directional along the arcs, and nodes
which may be dependent in some contexts and independent
in others, significantly complicates this task.
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