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Abstract.  This paper describes a probabilistic integrated object recognition 

and tracking framework called PIORT, together with two specific methods 

derived from it, which are evaluated experimentally in several test video 

sequences.  The first step in the proposed framework is a static recognition 

module that provides class probabilities for each pixel of the image from a 

set of local features. These probabilities are updated dynamically and 

supplied to a tracking decision module capable of handling full and partial 

occlusions. The two specific methods presented use RGB colour features 

and differ in the classifier implemented: one is a Bayesian method based on 

maximum likelihood and the other one is based on a neural network. The 

experimental results obtained have shown that, on one hand, the neural net 

based approach performs similarly and sometimes better than the Bayesian 

approach when they are integrated within the tracking framework. And on 

the other hand, our PIORT methods have achieved better results when 

compared to other published tracking methods in video sequences taken 

with a moving camera and including full and partial occlusions of the 

tracked object. 
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1. Introduction  

 

One of the most general and challenging problems a mobile robot has to confront is to 

identify, locate and track objects that are common in its environment. To this end, 

object models have to be defined or learned in conjunction with some associated 

recognition and tracking procedures. There are several issues that have to be considered 

while dealing with object locating and tracking which deserve some previous 

discussion. 

 

The first important issue is to determine the type of object model to learn, which usually 

depends on the application environment. For instance, in [1], the target was an aerial 

vehicle. And in [2,3,4,5] the targets were people. In [6], they used specific parameters of 

the object to be tracked. In [7], they track hands using textures. 

In [8], they developed and implemented a real system for simultaneous localization 

and mapping (SLAM) algorithm for mobile robots based on an extended Kalman filter. 

It was applied to indoor environments and used stereo vision based on two web-cam. 

The system diverges from ours in that we like to track objects captured from the mobile-

robot cameras, instead of localize the position of our robot. 

While tracking the object, for instance people walking in the street, the system could 

try to recognize person the through a face recognition system. There is a lot of literature 

related to this field [9]. Moreover, other systems not only indentify subjects but detect 

the mood of these subjects or detect specific pathologies [10]. Face identification or 

recognition is not the scope of this paper. 

Finally, other field related to object tracking is automatic hand-gesture recognition [11]. 

In this kind of systems, hands have to be tracked and the trajectory (position, speed, 

acceleration) has to be analyzed to conclude the meaning of this movement. 

In our case, we want a mobile robot equipped with a camera to locate and track general 

objects (people, other robots, balls, wastepaper bins …) in both indoor and outdoor 

environments. A useful object model should be relatively simple and easy to acquire 

from the result of image processing steps. For instance, the result of a colour image 

segmentation process, consisting of a set of regions or spots, characterized by simple 

features related to colour, may be a good starting point to learn the model [7, 12]. 

Although structured models like attributed graphs or skeletons can be synthesized for 

each object from several segmented images [13, 14], we have decided to investigate a 

much simpler approach in which the object is just represented as an unstructured set of 

pixels. Other methods detect some characteristic points of the object to be tracked [15]. 

At a learning phase, the most repeatable object keypoints for the specific object are 

learned. Another interesting work is [16], in which the algorithm search for different 

region tracks. These methods have been proven to have a good performance when there 

is low variability of the features of the object. Nevertheless, with deformable objects, it 

is difficult to extract some representative points.  

 

One of the main drawbacks of structural methods is that the segmented images can be 

quite different from one frame to the other, and therefore it is difficult to match the 

structure in the current frame with the previous ones. In [17], the model was specially 

designed to segment and track objects from video sequences that suffer from abrupt 

changes. The starting point of our approach is to accept these differences between 

segmented images and use a more rudimentary model in which the basic element is not 

the spot or region of the segmented image but its pixels. An example of structural 
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method was reported in [14], where the object model was based on the skeleton of the 

object obtained in the segmented images. Since the skeletons resulting from two almost 

equal images can be very different, the applicability of such approach is limited. The 

tracking step was performed in [14] by an extension of the Kalman filter in which the 

skeleton and other geometrical features were considered. Other options has been [18,19] 

where the model specifically incorporated the relation between position and time. 

Finally, other methods are based on keeping the information of the silhouette of the 

object to be tracked. In [5], the method is based on learning a dynamic and statistical 

model of the silhouette of the object. In our case, we cannot use this system since we 

assume that the deformation of the object to be tracked is not predictable.   

 

A second significant issue is to provide the tracking procedure with the capacity of 

determining occlusions and re-emergencies of tracked objects, i.e. occlusion handling. 

Over recent years, much research has been developed to solve the problem of object 

tracking under occlusions [4], because, in real-world tracking, a target being partly or 

entirely covered by other objects for an uncertain period of time is common. Occlusions 

pose two main challenges to object tracking systems. The first challenge is how to 

determine the beginning and the end of an occlusion. The second challenge is how to 

predict the location of the target during and at the end of the occlusion. 

 

Determining occlusion status is very hard for the trackers where the only knowledge 

available on the target is its initial appearance. When some parts of an occluder are 

similar to those of the target, the occluder and the target are mistaken. Various 

approaches that analyze occlusion situations have been proposed. The most common 

one is based on background subtraction [4, 19, 20]. Although this method is reliable, yet 

it only works with a fixed camera and a known background, which is not our case in 

mobile robotics. In [4], they used several cameras, and tracking and occlusion of people 

is solved by a multi-view approach. In [20], they achieve real-time tracking with small 

images. Evidence is gathered from all of the cameras into a synergistic framework. 

Other approaches are based on examining the measurement error for each pixel [22, 23]. 

The pixels that their measurement error exceeds a certain value are considered to be 

occluded. These methods are not very appropriate in outdoor scenarios, where the 

variability of the pixel values between adjacent frames may be high. A mixture of 

distributions is used in [24] to model the observed value of each pixel, where the 

occluded pixels are characterised by having an abrupt difference with respect to a 

uniform distribution. Contextual information is exploited in [25, 27]. These methods 

have better performance in terms of analysing occlusion situations but tracking errors 

are observed to frequently occur and propagate away. In addition, in the case of using 

these approaches in a mobile robot application, there is a need of knowing a priori the 

robot surroundings. 

 

Determining the re-emergence of the target and recapture its position after it is 

completely occluded for some time is the other main challenge. Setting a similarity 

threshold is one method, yet the optimal threshold value is difficult to determine. This 

problem is circumvented in [22], where the image region that matches the best with the 

template over a prefixed duration is assumed to be the reappearing target. In [23], an 

observation model and a velocity motion model were defined. The observation model 

was based on an adaptive appearance model, and the velocity motion model was derived 

using a first-order linear predictor. Both approaches are defined in the framework of 

particle filter, with provisions for handling occlusion. 
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In the scenarios where the motion of the target is not smooth neither predictable most of 

the aforementioned methods would fail. Recently, new object tracking methods that are 

robust to occlusion have been reported with very promising results [27, 28]. The method 

reported in [27] relies on background subtraction (it works only for static cameras) and 

a k-NN classifier to segment foreground regions into multiple objects using on-line 

samples of object’s appearance local features taken before the occlusion. The method 

described in [28] relies on an adaptive template matching but it only handles partial 

occlusions and the matching process seems to be computationally costly. 

 

A third relevant issue, which generally is not so mentioned, is to integrate the 

recognition and tracking steps in a common framework that helps to exploit some 

feedback between them. To the best of our knowledge there are few existing works that 

combine recognition and tracking in an integrated framework [29, 30]. Object 

recognition and tracking are usually performed sequentially and without any feedback 

from the tracking to the recognition step [14]. These tasks often are treated separately 

and/or sequentially on intermediate representations obtained by the segmentation and 

grouping algorithms [31-33]. Sometimes, they are applied in a reverse order, with a first 

tracking module supplying inputs to the recognition module, as, for instance, in gesture 

recognition [34]. 

 

An integrated framework for tracking and recognising faces was presented in [30]. 

Conventional video-based face recognition systems are usually embodied with two 

independent components: the recognition and the tracking module. In contrast, an 

architecture was defined in [30] that tightly couples these two components within a 

single framework. The complex and nonlinear appearance manifold of each registered 

person was partitioned into a collection of sub-manifolds where each models the face 

appearances of the person in nearby poses. The sub-manifolds were approximated by a 

low-dimensional linear subspace computed by PCAs. Finally, Artificial Intelligence was 

applied to tracking objects in [35]. 

 

This paper describes thoroughly and in detail the current state of a probabilistic 

integrated object recognition and tracking (PIORT) methodology that we have 

developed in the latest years, as well as two particular methods derived from it. It also 

presents a collection of experimental results in test video sequences obtained by PIORT 

methods and alternative tracking methods. Previous stages in the development of 

PIORT, together with preliminary results, have been partially reported elsewhere [36-

39].  

 

In the experimental evaluation carried out, PIORT methods have been compared to six 

state-of-the-art tracking methods of which we were able to get and apply their program 

codes to the test video sequences: 

 

- Template Match by Correlation (TMC) [40];  

- Basic Meanshift (BM) [41];  

- Histogram Ratio Shift (HRS) [42];  

- Variance Ratio Feature Shift (VRFS) [42];  

- Peak Difference Feature Shift (PDFS) [42]; and  

- Graph-Cut Based Tracker (GCBT) [43, 44]. 
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Their codes were downloaded from the VIVID tracking evaluation web site 

www.vividevaluation.ri.cmu.edu, which unfortunately seems not to be accessible 

anymore. We briefly summarise these methods next. 

 

In the TMC method [40], the features of the target object are represented by histograms. 

These histograms are regularised by an isotropic kernel which produce spatially smooth 

functions suitable for gradient-based optimisation. The metric used to compare these 

functions is based on the Bhattacharyya distance and the optimisation is performed by 

the mean-shift procedure. 

 

In [41] a general non-parametric framework is presented for the analysis of a 

multimodal feature space and to separate clusters. The mean-shift procedure 

(localisation of stationary points in the distributions) is used to obtain the clusters. 

Throughout this framework, a segmentation application is described. 

 

In [42] three different tracking methods are presented. They are based on the hypothesis 

that the best feature values to track an object are the ones that best discriminate between 

the object and the present background. Therefore, with several sample densities of the 

object and also of the background, the system computes the separability of both classes 

and obtains new features. The feature evaluation mechanism is embedded in a mean-

shift tracking system that adaptively selects the top-ranked discriminative features for 

tracking. In the first method, Histogram Ratio Shift (HRS), the weights applied to each 

feature are dynamically updated depending on the histograms of the target and also of 

the background. In the second one, Variance Ratio Feature Shift (VRFS), the ratio 

between the variance of the target and the surrounding background is computed and 

considered for selecting the features. Finally, the Peak Difference Feature Shift (PDFS) 

softens the histogram of the features by a Gaussian kernel; moreover, it considers 

possible distracter objects near the target and dynamically changes the feature selection. 

  

And finally, in [43, 44], a method for direct detection and segmentation of foreground 

moving objects is presented called Graph-Cut Based Tracker (GCBT). The method first 

obtains several groups of pixels with similar motion and photometric features. The 

mean-shift procedure is used to validate the motion and bandwidth. And then, the 

system segments the objects based on a MAP framework. 

 

Our PIORT methodology is based on the iterative and adaptive processing of 

consecutive frames by a system that integrates recognition and tracking in a 

probabilistic framework. The system uses object recognition results provided by a 

classifier, e.g. a Bayesian classifier or a neural net, which are computed from colour 

features of image regions for each frame. The location of tracked objects is represented 

through probability images that are updated dynamically using both recognition and 

tracking results. The tracking procedure is capable of handling quite long occlusions. In 

particular, object occlusion is detected automatically and the prediction of the object’s 

apparent motion and size takes into account the cases of occlusion entering, full 

occlusion and occlusion exiting. In contrast with [27], our tracking method does not rely 

on background subtraction and a fixed camera and, to the contrary of [28], it can cope 

with complete occlusion and it does not involve any template to match and update. 

 

In our approach, the following assumptions are made:  

i) target objects may be distinguished from other objects and the background based on 
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colour features of their appearance, though these features may experiment slight 

variations during the image sequence; in fact, this is a requirement of the classifiers we 

currently use for static recognition and could be relaxed or changed if the classifier in 

this module were replaced or used a different set of object’s appearance features; 

ii) target object’s shape, apparent motion and apparent size can all vary smoothly 

between consecutive frames (non-rigid deformable objects are thus allowed); we think 

this is not a strong assumption if a typical video acquisition rate is used, as large 

changes in shape, motion and size are allowed for the whole sequence; 

iii) image sequences may be obtained either from a fixed or a slow moving camera (this 

is also quite realistic for most applications in practice);  

iv) target objects may be occluded during some frames, but their motion does not 

change abruptly during occlusion; this last assumption is certainly stronger and may fail 

in some cases, but it is caused by the need of predicting an approximate position of the 

object during occlusion based on its previous trajectory.  

 

The rest of the paper is organized as follows. A formal description of our probabilistic 

framework for object recognition and tracking is given in Section 2. As shown in Fig. 1, 

the system involves three modules: static recognition, dynamic recognition and tracking 

decision modules. The methods used for the static recognition module are specified in 

Section 3. The dynamic recognition module is explained in Section 4. The tracking 

decision module is described in detail in Section 5. The experimental results are 

presented in Section 6. Finally, conclusions and future work are discussed in Section 7. 

 



 7 

2.  A probabilistic framework for integrated object recognition and 

tracking 

 

Let us assume that we have a sequence of 2D color images I
 t
(x,y)  for t=1,…,L, and that 

there are a maximum of N objects of interest in the sequence of different types 

(associated with classes c=1,…,N, where N≥1), and that a special class c=N+1 is 
reserved for the background.  Furthermore, let us assume that the initial position of each 

object is known and represented by N binary images, pc
0
(x,y), for c=1,…,N,  where 

pc
0
(x,y)=1 means that the pixel (x,y) belongs to a region covered by an object of class c 

in the first image.  If less than N objects are actually present, some of these images will 

be all-zero and they will not be processed further, so, without loss of generality, we 

consider in the sequel that N is the number of present objects to track. 

 

Hence, we would like to obtain N sequences of binary images  Tc
t
(x,y), for c=1,…,N,  

that mark the pixels belonging to each object in each image; these images are the 

desired output of the whole process and can also be regarded as the output of a tracking 

process for each object. We can initialize these tracking images (for t=0) from the given 

initial positions of each object, this is 

    ),(),( 00 yxpyxT cc =                                                 (1) 

In our approach, we divide the system in three modules. The first one performs object 

recognition in the current frame (static recognition) and stores the results in the form of 

probability images (one probability image per class), that represent for each pixel the 

probabilities of belonging to each one of the objects of interest or to the background, 

according only to the information in the current frame.  This can be achieved by using a 

classifier that has been trained previously to classify image regions of the same objects 

using a different but similar sequence of images, where the objects have been 

segmented and labeled. Hence, we assume that the classifier is now able to produce a 

sequence of class probability images Qc
t
(x,y)  for t=1,…,L and c=1,…,N+1, where the 

value Qc
t
(x,y) represents the estimated probability that the pixel (x,y) of the image I

 t
(x,y)  

belongs to the class c, which has been computed taking into account a local feature 

vector (see Section 3).  In general, the probability images Qc
t
(x,y) can be regarded as the 

output of a static recognition module defined by some function r on the current image: 

( ) ),(),( yxIryxQ tt

c =                                              (2) 

 

In the second module (dynamic recognition), the results of the first module are used to 

update a second set of probability images, pc , with a meaning similar to that of Qc but 

now taking into account as well both the recognition and tracking results in the previous 

frames through a dynamic iterative rule. More precisely, we need to store and update 

N+1 probability images pc
t
(x,y), for c=1,…,N+1,  where the value pc

t
(x,y)  represents the 

probability that the pixel (x,y) in time t belongs to an object of class c (for c=1,…,N) or 

to the background (for c=N+1). In general, these dynamic probabilities should be 

computed as a certain function f of the same probabilities in the previous step, the class 

probabilities given by the classifier for the current step (which have been obtained from 

the actual measurements) and the tracking images resulting from the previous step: 

( ) ),(),,(),,(),( 11 yxTyxQyxpfyxp tttt

c

−−=                     (3) 
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The update function f used in our system is described in Section 4, which incorporates 

some additional arguments coming from the tracking module to adapt its parameters. 

 

Finally, in the third module (tracking decision), tracking binary images are determined 

for each object from the current dynamic recognition probabilities, the previous tracking 

image of the same object and some other data, which contribute to provide a prediction 

of the object’s apparent motion in terms of translation and scale changes as well as to 

handle the problem of object occlusion. Formally, the tracking images Tc
t
(x,y) for the 

objects (1≤c≤N) can be calculated dynamically using the pixels probabilities p
t
(x,y) 

according to some decision function d: 

 ( ) ),(),,(),( 1 yxTyxpdyxT t

c

tt

c

−=                                    (4) 

in which some additional arguments and results may be required (see (12) and Section 5 

for a detailed description of the tracking decision module). 

 

3.  Static recognition module 

 

In our PIORT (Probabilistic Integrated Object Recognition and Tracking) framework, 

the static recognition module is based on the use of a classifier that is trained from 

examples and provides posterior class probabilities for each pixel from a set of local 

features. The local features to be used may be chosen in many different ways. A 

possible approach consists of first segmenting the given input image I 
t
(x,y) in 

homogeneous regions (or spots) and computing some features for each region that are 

afterwards shared by all its constituent pixels. Hence, the class probabilities Qc
t
(x,y) are 

actually computed by the classifier once for each spot in the segmented image and then 

replicated for all the pixels in the spot. For instance, RGB color averages can be 

extracted for each spot after color segmentation and used as feature vector v(x,y) for a 

classifier. In the next two subsections we present two specific classifiers that have been 

implemented and tested within the PIORT framework using this type of information. 

 

Figure 1: Block diagram of the dynamic object recognition and tracking process. 
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3.1  A simple Bayesian method based on maximum likelihood and background 

uniform conditional probability 

 

Let c be an identifier of a class (between 1 and N+1), let B denote the special class 

c=N+1 reserved for the background, let k be an identifier of an object (non-background) 

class between 1 and N, and let v represent the value of a feature vector. Bayes theorem 

establishes that the posterior class probabilities can be computed as 

 

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )∑
=

+

==
N

k

kPkvPBPBvP

cPcvP

vP

cPcvP
vcP

1

| | 

|
  

 

|
  |                          (5) 

 

Our simple Bayesian method for static recognition is based on imposing the two 

following assumptions: 

 

a) equal priors: all classes, including B, will have the same prior probability, i.e. 

P(B)=1/(N+1) and P(K)=1/(N+1) for all k between 1 and N. 

b) a uniform conditional probability for the background class, i.e. P(v|B)=1/M, 

where M is the number of values (bins) in which the feature vector v is 

discretized.   

 

Note that the former assumption is that of a maximum likelihood classifier, whereas the 

latter assumes no knowledge about the background. After imposing these conditions, 

equation (5) turns into 

                      ( ) ( )

( )∑
=

+

=
N

k

kvP
M

cvP
vcP

1

| 
1

|
  |                                                   (6) 

 

and this gives the posterior class probabilities we assign to the static probability images, 

i.e. Qc
t
(x,y) = P(c | v(x,y)) for each pixel (x,y) and time t.  

 

It only remains to set a suitable M constant and to estimate the class conditional 

probabilities P(v | k) for all k between 1 and N (object classes). To this end, class 

histograms Hk are set up using the labeled training data and updated on-line afterwards 

using the tracking results in the test data.  

 

For constructing the histograms, let v(x,y) be the feature vector consisting of the original 

RGB values of a pixel (x,y) labeled as belonging to class k. We uniformly discretize 

each of the R, G and B channels in 16 levels, so that M =16×16×16= 4096. Let b be the 

bin in which v(x,y) is mapped by this discretization. To reduce discretization effects, a 

smoothing technique is applied when accumulating counts in the histogram as follows:  

   
( ) ( )
( ) ( ) bbbHbH

bneighborsbHbH

kk

kk

 ofneighbor  a is ' if1' : '

))(#10( : 

+=

−+=
                           (7) 

where the number of neighbors of b (using non-diagonal connectivity) varies from 3 to 

6, depending on the position of b in the RGB space. Hence, the total count Ck of the 

histogram is increased by ten (instead of one) each time a pixel is counted and the 
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conditional probability is estimated as P(v | k) = Hk(b) / Ck  where b is the bin 

corresponding to v. The above smoothing technique is also applied when updating the 

histogram from the tracking results; in that case the RGB value v(x,y) in the input image 

I
 t
(x,y) of a pixel (x,y) is used to update the histogram Hk (and the associated count Ck) if 

and only if Tk
t
(x,y)=1. 

 

3.2  A neural net based method 

 

In this method, a neural net classifier (a multilayer perceptron) is trained off-line from 

the labeled training data. The RGB color averages extracted for each spot after color 

segmentation are used as feature vector v(x,y) and supplied as input to the network in 

both training and test phases. To the contrary of the Bayesian method described 

previously, training data for the background class are also provided by selecting some 

representative background regions in the training image sequence, because the network 

needs to gather examples for all classes including the background. The network is not 

retrained on-line using the tracking results in the test phase (this is another difference 

with respect to the Bayesian method described). 

 

It’s well known that using a 1-of-c target coding scheme for the classes, the outputs of a 

network trained by minimizing a sum-of-squares error function approximate the 

posterior probabilities of class membership (here, Qc
t
(x,y) ), conditioned on the input 

feature vector [45]. Anyway, to guarantee a proper sum to unity of the posterior 

probabilities, the network outputs (which are always positive values between 0 and 1) 

are divided by their sum before assigning the posterior probabilities. 

 

4.  Dynamic recognition module 

 

Even though the static recognition module can be applied independently to each image 

in the sequence, this does not exploit the dynamic nature of the problem and the 

continuity and smoothness properties that are expected in the apparent motion of the 

objects through the sequence. Hence, a dynamic update of the pixel class probabilities 

pc
t
(x,y) is desired that takes into account these properties. To this end, not only the 

previous probabilities pc
t-1
(x,y) and the results of the current static recognition Qc

t
(x,y) 

have to be combined but also the binary results of the tracking decision in the previous 

step Tc
t-1
(x,y) have to be considered, since this permits to filter some possible 

misclassifications made by the static classifier. Typically, some background spots are 

erroneously classified as part of an object and this can be detected if these spots are 

situated far from the last known position of the object. 

 

Therefore, the update function f for the dynamic class probabilities can be defined as 

follows (for some adaptive parameters αc
t
, 0<αc

t 
<1): 

( )
 

),()1(),(),(

),()1(),(),(
),(

1

1

11

11

∑
+

=

−−

−−

−+

−+
=
N

k

t

k

t

k

t

k

t

k

t

k

t

c

t

c

t

c

t

c

t

ct

c

yxQyxpyxT

yxQyxpyxT
yxp

αα

αα
                              (8) 

A tracking image for the background, which is required in the previous equation, can be 

defined simply as  
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 ≤≤∀=

=+
otherwise0

1:0),(if1
 ),(1

NccyxT
yxT

t

ct

N
                                (9) 

and computed after the tracking images for the objects. 

 

The parameter αc
t
 that weights the influence of the previous probabilities must be 

adapted depending on the apparent motion of the tracked object of class c. If this motion 

is very slow, αc
t
 should reach a maximum αmax closer to 1, whereas if the motion is very 

fast, αc
t
 should reach a minimum αmin closer to 0. In order to a set a proper value for αc

t
 

the areas (Ac
t-1
 and Ac

t-2
) and mass centers (Cc

t-1
 and Cc

t-2
) of the object in the two 

previous tracking images are used in the following way. 

 

Let π11 −− = t

c

t

c Ar  and π22 −− = t

c

t

c Ar  be the estimates of the object radius in the two 

previous frames obtained by imposing a circular area assumption. Let 21 −− −= t

c

t

cc CCd  

be the estimated displacement of the object in the 2D image and let 21max −− += t

c

t

cc rrd  be 

the maximum displacement yielding some overlapping between the two former circles. 

If  max

cc dd ≥  we would like to set minαα =t

c , whereas if 0=cd  then the value of αc
t
 

should be set according to the change of the object apparent size: Let 

( )2121 ,max −−−− −= t

c

t

c

t

c

t

cc rrrrs  be a scale change ratio. If 0=cs  (unchanged object 

size) then we would like to set maxαα =t

c  whereas in the extreme case 1=cs  then we 

would set minαα =t

c  again. Combining linearly both criteria, displacement and scale 

change, we define the prior value 

 

   ( ) ( ) ccc

t

c sdd minmax

max

minmaxmax  ˆ αααααα −−−−=                            (10) 

 

which satisfies max
ˆ αα ≤tc . Note that the value max

ˆ αα =t

c  (maximum weight for the 

previous probabilities) is obtained when both 0=cd  and 0=cs , what means that both 

the centers and the areas of the object are the same in the last two observations (no 

displacement and no scale change have occurred). Finally the parameter αc
t
 is set as 

follows: 

 









>∧<

≤∧<

≥

=

min

max

min

max

min

max

min

ˆifˆ

ˆif

if

 

ααα

ααα

α

α
t

ccc

t

c

t

ccc

cc

t

c

dd

dd

dd

                                         (11) 

 

The constants αmin and αmax were set to 0.1 and 0.6, respectively, in our experiments 

(see Section 6). 

 

5.  Tracking decision module 

 

As depicted in Figure 1, the tracking images Tc
t
(x,y) for the objects (1 ≤ c ≤ N) can be 
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calculated dynamically using the pixels probabilities p
t
(x,y) according to some decision 

function d. However, this function involves some additional arguments and results, as 

explained next. 

 

To give an initial estimate of the foreseen translation and rescaling of the object in the 

current step, the measurements of both the object mass center and area in the tracking 

images of the two previous steps are required. Hence, the areas Ac
t-1
 and Ac

t-2
 and the 

mass centers Cc
t-1
 and Cc

t-2
, already used in the dynamic recognition module as we have 

seen, must also be supplied here. The application of the estimated transformation to the 

previous tracking image Tc
t-1
(x,y) will serve to reduce the image area to explore using 

the class probabilities while filtering (blacking) the rest. This strategy alone permits to 

track visible objects reasonably well [26, 27] but it fails completely if the object 

becomes occluded for some frames [28].  

 

In order to cope with occlusion, more information is needed in the decision function d. 

The key point is to distinguish between the a posteriori tracking image Tc
t
(x,y) and an a 

priori prediction ( )yxT t

c ,ˆ , which could maintain some relevant information of the object 

before the occlusion such as area and movement. The object mass center Cc
t
 and area Ac

t
 

needed for tracking should be measured either from Tc
t
(x,y) or ( )yxT t

c ,ˆ  depending on 

whether the object is visible or occluded. Hence, an occlusion flag Oc
t
 has to be 

determined as an additional result. Moreover, the two previous flags Oc
t-1
 and Oc

t-2
 help 

to know whether the object is entering or exiting an occlusion. In addition, t

cm
r  is a 

movement weighted average vector that represents the past trajectory direction of the 

tracked object, which is useful to solve some ambiguous cases that happen when the 

object crosses or exits an occlusion by another object with a similar appearance (same-

class occlusion). Finally, it should be taken into account that the uncertainty in the 

prediction ( )yxT t

c ,ˆ  grows as the number of consecutive frames the object is occluded 

increases. In the original method described in [27], two constant parameters ε and δ 
were used to define an uncertainty region around each pixel transformation. Since we 

want to adjust the level of uncertainty based on the duration of the occlusion, these 

parameters have to be adaptive for each object, i.e. εc
t
 and δc

t
. Summarizing, the 

decision function d involves the following arguments and results: 
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This function is described in detail in the next subsections, which cover the different 

independent sub-modules of the tracking decision module. Figure 2 illustrates 

graphically some of the calculations that are explained in what follows. 

 

5.1  A priori prediction of the tracked objects 

 

The first step is to give a priori estimates of the mass center and area of the object in 

time t. The mass center is predicted as follows: 
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When the object is exiting an occlusion, Cc
t-2
 is not reliable enough to be used together 

with Cc
t-1
 to predict the next movement; therefore, a conservative estimate is given, just 

the previous measured value. In the rest of cases (the object is visible, is occluded or is 

entering an occlusion), a constant rate prediction is used. Note, however, that when the 

object is occluded, the mass center is not measured on the a posteriori tracking image, 

but on the a priori one, as we will see later.  

 

It is interesting to notice that the above constant rate prediction can be proved to be 

equivalent to the one given by a linear Kalman filter for a particular setting of the filter 

parameters and equations. Let t

c

t

c

t

c

t

c uBwAw ω++=+  1  and t

c

t

c

t

c wHd ν+=  be respectively 

the state and measurement equations of a linear Kalman filter (KF) for predicting the 

mass center of object c. If we set A=I, B=I, H=I, dc
t
 =Cc

t
 as the measurement, uc

t
 = Cc

t 
- 

Cc
t-1
 as the input and R

t
=0 as the covariance matrix of the measurement noise νc

t
 (which 

is assumed to be zero), then the a priori and a posteriori estimates of state wc
t
 given by 

the KF are 2Cc
t-1 
- Cc

t-2
 and Cc

t
 respectively.  

 

Figure 2:  Geometrical illustration of the tracking process. Estimates of object’s area and mass center for step t are 

computed from previous values in t-1 and t-2. For each pixel in step t a rectangular region in step t-1 is determined which 

allows the assignment to the pixel of one of three labels: “certainly belonging to the object” (yellow diagonal-bar-shaded 

region), “uncertain” (blue brick-shaded region) and “certainly not belonging to the object” (the rest of the image). 
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The a priori estimate of the object area is calculated as follows: 
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If the object has been visible in the two previous frames, a constant rate of a scale factor 

is used to predict the area. It can be proved that this prediction is equivalent to the one 

given by a (non-linear) extended Kalman filter for a particular setting of the filter 

parameters and equations. Let ( )tct

c

t

c

t

c uwfw ω,, 1 =+  and ( )tct

c

t

c whd ν, =  be the state and 

measurement equations, respectively, of an extended Kalman filter (EKF) for predicting 

the area of object c. If we set ( ) t

c

t

c

t

c

t

c

t

c

t

c uwuwf ωω +=,, , ( ) t

c

t

c

t

c

t

c wwh νν +=, , dc
t
=Ac

t
 as the 

measurement, uc
t
 = Ac

t 
/Ac

t-1
 as the input and R

t
=0 as the covariance matrix of the 

measurement noise νc
t
 (which is assumed again to be zero), then the a priori and a 

posteriori estimates of state wc
t
 given by the EKF are (Ac

t-1 
)
2
/ Ac

t-2
 and Ac

t
 respectively. 

In the rest of cases (the object is occluded or is entering or exiting an occlusion), the 

area is supposed to remain constant.  

 

From these predictions, a change of coordinates transformation can also be estimated 

that maps each pixel Pc
t-1
 = (xc

t-1
,yc

t-1
) of the object c in step t-1 (maybe occluded) into 

its foreseen position in step t: 

 

( ) 111 ˆˆ ˆ −−− −+= t

c
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c AACPCP                                           (15) 

 

Actually, we are interested in applying the transformation in the inverse way, i.e. to 

know which is the expected corresponding position in time t-1,  ( )111
ˆ,ˆˆ −−− = t

c

t

c

t

c yxP , of a 

given pixel  Pc
t
 = (xc

t
, yc

t
) in t: 
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This is enough to compute the a priori tracking image ( )yxT t

c ,ˆ  in time t, either from the 

previous a posteriori or a priori tracking image, depending on the previous occlusion 

flag: 
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where the values of 11 ˆ,ˆ −− t

c

t

c yx  are clipped whenever is necessary to keep them within 

the range of valid coordinates.  

 

5.2  First computation of the tracking images 

 

To compute the a posteriori tracking image Tc
t
(x,y), the pixel class probabilities p

t
(x,y) 

are taking into account only in some image region that is determined from Tc
t-1
(x,y) or 
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( )yxT t

c ,ˆ 1−  (depending on Oc
t-1
) and the tolerance parameters εc

t
 and δc

t
. Since the 

estimates of the translation and scale parameters in the coordinate transformation can be 

inaccurate, we define a rectangular region of possible positions for each pixel by 

specifying some tolerances in these estimates. To this end, we use the adaptive 

parameters εc
t
 and δc

t
, which must be positive values to be set in accordance with our 

confidence in the translation and scale estimates respectively (the most confidence the 

smallest tolerance and vice versa), and which are adjusted according to the following 

rules: 
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where εini, δini are default values, εmax, δmax are the maximal allowed values and εincr, 
δincr are the respective increases for each successive step under occlusion. Note that the 
tolerances keep on growing when exiting an occlusion until the object has been visible 

in the two previous frames; this is needed to detect and track the object again. 

 

Let ( )111 , −−− = t

Cc

t

Cc

t

c yxC  and ( )t

Cc

t

Cc

t

c yxC ˆ,ˆˆ =  be respectively the previous mass center and 

the a priori estimate of the current mass center. The four vertices of the rectangular 

uncertainty region centered at 
1ˆ −t

cP  are denoted (top-left) TLc
t-1 
= (xinfc

t-1
, yinfc

t-1
), (top-

right) TRc
t-1
=(xsupc

t-1
, yinfc

t-1
),  (bottom-left)  BLc

t-1
=(xinfc

t-1
, ysupc

t-1
) and (bottom-right) 

BRc
t-1 
= (xsupc

t-1
, ysupc

t-1
), where:  
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The values of xinfc
t-1
, yinfc

t-1
, xsupc

t-1
 and ysupc

t-1
 are clipped whenever is necessary to 

keep them within the range of valid coordinates. In order to understand eqs. (20) to (23), 

they must be first compared with eq. (16), which gives the position of the rectangle 

center (jointly for x and y coordinates). Then, consider for instance eq. (20), since the 

other three are simply derived by symmetry; eq. (20) aims at setting the leftmost value 

of x in the uncertainty rectangle; to this end, some small proportion of the estimated 

center displacement in the x coordinate is subtracted in the numerator, and the scale 

ratio is either enlarged or shrunk in the denominator (by adding or subtracting 

respectively a small proportion of the new estimated area) depending on which of these 

two options yields the smallest (leftmost) x value; it’s easy to check that the last 

depends on the sign of the numerator. 

 

Now, each pixel Pc
t
 = (xc

t
,yc

t
) is labeled, with respect to object c, as one of three labels 

(“certainly belonging to the object c”, “certainly not belonging to the object c” or 

“uncertain”) as follows.  

 

If Oc
t-1
 is false then: if all the pixels in the rectangular region delimited by TLc

t-1
, TRc

t-1
, 

BLc
t-1
, BRc

t-1
 have a common value of 1 in Tc

t-1
(x,y), it is assumed that Pc

t
 is definitely 

inside and certainly belongs to object c; to the contrary, if they have a common value of 

0 in Tc
t-1
(x,y), it is assumed that Pc

t
 is clearly outside and certainly does not belong to 

object c; otherwise, the rectangular region contains both 1 and 0 values, the pixel Pc
t
 is 

initially labeled as “uncertain”. 

 

However, if Oc
t-1
 is true, Tc

t-1
(x,y) will represent a totally or partially occluded object 

and we cannot rely on it, but on the predicted ( )yxT t

c ,ˆ 1− , which is based on information 

previous to the occlusion. If all the pixels in the rectangular region delimited by TLc
t-1
, 

TRc
t-1
, BLc

t-1
, BRc

t-1
 have a common value of 0 in ( )yxT t

c ,ˆ 1− , it is assumed that Pc
t
 does 

not belong to object c; otherwise (the rectangular region contains both 1 and 0 values or 

only 1 values), the pixel Pc
t
 is labeled as “uncertain”.  

 

Only for the uncertain pixels (x,y) the dynamic probabilities p
t
(x,y) will be used. Recall 

that these probabilities will have been updated previously from the object recognition 

results in time t, Q
 t
(x,y), also expressed as probabilities. More precisely, we propose the 
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following rule to compute the value of each pixel of the a posteriori tracking image for 

object c in time t: 
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5.3  Post-processing of the tracking images 

 

Sometimes, the tracking images Tc
t
(x,y) obtained by applying eq. (24) contain 

disconnected regions of 1-valued pixels, or, said in other words, more than one 

connected component t

ciT , 1≤i≤I, I>1. This may be produced by a variety of causes, 

mainly segmentation or recognition errors, but also may be due to possible partial 

occlusions of the target object by an object of a different class. In addition, a particular 

problem that leads to object split occurs immediately after a same-class crossing or 

occlusion: when the target object has just finished crossing another object or region 

which is recognized to be in the same class (distracter), then the tracking method is 

misled to follow both the object and the distracter. It is very difficult to devise a general 

method that can always distinguish between erroneous components due to noise or 

distracters and correct object components, especially if separated components are 

allowed to cope with partial occlusions, but some useful heuristics based on properties 

such as size, movement or shape may be defined that work reasonably well in a 

majority of cases.  

 

In order to eliminate noisy regions and to circumvent the same-class crossing problem, 

while handling partial occlusions at the same time, we propose a post-processing step 

that removes from Tc
t
(x,y) some possible artifacts or distracters (setting some initially 1-

valued pixels to zero). In fact, this step is only carried out if Tc
t
(x,y) contains more than 

one component. In such a case, we need to choose which components t

ciT  to keep (one 

or more) and which to discard.  To this end, three heuristic filters are applied 

sequentially, whenever two or more components remain before the filter application. 

 

The first filter is aimed at deleting small noisy regions and is solely based on their size. 

Let t

ciA  be the area of the i-th connected component t

ciT  and let )(Area t

cT  be the total 

area covered by 1-valued pixels in Tc
t
(x,y). The i-th component is removed if the ratio 

)(Area t

c

t

ci TA  is below a given threshold κ , e.g. κ = 0.15.  

 

The second filter is aimed at deleting distracters, including those appearing after same-

class occlusion, and is based on a comparison between the apparent movement of the 

remaining components and the previous recent trajectory of the tracked object 

represented by the movement vector 1−t
cm

r
. Let

 t

ciC  be the mass center of the i-th 

connected component t

ciT  and define an associated movement vector 1−−= t

c

t

ci

t

ci CCz
r

 for 

each component. Then,  
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is a measure of the alignment between the vectors 1−t
cm

r
 and t

ciz
r
, which is only reliable 

for our purposes if both vectors have a sufficiently large norm. Otherwise, the angle θci 

can be considered rather random, since may be affected a lot by adding small 

perturbations on the vectors. Consequently, abrupt trajectory changes (greater than 90 

degrees) are penalized if we remove the i-th component t

ciT  when the condition  

λλ ≥∧≥∧< −10θcos t

c

t

cici mz
rr

 holds, where λ is another threshold, e.g. λ = 3. 

However, to guarantee that at least one component is kept, the remaining component for 

which 
t

ciz
r

is the most collinear vector with respect to 
1−t

cm
r

, i.e. the component i such that 
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=
−

t

ci

t

c

t

ci

z

mz
i r

rr 1,
max arg                                                 (26) 

is never removed by this second filter. 

 

The third filter is also aimed at deleting distracters and is based on a comparison 

between the shapes of the components and that of the a priori prediction of the target 

object (represented by the 1-valued region in ( )yxT t

c ,ˆ ). For each remaining component 

t

ciT , the a priori prediction of the target object is moved from its original center t

cĈ  to 

the component center t

ciC , thus resulting in a translated copy ( )yxT t

ci ,ˆ , and the spatial 

overlap between both shapes is then measured as follows: 

 

     
( )
( )tcit

ci

t

ci

t

ci
ci

TT

TT
SO

ˆ   Area

ˆ   Area
  

∪

∩
=                                                   (27) 

 

The components having a spatial overlap 243.0<ciSO  (which is the overlap obtained 

between two circles of the same size when one of the centers is located in the border of 

the other circle) are deleted in this third filter, unless 
ciSO  is the maximum spatial 

overlap of the remaining components. This exception guarantees the persistence of at 

least one component in the final tracking image. 

 

As a result of the post-processing, the pixels of all the components t

ciT  removed by any 

of the three filters are set to zero in the final tracking image Tc
t
(x,y).  

 

5.4  Determination of occlusion and geometric measurements 

 

Once both Tc
t
(x,y) and ( )yxT t

c ,ˆ  have been determined, it is possible to detect the 

occurrence of an occlusion (i.e. to set the current occlusion flag) in the following way.  

Let Area(Tc
t
) be the measured area of the 1-valued region in the final Tc

t
(x,y) and let 

Area(
t

cT̂ ) be the measured area of the 1-valued region in ( )yxT t

c ,ˆ . Then, 
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where  0 < r1 < r2 < 1 (for instance, r1=0.5, r2=0.75). Note that the condition for 

remaining in occlusion mode is harder than the condition for initiating an occlusion. 

This facilitates the recovery of the object track when exiting an occlusion or when a 

false occlusion has been detected. 

 

Next, the a posteriori estimates of the object mass center and area are selected between 

those of the a priori and a posteriori tracking images based on the value of the 

occlusion flag: 
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otherwiseˆ
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where MC(Tc
t
) is the measured mass center of the 1-valued region in the final Tc

t
(x,y) 

and MC(
t

cT̂ ) is the measured mass center of the 1-valued region in ( )yxT t

c ,ˆ , and 
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Finally, the movement weighted average vector 
t

cm
r

 is updated afterwards as follows:  
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where β is a positive parameter between 0 and 1, e.g. β=0.2, and 
t

cv
r
 is the current 

movement defined by 1−−= t

c

t

c

t

c CCv
r

. Note that the second row in (31) is a typical 

moving average computation, while the first row denotes a simple average for the 

starting steps, and both give the same result for t=1/β. 
 

6.  Experimental results 

 

We were interested in testing both PIORT approaches in video sequences including 

object occlusions and taken with a moving camera. Nevertheless, we also performed a 

first set of validation experiments in video sequences taken with a still camera. In all 

tests we defined N=1 objects of interest to track. 

 

All images in the video sequences were segmented independently using the EDISON 

implementation of the mean-shift segmentation algorithm, code available at 

http://www.caip.rutgers.edu/riul/research/code.html. The local features extracted for 

each spot were the RGB colour averages. For object learning, spots selected through 

ROI (region-of-interest) windows in the training sequence were collected to train a two-

layer perceptron using backpropagation and to build the target class histogram. When 
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using the neural net in the test phase, the class probabilities for all the spots in the test 

sequences were estimated from the net outputs. When using the histogram, the spot 

class probabilities were estimated according to equation (6). In both cases, the spot class 

probabilities were replicated for all the pixels in the same spot. For object tracking in 

the test sequences, ROI windows for the target object were only marked in the first 

image to initialise the tracking process.  

 

The recognition and tracking results for the test sequences of our PIORT approaches 

were stored in videos where each frame has a layout of 2 x 3 images with the following 

contents: the top left is the image segmented by EDISON; the top middle is the image 

of probabilities given by the static recognition module for the current frame; the top 

right is the a priori prediction of the tracking image; the bottom left is the image of 

dynamic probabilities; the bottom right is the original image with a graphic overlay that 

represents the boundaries of the a posteriori binary tracking image (the final result for 

the frame); and the bottom middle is an intermediate image labelled by the tracking 

module where yellow pixels correspond to pixels labelled as “certainly belonging to the 

object”, light blue pixels correspond to pixels initially labelled as “uncertain” but with a 

high dynamic probability, dark blue pixels correspond to pixels labelled as “uncertain” 

and with a low probability, dark grey pixels are pixels labelled as “certainly not 

belonging to the object” but with a high probability and the rest are black pixels with 

both a low probability and a “certainly not belonging to the object” label. 

 

For comparison purposes, tracking of the target objects in the test sequences was also 

carried out by applying the six following methods, which only need the ROI window 

mark in the first frame of the test sequence: Template Match by Correlation (TMC), 

which refers to normalized correlation template matching [30]; Basic Meanshift (BM) 

[31]; Histogram Ratio Shift (HRS) [32]; Variance Ratio Feature Shift (VRFS) [32]; 

Peak Difference Feature Shift (PDFS) [32]; and Graph-Cut Based Tracker (GCBT) [33, 

30]. These methods have been commented briefly in Section 1. 

  

From the tracking results of all the tested methods, two evaluation metrics were 

computed for each frame: the spatial overlap and the centroid distance [46]. The 

spatial overlap SO(GTk,STk) between the ground truth GTk and the system track STk in a 

specific frame k is defined as the ratio 
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and Dist(GTCk, STCk) refers to the Euclidean distance between the centroids of the 

ground truth (GTCk) and the system track (STCk) in frame k. Naturally, the larger the 

overlap and the smaller the distance, the better performance of the system track. 

 

Since the centroid distance can only be computed if both GTk and STk are non-null, a 

failure ratio was measured as the number of frames in which either GTk or STk was null 

(but not both) divided by the total number of frames. Finally, an accuracy measure was 

computed as the number of good matches divided by the total number of frames, where 

a good match is either a true negative or a true positive with a spatial overlap above a 

threshold of 0.243 (which is the overlap obtained between two circles of the same size 

when one of the centres is located in the border of the other circle). 
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6.1  Experimental results on video sequences taken with a still camera 

 

The first set of experiments comprised three test video sequences taken with a still 

camera that show indoor office scenes where the target to track is a blue ball moving on 

a table. A similar but different sequence was used for training a neural network to 

discriminate between blue balls and typical sample regions in the background and for 

constructing the class histogram of the blue ball (this training sequence is available at 

http://www-iri.upc.es/people/ralqueza/bluetraining.avi).  

 

In the first test sequence, http://www-iri.upc.es/people/ralqueza/S1S2.avi, two blue balls 

are moving on the table and one occludes temporally the other one during some frames. 

Two experiments were performed on this test sequence depending on the initialisation 

of the tracking. In test S1, the tracking was initialised at the right ball and in test S2, the 

tracking was initialised at the left ball. The static recognition module considers that both 

balls belong to the same class. In both tests, the temporal overlapping was correctly 

managed by our methods since the tracked ball is well relocated after exiting the 

occlusion. The corresponding videos displaying the results of PIORT methods (in the 

layout described above) are at http://www-iri.upc.es/people/ralqueza/S1_NN.mpg and 

S2_NN.mpg for the PIORT-Neural net method and at S1_Bayes.mpg and 

S2_Bayes.mpg for the PIORT-Bayesian method. 

    
Sequence S1: Blue balls crossed. Tracking initial right ball 

 

    
Sequence S2: Blue balls crossed. Tracking initial left ball 

 

In the second test sequence (test S3), http://www-iri.upc.es/people/ralqueza/S3.avi, the 

tracked blue ball is occluded twice by a box during 5 and 12 frames, respectively. 

Recognition and tracking results for the whole sequence using the PIORT-Neural Net 

and Bayesian methods are at http://www-iri.upc.es/people/ralqueza/S3_NN.mpg and 

S3_Bayes.mpg, respectively. The tracking of the blue ball is quite satisfactory since 

both occlusions are correctly detected and the ball is correctly relocated when exiting 

the occlusion. 

    
Sequence S3: Blue ball moving occluded by box 
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In the last test sequence of this group, http://www-iri.upc.es/people/ralqueza/S4.avi, 

there are again two blue balls and the target moving ball crosses twice, once in front of 

and once behind, the second ball, which does not move. As the recognition module 

classifies both balls in the same class, the same-class occlusion is not detected as an 

occlusion (the two balls are merged into a single blue object), but anyway the target ball 

is well tracked after the two crossings. The videos displaying the results of the PIORT-

Neural Net and Bayesian methods for this sequence are at http://www-

iri.upc.es/people/ralqueza/S4_NN.mpg and S4_Bayes.mpg, respectively. 

    

    
Sequence S4: Blue ball moving around another blue ball 

 

Table 1 presents the results (mean ± std. deviation) of the spatial overlap (SO) and 

centroid distance (CD) measures together with the failure ratio (FR) and accuracy (Acc) 

of each tracking method for the four tests S1 to S4, emphasizing the best values for each 

measure and test in bold. Our PIORT tracking methods worked fine in the four tests 

obtaining the best values of the four measures (except in the Accuracy measure for test 

S4, where the HRS method gave a slightly superior performance). All methods 

performed quite well in S1; only PDFS method performed comparably to PIORT 

approaches in S2; only PIORT methods worked in S3 while the rest failed; and only 

BM and HRS methods performed comparably to PIORT approaches in S4. 

 

 

 

 

  



 23 

Table 1. Results of ball tracking on video sequences taken with a still camera. 

SO: Spatial Overlap; CD: Centroid Distance; FR: Failure Ratio; Acc: Accuracy
 

 

  

Video Sequence Tracking method SO CD FR Acc 

S1 

Blue balls crossed 

(Right ball) 

TMC  0.56 ± 0.10 5.07 ± 2.07 0 0.98 

BM 0.60 ± 0.06 3.19 ± 1.21 0 1.00 

HRS 0.46 ± 0.11 6.03 ± 2.05 0 1.00 

VRFS 0.66 ± 0.07 1.15 ± 0.47 0 1.00 

PDFS 0.63 ± 0.10 2.01 ± 0.94 0 1.00 

GCBT 0.64 ± 0.18 13.20 ± 52.52 0.05 0.94 

PIORT-Neural Net 0.84 ± 0.09 1.38 ± 1.39 0 1.00 

PIORT-Bayesian 0.80 ± 0.07 0.75 ± 0.76 0 1.00 

S2 

Blue balls crossed 

(Left ball) 

TMC  0.22 ± 0.27 44.34 ± 52.24 0 0.41 

BM 0.23 ± 0.29 42.51 ± 50.42 0 0.36 

HRS 0.25 ± 0.31 44.93 ± 51.96 0 0.41 

VRFS 0.28 ± 0.35 42.82 ± 52.62 0 0.41 

PDFS 0.50 ± 0.30 36.27 ± 86.95 0.14 0.77 

GCBT 0.20 ± 0.27 70.69 ± 68.80 0 0.36 

PIORT-Neural Net 0.60 ± 0.23 3.94 ± 4.98 0 0.91 

PIORT-Bayesian 0.46 ± 0.25 15.04 ± 52.64 0.05 0.73 

S3 

Blue ball moving 

occluded by box 

TMC  0.01 ± 0.04 173.40 ± 68.71 0.22 0 

BM 0.01 ± 0.07 182.54 ± 68.14 0.22 0 

HRS 0 187.85 ± 67.96 0.25 0 

VRFS 0.02 ± 0.18 140.14 ± 93.44 0.20 0.17 

PDFS 0.13 ± 0.41 131.07 ± 106.1 0.42 0.02 

GCBT 0 237.02 ± 134.6 0.74 0.22 

PIORT-Neural Net 0.81 ± 0.42 0.47 ± 0.38 0 1.00 

PIORT-Bayesian 0.53 ± 0.37 8.39 ± 48.61 0.03 0.95 

S4 

Blue ball moving 

around  still blue 

ball 

TMC  0.35 ± 0.22 13.10 ± 32.38 0.01 0.75 

BM 0.56 ± 0.15 7.39 ± 29.05 0.01 0.93 

HRS 0.60 ± 0.13 6.21 ± 29.16 0.01 0.96 

VRFS 0.10 ± 0.62 74.68 ± 45.00 0.01 0.14 

PDFS 0.13 ± 0.43 44.39 ± 36.14 0.01 0.17 

GCBT 0.10 ± 0.53 201.60 ± 98.35 0.80 0.18 

PIORT-Neural Net 0.74 ± 0.21 5.90 ± 29.33 0.01 0.94 

PIORT-Bayesian 0.72 ± 0.20 5.58 ± 29.38 0.01 0.94 
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6.2  Experimental results on video sequences taken with a moving camera 

 

The second set of experiments comprised another three test video sequences where the 

target is a ball, but this time taken with a moving camera. The first of them (test S5) 

again shows an indoor office scene where a blue ball is moving on a table and is 

temporally occluded, while other blue objects appear in the scene. This test sequence 

can be downloaded at http://www-iri.upc.es/people/ralqueza/S5.avi. 

    

    
Sequence S5: Blue bouncing ball on table 

 

The other two test sequences in this group show outdoor scenes in which a Segway 

robot tries to follow an orange ball that is being kicked by a person. Both include 

multiple occlusions of the tracked orange ball and differ in the surface over which the 

ball runs, which is pavement in the case of test S6 and grass in test S7 (see http://www-

iri.upc.es/people/ralqueza/S6.avi and S7.avi, respectively). A similar but different 

sequence was used for training a neural network to discriminate between orange balls 

and typical sample regions in the background and for constructing the class histogram 

of the orange ball (this training sequence is available at http://www-

iri.upc.es/people/ralqueza/orangetraining.avi). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Results of ball tracking on video sequences taken with a mobile camera. 
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SO: Spatial Overlap; CD: Centroid Distance; FR: Failure Ratio; Acc: Accuracy
 

 

The tracking results videos for the above test sequences are attainable at http://www-

iri.upc.es/people/ralqueza/S5_NN.mpg, S5_Bayes.mpg, S6_NN.mpg, S6_Bayes.mpg, 

S7_NN.mpg and S7_Bayes.mpg.  

 

    

    
Sequence S6: Segway - Orange ball  on pavement 

Video Sequence Tracking method SO CD FR Acc 

S5 

Blue bouncing 

ball on table  

 

TMC  0.28 ± 0.48 74.65 ± 91.53 0.19 0.43 

BM 0.23 ± 0.52 78.40 ± 90.33 0.19 0.37 

HRS 0.16 ± 0.45 125.88 ± 11.80 0.43 0.30 

VRFS 0.20 ± 0.38 96.72 ± 134.84 0.39 0.60 

PDFS 0.28 ± 0.57 103.60 ± 36.77 0.41 0.59 

GCBT 0.01 ± 0.29 188.79 ± 18.13 0.75 0.21 

PIORT-Neural Net 0.60 ± 0.40 12.53 ± 59.38 0.05 0.95 

PIORT-Bayesian 0.59 ± 0.39 12.46 ± 59.40 0.05 0.95 

S6 

Segway - Orange 

ball  on pavement  

TMC  0.06 ± 0.40 146.35 ± 81.83 0.03 0.14 

BM 0.09 ± 0.43 110.94 ± 76.70 0.03 0.19 

HRS 0.09 ± 0.38 156.99 ± 103.80 0.41 0.21 

VRFS 0.16 ± 0.68 70.46 ± 49.17 0.03 0.21 

PDFS 0.14 ± 0.59 117.09 ± 81.43 0.03 0.21 

GCBT 0.01 ± 0.34 233.56 ± 62.12 0.93 0.06 

PIORT-Neural Net 0.72 ± 0.20 2.67 ± 19.21 0.01 0.98 

PIORT-Bayesian 0.13 ± 0.73 202.14 ± 99.35 0.81 0.19 

S7 

Segway - Orange 

ball on grass 

 

TMC  0.02 ± 0.29 137.93 ± 84.53 0.04 0.04 

BM 0.15 ± 0.27 125.13 ± 116.14 0.34 0.35 

HRS 0.03 ± 0.33 190.63 ± 89.72 0.54 0.08 

VRFS 0.59 ± 0.21 7.93 ± 38.85 0.02 0.95 

PDFS 0.33 ± 0.50 121.46 ± 125.91 0.48 0.51 

GCBT 0.01 ± 0.37 208.39 ± 83.88 0.79 0.04 

PIORT-Neural Net 0.47 ± 0.23 17.02 ± 60.98 0.06 0.88 

PIORT-Bayesian 0.25 ± 0.49 133.43 ± 126.22 0.53 0.42 
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Sequence S7: Segway - Orange ball  on grass 

 

Table 2 presents the results (mean ± std. deviation) of the spatial overlap (SO) and 

centroid distance (CD) measures together with the failure ratio (FR) and accuracy (Acc) 

of each tracking method for the three tests S5 to S7, emphasizing the best values for 

each measure and test in bold. Our PIORT-Neural net method worked fine in the three 

tests obtaining the best values of spatial overlap and accuracy measures in tests S5 and 

S6 and yielding results a little bit under the performance of the VRFS method in test S7, 

in which the VRFS method gave the best values of the four measures. Our PIORT-

Bayesian method worked well in test S5 but failed to track the orange ball correctly in 

tests S6 and S7. Only both PIORT methods performed well in S5; only PIORT-Neural 

net method worked in S6 while the rest failed; and only VRFS and PIORT-Neural net 

methods obtained satisfactory results in S7. 

    

    

    
Sequence S8: Pedestrian with red jacket 

 

The last set of experiments comprised another three test video sequences, taken with a 

moving camera in outdoor environments, where the targets are humans, more precisely, 

some part of their clothing. The first sequence in this group (test S8) is a long sequence 

taken on a street where the aim is to track a pedestrian wearing a red jacket (see 

http://www-iri.upc.es/people/ralqueza/S8.avi) and includes total and partial occlusions 

of the followed person by other walking people and objects on the street. In this case, a 

short sequence of the scene taken with a moving camera located in a different position 

(http://www-iri.upc.es/people/ralqueza/redpedestrian_training.avi) was used as training 

sequence. 
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The other two test sequences in this group, tests S9 and S10, show outdoor scenes in 

which humans riding Segway robots and wearing orange T-shirts are followed. In test 

S9 a single riding guy is followed, whereas in test S10, two men are riding two Segway 

robots simultaneously and crossing each other. These test sequences are at http://www-

iri.upc.es/people/ralqueza/S9.avi and S10.avi and the training sequence associated with 

them is at http://www-iri.upc.es/people/ralqueza/T-shirt_training.avi. 

    

    
Sequence S9: Guy on Segway with orange T-shirt 

    

   

    

 
Sequence S10: Men on Segway with orange T-shirt 

 

The tracking results videos for the above test sequences are attainable at http://www-

iri.upc.es/people/ralqueza/S8_NN.mpg, S8_Bayes.mpg, S9_NN.mpg, S9_Bayes.mpg, 

S10_NN.mpg and S10_Bayes.mpg.  
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Table 3 presents the results of the evaluation measures of each tracking method for the 

three tests S8 to S10, emphasizing the best values for each measure and test in bold. 

Both PIORT methods gave the best results, very similar between them, in tests S8 and 

S9, and PIORT-Neural net method performed clearly the best in test S10. Note that in 

the pedestrian sequence (S8), an occlusion by people carrying red bags distracted the 

attention of the PIORT tracking module and caused a momentarily impairment in 

performance, especially for the centroid distance measure, but the tracker was able to 

recover correctly the target after that occlusion. In this sequence S8, only the PDFS 

method performed comparably to PIORT approaches in terms of accuracy and centroid 

distance, although it achieved a rather lower spatial overlap. In test S9, the HRS, VRFS 

and PDFS methods obtained similar and reasonably well results, but not as good as 

those of PIORT methods. Finally, only the PIORT-Neural net method worked well in 

test S10, where the PIORT-Bayesian method performed poorly because it followed the 

other Segway-riding man after a crossing between both men. 

 

 

Table 3. Results of human tracking on video sequences taken with a mobile camera. 

SO: Spatial Overlap; CD: Centroid Distance; FR: Failure Ratio; Acc: Accuracy
 

 

 

 

Video Sequence Tracking method SO CD FR Acc 

S8 

Pedestrian with 

red jacket 

TMC  0.44 ± 0.31 25.25 ± 61.10 0.07 0.77 

BM 0.24 ± 0.58 72.08 ± 64.33 0.07 0.34 

HRS 0.35 ± 0.24 13.49 ± 38.27 0.02 0.64 

VRFS 0.45 ± 0.32 34.27 ± 81.13 0.12 0.82 

PDFS 0.50 ± 0.20 11.42 ± 45.11 0.03 0.95 

GCBT 0.04 ± 0.32 194.7 ± 105.3 0.77 0.16 

PIORT-Neural Net 0.79 ± 0.24 11.90 ± 50.87 0.04 0.96 

PIORT-Bayesian 0.74 ± 0.24 11.15 ± 48.14 0.04 0.95 

S9 

Guy on Segway 

with orange T-

shirt 

TMC  0.10 ± 0.53 130.3 ± 69.75 0.00 0.15 

BM 0.22 ± 0.13 41.30 ± 58.70 0.01 0.40 

HRS 0.53 ± 0.25 22.83 ± 58.43 0.05 0.86 

VRFS 0.69 ± 0.25 27.69 ± 75.15 0.10 0.90 

PDFS 0.56 ± 0.21 29.19 ± 74.65 0.10 0.90 

GCBT 0.14 ± 0.22 101.6 ± 112.7 0.36 0.19 

PIORT-Neural Net 0.73 ± 0.16 3.40 ± 14.78 0.00 0.97 

PIORT-Bayesian 0.74 ± 0.13 3.70 ± 14.61 0.00 0.98 

S10 

Men on Segway 

with orange T-

shirts 

TMC  0.06 ± 0.39 104.3 ± 83.15 0.03 0.10 

BM 0.29 ± 0.28 42.10 ± 59.06 0.03 0.59 

HRS 0.28 ± 0.30 38.72 ± 65.09 0.06 0.58 

VRFS 0.38 ± 0.34 36.81 ± 64.53 0.06 0.61 

PDFS 0.32 ± 0.36 91.14 ± 119.4 0.35 0.56 

GCBT 0.04 ± 0.31 187.1 ± 103.1 0.72 0.08 

PIORT-Neural Net 0.73 ± 0.18 8.37 ± 40.74 0.03 0.96 

PIORT-Bayesian 0.16 ± 0.58 81.36 ± 62.93 0.03 0.22 



 29 

7.  Conclusions, discussion and future work 

 

In this paper we have described an updated version of the probabilistic integrated object 

recognition and tracking (PIORT) methodology that we have developed in the latest 

years, partially reported in [36-39], and presented a collection of experimental results in 

test video sequences, with the aim of comparing two particular approaches derived from 

PIORT, based on Bayesian and neural net methods, respectively, with some state-of-

the-art tracking methods proposed by other authors.  

 

An improved method for object tracking, capable of dealing with rather long occlusions 

and same-class object crossing, has been proposed to be included within our 

probabilistic framework that integrates recognition and tracking of objects in image 

sequences. PIORT does not use any contour information but the results of an iterative 

and dynamic probabilistic approach for object recognition. These recognition results are 

represented at pixel level as probability images and are obtained through the use of a 

classifier (e.g. a neural network) from region-based features. 

 

The PIORT framework is divided in three parts: a static recognition module, where the 

classifier is applied to single-frame images, a dynamic recognition module that updates 

the object probabilities using previous recognition and tracking results, and a tracking 

decision module, where tracking binary images are determined for each object. This 

third module combines the recognition probabilities with a model that predicts the 

object’s apparent motion in terms of translation and scale changes, while coping with 

the problems of occlusion and re-emergence detection. Moreover, the tracking module 

can deal with object splitting, either due to partial occlusions or same-class object 

crossing, and, in most cases, is able to select and track only the target object after it 

crosses or is occluded by another object which is recognized as belonging to the same 

class, i.e. it is able to re-establish the identity of the target object. 

 

The experimental work reported in this paper has been focused on the case of single 

object tracking, just because the tracking methods we had available for the comparison 

only allowed single object tracking. However, as shown in [36], the PIORT system is 

capable of tracking multiple objects of different classes simultaneously and, as 

demonstrated in the experiments, it can be applied to video sequences acquired either by 

a fixed or a moving camera. The size, shape and movement of the target objects can 

vary softly along the sequence, but the appearance features used by the classifier (up to 

now, colour features) should remain rather stable for a successful tracking. It must be 

taken into account that the global performance of the system depends not only on the 

ability of the tracking method but also on the quality of the object recognition 

probabilities provided by the trained classifier.  

 

In this regard, false positive detections by the classifier can only be harmful for tracking 

when they are very close or “touching” the target, otherwise they are filtered by the 

second and third modules. Even in the first case, the tracking module is sometimes able 

to distinguish between the target and a false distracter, when the latter is different 

enough in terms of size, shape or motion trajectory. Concerning false negative errors by 

the classifier, they can be coped partially by the second module, especially when the 

apparent motion of the target is slow and hence the previous probabilities (adaptively) 

weight more than the current ones given by the classifier. Nevertheless, if the classifier 
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fails to detect the target object in just a few consecutive frames the tracker will assume a 

target occlusion and proceed in occlusion mode, which implies an assumption of 

constant motion directed by the previous trajectory and a growing uncertainty in the 

target position. In this case, object tracking can be sometimes recovered if the classifier 

redetects the target afterwards, depending basically on the real trajectory of the target 

and the gap duration.   

 

In this paper, we have presented two static recognition methods that can be embedded in 

the first module of PIORT, giving rise to two different instances of the methodology. 

Both methods are based on the use of a classifier that is trained from examples and 

provides posterior class probabilities for each pixel from a set of local features. The first 

classifier is based on a maximum likelihood Bayesian method in which the conditional 

probabilities for object classes are obtained from the information of the class histograms 

(for discretized RGB values) and a uniform conditional probability is assumed for the 

background. The second classifier is based on a neural net which is trained with the 

RGB colour averages extracted for each spot of the segmented images. 

 

Even though the characteristics of these two classifiers are quite different, the 

recognition and tracking results of PIORT using both approaches were excellent and 

very similar in five of the ten test sequences, which might mean that the good ability of 

PIORT to track the objects is mostly due to a smart cooperation of the three inner 

modules and is not very dependent on the specific method used for object recognition. 

However, in the remaining five test sequences, the tracking method based on a neural 

net classifier clearly outperformed the one based on a simple Bayesian classifier, which 

failed in three of these test sequences. Indeed, we observed that updating the histograms 

at each frame may cause severe drift errors when the tracker begins to fail, which result 

in a rapid breakdown of the Bayesian classifier performance in subsequent frames. 

Hence, depending on the particular application, it might be preferable not to update the 

histograms after training. 

 

The performance of both Bayesian and neural net classifiers also depends somewhat on 

the quality of the image segmentation process carried out previously. In the case of 

good segmentations, like the ones we obtained using EDISON for the test sequences, 

the probability images given by the classifiers are smooth (large areas with same values) 

and this eases the tracking, whereas in the case of over-segmentations, the probability 

images may be noisy due to an excess of spots and this may hinder a stable tracking.  

 

In the experimental comparison with other six methods proposed in the literature for 

object tracking, a PIORT method obtained the best results in nine of the ten test 

sequences and only a slightly inferior performance with respect to best method in the 

other one (VRFS). Except for the case of the first test sequence S1, where all methods 

worked fine, the six alternative methods tested mostly failed to track the target objects 

correctly in the test sequences, due to the difficult instances of occlusions and object 

crossings they contain. However, we are aware of the fact that the six alternative 

methods tested here are not model-based (i.e. they are not trained in advance) to the 

contrary of PIORT, and thus, it is little surprising that PIORT obtained the best results. 

The availability (for us) of their implementation was the main reason why we selected 

them, but we foresee to carry out future experimental comparisons of PIORT against 

some state-of-the-art model-based tracking methods like those by Cremers [5] and 
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Lepetit [15] (once we have available an implementation of these methods to run the 

experiments). 

  

Although further experimental work is needed, the new tracking module included in 

PIORT has demonstrated by now to be effective under several-frames occlusions 

produced by an object of a class different to that of the target object. If the occluding 

and the target objects are recognised as belonging to the same class, then the occlusion 

is not detected as such, both objects are merged temporarily, but despite this behaviour, 

the tracking method is able in most cases to recover and track the original target when 

the same-class object occlusion or crossing ends. However, as observed in some of the 

test sequences, still there are cases where the behaviour of the tracking decision module 

of PIORT should be improved, particularly in the step of object re-emergence after 

occlusion and when other objects of similar appearance are next to the target. The 

upgrade of this tracking module will be subject of future research.  

 

We think that PIORT approaches for object tracking are especially suitable in noisy 

environments where segmented images vary so much in successive frames that it is very 

hard to match the corresponding regions or contours of consecutive images. The 

empirical results presented are quite satisfactory, despite the numerous mistakes made 

by the static recognition module, which can be mostly ignored thanks to the integration 

with the proposed tracking decision module.  

 

A right criticism that can be raised against PIORT is that too many parameters need to 

be set. Apart from the parameters specific of the classifier in the first (static recognition) 

module, the dynamic recognition module uses two parameters, which are bounds on the 

linear adaptive weighting of previous and current probabilities, and the tracking 

decision module uses up to twelve parameters: six related to the uncertainty in the target 

position prediction, three for tracking image post-processing filters (one for each filter), 

two for occlusion mode determination and one more for a weighted average 

computation of the target movement vector. It is very difficult to get rid of these 

parameters in our approach, but the default values reported in the previous sections have 

been tuned carefully to yield a stable satisfactory behaviour of PIORT in all the test 

sequences. Of course, for new sequences, these default values may not be optimal and 

some further tuning might improve the performance. A sensitivity analysis for each one 

of the PIORT parameters would be extremely hard to do and assess, since the system 

response may depend a lot also on the specific features of the input sequences. By 

experience, we hypothesize and claim that, in general, small variations on the given 

default values do not affect importantly the obtained tracking results, but larger ones 

could do. 

 

As future work, we want to extend the experimental validation of PIORT by applying it 

to new and more difficult image sequences; in particular, sequences where multiple 

objects are tracked simultaneously in the scene. And, as commented before, new 

comparative studies against state-of-the-art model-based tracking methods (e.g. [5, 15]) 

would be very interesting to do whenever possible. 

 

For the two currently used approaches in the static recognition module, an obvious 

upgrade is to replace the RGB by the HSI colour space, since the latter seems to be 

more suited for matching or tracking objects, especially in natural environments with 

changing illumination. In addition, we are interested in implementing and testing new 
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classifiers in the static recognition module, which could exploit other features 

completely different to the basic colour features used up to now. For instance, an SVM 

classifier could be applied to a set of features formed by Gabor filter responses, 

provided that class probability values were estimated from margin values. 

 

Another possible extension would be to replace in the third module the simple rules 

used in the a-priori predictions of target centres and areas (equivalent to noiseless 

Kalman filters) by the whole Kalman filter formulation considering noise for both the 

dynamics and the observations. However, this replacement would increase even more 

the number of the system parameters and it is not clear that resulted in significant 

changes in the whole system behaviour.   
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