
Behavior Research Methods, Instruments, & Computers
/989, 2/ (2), /95-204

SESSION VII
TUTORIAL ON EXPERT SYSTEMS

Doris Aaronson, Presider
New York University

Expert systems: A cognitive science perspective

ROY LACHMAN
University of Houston, Houston, Texas

The theory and technology of knowledge-based systems are intrinsically interdisciplinary and
are closely related to the formalisms of cognitive psychology. In this paper, strategies of incor­
porating intelligence into a computer program are described along with a common architecture
for expert systems, including choices of representation and inferential methods. The history of
the field is traced from its origins in metamathematics and Newell and Simon's (1961) GENERAL
PROBLEM SOLVER to the Stanford Heuristic Programming Project that produced DENDRAL
and MYCIN (Buchanan & Shortliffe, 1984). MYCIN gave rise to EMYCIN and a shell technol­
ogy that has radically reduced the development time and cost of expert systems. Methodology
and concepts are illustrated by transactions with a shell developed for graduate education and
a demonstration knowledge base for the diagnosis of senile dementia. Knowledge-based systems
and conventional programs are compared with respect to formalisms employed, applications,
program characteristics, procedures supplied by the development environment, consistency,
certainty, flexibility, and programmer's viewpoint. The technology raises basic questions for
cognitive psychology concerning knowledge and expertise.

The purpose of this paper is to explore the properties
of knowledge-based systems and to compare them to con­
ventional software systems. Such an analytic comparison
requires an account of the conceptual origins of expert
systems, their development, basic architecture, and
relationship to psychological theory. The reader is as­
sumed to have some familiarity with programming in a
high-level language and at least an elementary sense of
basic data structures and other programming concepts.
This appears to be the characteristic level of awareness
of most research psychologists, whose major effort is
naturally devoted to the factual content and methodology
of their primary occupation-the research and teaching
of psychology. My examination of expert systems will
follow a top-down sequence of exposition. The relation­
ship of expert systems to cognitive science will be dis­
cussed first, followed by an examination of central issues,
such as what it means to incorporate intelligence and
knowledge into software systems, the architecture of in­
telligent systems, and their control processes. The dis­
cussion will focus on the MYCIN system, and on its

Addresscorrespondence to theauthorat the Department of Psychology,
University of Houston, Houston, TX 77204-5341.

predecessor and progeny, since those programs have
produced major advances in theory and technology. The
final sections contain examples of transactions with an ex­
pert system used for demonstration and teaching, and an
analysis and comparison of expert and conventional sys­
tem functionality. The paper, in its entirety, is based on
the premise that basic knowledge will be advanced and
the effective use of expert systems in science will be facili­
tated by a careful distinction between conventional
computer-support systems and knowledge-based systems.

EXPERT SYSTEMS
AND COGNITIVE SCIENCE

Expert systems are one type of knowledge-based sys­
tem and as such unequivocally comprise a subfield of arti­
ficial intelligence (AI), which itself is a division of com­
puter science. However, the designers of expert systems
rely on the factual content and methodologies of several
autonomous disciplines. These are collectively called cog­
nitive science, and include linguistics, cognitive psychol­
ogy, and AI. These disciplines share in common the study
of various kinds of operations on symbols and symbol sys­
tems. Cognitive scientists tend to be interested in the na­
ture and properties of intelligent systems, and seek, in

195 Copyright 1989 Psychonomic Society, Inc.



196 LACHMAN

varying degrees, computational theories of the systems
of interest to their discipline. The cognitive sciences differ,
as do all disciplines, in their presuppositional structures;
they have different conceptions of subject matter, the ap­
propriateness of specific problems, the acceptability of
solutions, and the concepts of proof. The different presup­
positions concerning the nature of truth and the methods
of proof (Lachman & Lachman, 1986) result in the selec­
tive use of confirmation methodologies, such as the natural
science model of experimentation, formal proofs, intu­
itions of native speakers, and proof by demonstration of
a running program. The differences are overshadowed,
however, by the interdependence of the cognitive sciences
in finding solutions for each discipline's sanctioned
problems. In particular, several ofthe core problems of
knowledge-based systems are indistinguishable from the
central problems of cognitive psychology and may require
the methodology of both disciplines for acceptable so­
lutions. Finally, it should be emphasized that although
conventional software can be explicated in the idiom of
computer science, knowledge-based systems can only be
understood in terms of the concepts and methods of several
of the individual cognitive sciences. The standard archi­
tectures of knowledge-based systems, discussed below,
clearly show that dependence.

INCORPORATING INTELLIGENCE
IN A COMPUTER PROGRAM

Traditional programs are rigidly organized procedures
for performing a task or solving a problem interactively
with the user. The procedures, developed in software­
engineering environments, are coded into programs from
specifications provided by domain experts, project direc­
tors, or analysts, all of whom tend to have naive models
of end-users. The experts that develop specifications for
a program possess explicit knowledge of the problem area
and base their software requirements on established
problem-solving methods. Conventional programs are
then constructed from those specifications. The program
code represents algorithms, that is, step-by-step symbol­
manipulating operations, including decision and branch
points, that are infallible for obtaining some result or solv­
ing a problem. In some problems, for which there are a
limited number of potential solutions, the algorithm con­
sists of an exhaustive search through all possibilities.
However, many significant scientific and human problems
cannot be solved by algorithms because the problem areas
are ill defined or open-ended, or because an exhaustive
search may lead to combinatorial explosion. In such a sit­
uation, there are too many solution paths to search in a
reasonable amount of time.

AI-based expert systems, in contrast, rely on heuristic
methods to limit the search space, or number of solution
paths, for a problem. Heuristics are procedures based on
the established facts of a field and the judgment, opinions,
and intuitions of a domain expert. Expert systems ex­
plicitly represent, in computer code, the knowledge that

makes decisions possible. They can thus function with
poorly specified problems just as the expert does; they
are not confmed to the precisely specified problems that
are the only typetypically solved by conventionalsoftware.

A major difference between expert systems and con­
ventional programs is that the capabilities of conventional
programs come largely from stored algorithms making
up their procedures, whereas the intelligence in expert
systems is derived primarily from the explicit knowledge
stored in its knowledge base. The knowledge there may
be coded as rules, frames, or semantic networks. However
it is coded, the declarative knowledge representation is
processed deductively by a family of algorithms variously
called the inference engine or interpreter. Conventional
programs, on the other hand, must be constructed in a
thorough, precise, and exhaustively specified fashion or
they will not run. They are rigid and absolutely intoler­
ant of ambiguity; failure of the user to conform to a pro­
gram's requirements explicitly, including hidden require­
ments, leads a conventional program to abort or "hang
up." Gaps in knowledge, therefore, are not tolerated. In
contrast, knowledge-based software systems make no such
demands, basically because intelligence is incorporated
into the system in a segregated, declarative knowledge
base. The knowledge, semantics, and intelligence of con­
ventional programs are embedded in algorithms and dis­
tributed throughout combinations of procedures. This
makes them context-dependent, difficult to understand and
to modify, and highly predictable. The intelligence in
knowledge-based systems, on the other hand, is primar­
ily in the declarative expression of rules, semantic nets,
or frames. The knowledge is recorded as data, is context­
independent, and is easy to understand and modify. Such
systems are rather unpredictable, because part of their in­
telligence is in the semantic routines that control the state
of the system, and the consequences of that control can
be very difficult to anticipate.

The relative power of the two approaches for various
kinds of scientific and practical problems is very differ­
ent. Articles on psychology and computing, such as those
dealing with computer-based decision aids, sometimes fail
to distinguish between intelligent and conventional pro­
grams. Indeed, at one level of analysis there is consider­
able overlap between expert systems and standard pro­
grams. Expert systems, depending on their design, may
contain various structures and procedures that are also
present in conventional programs, and the algorithms of
standard programs do represent human knowledge. More­
over, both types of systems run on coded formalisms that
are Turing-complete (Minsky, 1967). A Turing-complete
formalism coded into a procedure is one that can be ex­
ecuted on a Turing machine, and hence on any instantia­
tion of a Turing machine, including high-level computer
languages. Thus, anything that can be coded in the for­
malisms of expert systems can also be coded in conven­
tional high-level computer languages, given enough
programming skill, coding time, and patience (Haugeland,
1981). Nevertheless, software systems that contain raw



expertise in a knowledge base are crucially different from
those based solely on algorithmic methods.

THE ARCmTECTURE
OF EXPERT SYSTEMS

A software system is one or more configurations of
computer code (a particular program, a programming lan­
guage, or a programming environment that consists of one
or more languages and numerous utility programs). Var­
ious representations of software systems differ in level
of abstraction and amount of detail. Machine language
is the most concrete level of software system and pseudo­
code is the least. Pseudocode is a rough natural-language
representation of the anticipated steps in a program. It
tends to be very loose and tentative, and lacks detailed
expressions of implementation. The level of description
called the architecture is less abstract than pseudocode,
and has greater detail. However, representation at the
architecture level is more abstract and less detailed than
any level of computer code. The architecture of a soft­
ware system, therefore, represents the system at a level
of abstraction intended to capture the functionality and
principles of operation built into the system, but is un­
cluttered by input/output and other details of computa­
tional procedure. Architecture, presented in a block dia­
gram, is a simplification and idealization of a system; the
diagram is designed to show functional components and
their interconnections, and to capture major properties of
the system and render them comprehensible.

The User Interface
A common architecture for expert systems is presented

in Figure 1. The natural-language interface represents
software elements that control the system's output of
queries and conclusions, and its use of input data from
the user regarding problem states and parameter values.
Typically, the screen display is the main output modality

EXPERT SYSTEMS 197

and the keyboard is the input modality of choice. Design
of the user interface is a very active area of psychologi­
cal research (Carroll, 1987). Interface designs, with very
few exceptions, are rendered in algorithmic programs.
Effective heuristic design of the user interface, based on
natural-language communication, requires cognitive
science (linguistics, psycholinguistics, and perhaps even
ethnomethodology). In expert systems, the user interface
solicits facts from the user about the current problem,
in the form of multiple-choice selections or open-ended
questions with a limited set of acceptable responses. The
output information presented to the user, although it often
appears to have many features of generative natural
language, is usually "canned." That is, the system de­
veloper has previously constructed, in the vernacular of
the knowledge domain, natural-language sentences that
describe each possible problem solution and the reasons
that a given solution was selected by the system. Although
real progress has been made in computational linguistics,
cognitive science and AI technology have a long way to
go before a truly intelligent natural-language interface will
be available (Winograd, 1982).

The Knowledge Base and
Knowledge Representation

The components of the architecture in Figure 1 are ab­
stractions. The knowledge base, for example, is a con­
ceptual receptacle for real-world knowledge. Knowledge
in the base is stored in a declarative form as data struc­
tures that mayor may not contain procedural elements.
During the construction of an expert system, knowledge,
in the form of rules, frames, and semantic nets, can be
entered in various ways, depending on the development
environment. Knowledge is entered into the base either
by coding in a high-level language such as LISP or by
use of a shell, which is a particular type of expert-system
software-development environment. There are many strate­
gies for representing knowledge, and cognitive psychol-

USER

1
NATURAL LANGUAGE

INTERFACE

J
SUPPORT SOFTWARE

PROGRAMS TO
LOAD RULES,

INITIATE QUIERIES.

J

INFERENCE ENGINE

ALGORITHMS FOR INFERENCE
AND CONTROL STRATEGIES

e.g. search for hypotheses;
recursively call rules:
backward chaining: ...

J
KNOWLEDGE BASE

o PRODUCTIONS (rules)
o STRUCTURED OBJECTS

(frames. semantic
networks)

o PROPOSITIONAL LOGIC

DATABASE (STM)

o INITIAL FACTS
o INFERRED FACTS
o SYSTEM STATUS

Figure 1. A common architecture for knowledge-based systems.



198 LACHMAN

ogists tend to be familiar with one or more of the ap­
proaches, so we will not linger on the important topic of
representation. Using Nilsson's (1980) classification, there
are three major classes of representation: production sys­
tems (also called rule-based systems), logic systems (e.g. ,
predicate calculus), and structured objects (e.g., seman­
tic nets and frames). A fourth strategy is increasingly be­
ing used; it consists of various hybrid combinations of
representational formats. Each category of representation
has subtypes, and the pure versions of the major types
have been proven to be formally equivalent (Anderson,
1976; Minsky, 1967). Although the formal equivalence
of representational systems is of considerable theoretical
importance, it has limited consequences for the actual de­
velopmentof expert systems. During the historicaldevelop­
ment of knowledge-based systems, a strategy emerged
that was quite successful in advancing AI science and
technology. Declarative knowledge was conceptually and
physically segregated, as much as possible, in the knowl­
edge base, and procedural knowledge was identified with
the inference engine. Knowledge representation in cur­
rent expert systems tends to be declarative, but, as we
have earlier noted, procedural knowledge sneaks in, in
various guises (Buchanan & Shortliffe, 1984).

Inference Engine and Database
The inference engine represents a set of algorithms that

produce inferences from declarative knowledge stored as
rules (alias: production system), frames (alias: schema),
semantic networks (alias: acyclic and directed graphs),
or some combination of these representational formats.
These algorithms control the "reasoning" process by
combining the inferential schema implicit in rules, frames,
and networks with characteristics of the current problem
either obtained from the user or inferred from facts stored
in the database. When an advisory session between ex­
pert system and user is initiated, the inference engine de­
termines what facts it needs to solve a problem, and either
gets those facts or terminates the computer run. The al­
gorithms in the inference engine also control the sequenc­
ing and generation of inferences, add newly inferred facts
to the database, and process confidence levels. Although
the classic formalisms for generating inferences with
productions and networks are Turing-complete and there­
fore formally equivalent, the actual algorithms imple­
mented differ from the classical form of a production sys­
tem or graph. Modifications to the formalism are made
for pragmatic design considerations. Inferential algorithms
for each representational schema can be implemented in
many different ways with different selections of features
and, therefore, really represent distinguishable families
of procedures associated with productions, frames, net­
works, and propositional logic.

Algorithms for making deductions from uncertain and
incomplete information are often included in the infer­
ence engine. Both knowledge-based and standard pro­
grams work in a deterministic fashion when evaluating
probabilities of events, but the user of a standard program

usually supplies all the data, estimates missing data, or
selects a rule for making that estimate. Expert systems,
in contrast, are characteristically designed to handle miss­
ing and uncertain data automatically. It is the forte of ex­
pert systems to work with uncertain, incomplete, and
fuzzy data.

In productions (also known as conditionals or rule-based
inferences), the simplest and most basic rule of inference
is modus ponens. The schema is:

If p then q; given p; infer q

The conditionals are recorded in the knowledge base and
the initial facts about the problem are obtained from the
user and stored in the database. Algorithms of the infer­
ence engine apply the facts as antecedents of the condi­
tionals and derive new facts from the consequence which
are then also stored in the database. The system searches
through the database, queries the user, or does both in
an effort to find new antecedents so that rules may be
fired. Firing a rule means finding a pattern that matches
p in the rule base so that q may be added to the database
as a new pattern and therefore as a potential match to
forthcoming occurrences of p. The process requires a
starting point, a strategy for ordering the selection of rules,
and a strategy for working either from facts to conclu­
sions, from conclusions (or hypotheses) to supporting
facts, or both ways. The former strategy is called "for­
ward chaining" and the latter strategy "backward chain­
ing"; both strategies originated in mathematical logic.

The main menu of a shell that supports the develop­
ment of simple expert systems is shown in Figure 2. Com­
puter runs showing the output from the shell's algorithms
that represent the forward- and backward-chaining strate­
gies for an identical rule base called DEMENTIA.RB are
presented in Figures 3 and 4, respectively. The computer
transactions shown in the figures are for DEMENTIA
rules, three of which are shown in Table 1. The forward­
chaining algorithm, depending on its particular implemen­
tation, elicits the initial problem parameters (i.e., the facts)
from the user and proceeds to draw all possible conclu­
sions, as is illustrated in Figure 3. It recursively calls
the rules by searching the database for an antecedent and
adding the consequences of fired rules to the database until
all facts and rules are exhausted. The forward-chaining
algorithm can be implemented in a conversational expert
system or in a larger system with primarily conventional
components. The forward-chaining strategy is followed
when it is possible to assume that all of the required in­
formation will be available at the start of a computer run.
The backward-chaining algorithm can be designed to
search the rule base recursively until it produces a set of
terminal nodes or end-states such as the hypotheses in
Figure 4. Backward-chaining and hybrid systems will tend
to be conversational. Selection of a hypothesis is solicited
from the user, and the necessary facts to prove or dis­
card it are obtained interactively, as in Figure 4. The
backward-chaining sequence establishes subgoals and
treats them in a similar fashion as the original hypothe-



EXPERT SYSTEMS 199

ARTIFICIAL INTELLIGENCE LAB
(C1Copyright 1987 by Roy Lachman

MAIN MENU

Procedures Available From This Menu

A Forward Chaining E.S. E Physical and Mental Tests

B Backward Chaining E.S. F' Print I<ule Uase

C Bays i .i n Expert. System G Menu #2

0 Enter New Rule Base H Return to DOS

During Any Procedure: Press <Fl> for Main Menu, < H > Exit to DOS

Figure 2. The main menu of an expert-system shell used for graduate training in the cognitive theory
and technology of knowledge-based systems.

sis. Subgoals are evaluated by testing the first rule and,
if it fails to fire or to establish the subgoal, recursing on
the remaining rules. Subgoals that are established as facts
(i.e., are the consequence of a fired rule) are added to
the database. The backward-chaining algorithm either es­
tablishes the selected hypothesis, or if it cannot, it says
so and terminates the computer run.

Support Software
Support software, in an expert-system development en­

vironment, performs any of a number of utility and sup­
port functions. These functions can deal with any aspect
of the architecture. In a rule-based system, for example,
procedures can be included that interactively construct
rules, edit the rules, test them for syntax and internal con­
sistency, or test the entire rule set for contradictions.
Graphics capabilities, development programs, file loca­
tion and reformatting, and the like are available for other
components of the architecture. In fact, any procedures
used in user-interface development environments or in
general software engineering can be added to an expert­
system shell.

ORIGINS OF THE KNOWLEDGE-BASED
SYSTEM ARCHITECTURE

Although a number of intellectual achievements made
the emergence of AI and cognitive psychology possible,
the seminal work in metamathematics in the 1930s ulti­
mately contributed to both. The joint origins of AI and
cognitive psychology in mathematical logic is described
from the cognitive perspective by Lachman and Lachman
(1986), and from the perspective of AI by Newell and
Simon (1976). A direct line of development can be traced
from the publication of Godel's (1931/1965) incomplete­
ness theorem and Turing's (1936) computability thesis to
the physical symbol system hypothesis (Newell, 1980;
Newell & Simon, 1976). Although the physical symbol

system hypothesis was not explicitly expressed until the
1970s, it is implicit in the early landmark work of Newell
and Simon described below. The production system for­
malism, so important to contemporary psychological
theory and AI, also originated in the metamathematics of
the 1930s (Post, 1936).

In the 1950s, Newell and Simon originated a research
program, in the Lakatosian sense (Lakatos, 1970), that
was to become a cornerstone of psychology's information­
processing paradigm. The program had several goals. One
was to understand and develop computer programs that
could deal with ultracomplicated problems such as chess
or theorem proving in mathematical logic. Another goal
was the scientific explication of general problem-solving
and decision-making methods that involved limited ration­
ality, "satisficing," and selective search. The computer
programs they developed in that connection, LOGIC
THEORIST (Newell & Simon, 1956) and GENERAL
PROBLEM SOLVER (GPS; Newell & Simon, 1961), are
illustrative of both the main research emphasis and the
kinds of theory that emerged from their laboratory. Their
research program aimed at the elucidation of domain­
independent general problem solving and the development
of theories of human thought. Their psychological theory
was instantiated in a series of running programs whose
performance generally was comparable to that of human
problem solvers (Newell & Simon, 1972). The AI objec­
tive of the program was to achieve general intelligence
and domain-independent problem solving in a heuristic
machine. Students of Newell and Simon wrote theses and
dissertations, and conducted postdoctoral research using,
and in some cases extending, the approach enunciated in
GPS. While preparing his dissertation under the tutelage
of Simon, Feigenbaum worked within the prevailing
paradigm and developed a simulation of verbal learning
called EPAM (Feigenbaum, 1961). However, attempts
to develop programs in that tradition as serious technol­
ogy ran into insurmountable problems.



200 LACHMAN

eZ-16-1988 ze:Zl:17 RULE BASE=DEMENTIA.RB

FORWARD CHAINING INFERENCE ENGINE

To control the screen output Press <C>, otherwise <ANY KEY>.

Enter facts now - Enter * To stop.
Follow each entry with <RETURN>.

FACT? NOT SELF-CARE
FACT? POOR-RECENT-MEMORY
FACT? NOT COUNT
FACT? MAINTAIN-CONVERSATION
FACT? *

STM (data base) contains:
NOT SELF-CARE POOR-RECENT-MEMORY NOT COUNT MAINTAIN-CONVERSATION

The system is trying to find a fact in STM and to
match it to an applicable rule in the rule base.

SYSTEM USING RULE 17
Rule 17 Deduces: SEVERE-DECLINE
STM (data base) now contains:
NOT SELF-CARE POOR-RECENT-MEMORY NOT COUNT MAINTAIN-CONVERSATION
SEVERE-DECLINE

SYSTEM USING RULE 3
Rule 3 Deduces: EARLY-SENILE-DEMENTIA-ALZHEIMER-TYPE-(SDAT)
STM (data base) now contains:
NOT SELF-CARE POOR-RECENT-MEMORY NOT COUNT MAINTAIN-CONVERSATION
SEVERE-DECLINE EARLY-SENILE-DEMENTIA-ALZHEIMER-TYPE-(SDAT)

NO MORE APPLICABLE RULES
FINAL RESULT: EARLY-SENILE-DEMENTIA-ALZHEIMER-TYPE-(SDAT)

eZ-16-1988 ze:zz:ee NORMAL TERMINATION

Figure 3. Computer transactions for forward chaining on the DEMENTIA rule base. All
user entries are made to the prompt "FACT?". The domain of expertise used to illnstrate
these principles and methods is the differential diagnosis of senile dementia.

Feigenbaum, in collaboration with the geneticist Leder­
berg, first attempted to develop a comprehensive and
domain-independent aid to scientific thinking. Their ef­
fort was not fruitful until they focused the problem-solving
heuristics of the project on a circumscribed domain, and
abandoned their effort to construct a general problem­
solving program. The resulting system of programs, called
DENDRAL, was developed by Feigenbaum, Lederberg,
Dejerassi, and others. DENDRAL is a forward-chaining
system that describes the molecular structure of unknown
organic compounds from mass spectrometer and nuclear
magnetic response data. It contains productions for the
data-driven components and a procedural representation
for the molecular structure generator (Lindsay, Buchanan,
Feigenbaum, & Lederberg, 1980). DENDRAL was a
watershed in AI; it represented a shift from power-based
to knowledge-based programming. The program became
the forerunner of many subsequentexpert-system projects,
in particular MYCIN. Success in the construction of
knowledge-based programs thus was achieved only when
the AI design objectives were changed to the representa­
tion of narrow, limited, and focused domains of exper­
tise (Feigenbaum, Buchanan, & Lederberg, 1971).

The major change of focus from general, domain­
independent to domain-dependent problem solving, along
with other lessons learned from DENDRAL, were incor­
porated into the MYCIN family of programs of the
Stanford Heuristic Programming Project (Buchanan &
Shortliffe, 1984). Newell (1984) described MYCIN as the
expert system "that launched the field." The develop­
ment of MYCIN and related programs (see Figure 5)
made explicit many of the issues that arise in the construc­
tion of knowledge-based systems. Although considerable
innovation in AI technique has been achieved and land­
mark systems have been developed, numerous basic and
applied problems in cognitive science that are related to
the basic properties of knowledge and to characteristics
of knowledge-based systems remain unsolved. The
MYCIN projects, including their domains, epistemolog­
ical properties, and development, provide what is likely
the most informative perspective on expert systems. The
continuing retrospective study of MYCIN (Buchanan &
Shortliffe, 1984; Clancey, 1985) explains the basis of the
rise to prominence of knowledge-based systems, the fac­
tors that make them successful, and the scientific foun­
dations upon which they are built.



0
2

-1
7

-1
9

8
8

1
4

:4
0

:0
8

V
E

R
=

S1
4

R
U

L
E

-B
A

S
E

=
D

E
M

E
N

T
1A

.R
B

R
U

L
E

17
D

e
d

u
c
e
s

S
E

V
E

R
E

-D
E

C
L

IN
E

T
ry

T
o

e
s
ta

b
li

s
h

o
n

e
o

f
th

e
fo

ll
o

w
in

g
h

y
p

o
th

e
se

s
fr

o
m

th
e

ru
le

b
a
s
e
:

1
=N

O
R

M
A

L
-A

G
IN

G
2

=
B

E
N

IG
N

-S
E

N
E

S
C

E
N

T
-C

O
G

N
IT

IV
E

-D
E

F
IC

IT
S

3
=

E
A

R
L

Y
-S

E
N

IL
E

-D
E

M
E

N
T

IA
-A

L
Z

H
E

IM
E

R
-T

Y
P

E
-(

S
D

A
T

)
4

=
M

ID
D

L
E

-S
E

N
IL

E
-D

E
M

E
N

T
IA

-A
L

Z
H

E
IM

E
R

-T
Y

P
E

5
=

L
A

T
E

-S
E

N
IL

E
-D

E
M

E
N

T
IA

-A
L

Z
H

E
IM

E
R

-T
Y

P
E

6
=

M
U

L
T

I-
IN

F
A

R
C

T
-D

E
M

E
N

T
IA

7
=

P
O

T
E

N
T

IA
L

L
Y

-R
E

V
E

R
S

IB
L

E
-D

E
M

E
N

T
IA

E
n

te
r

h
y

p
o

th
e
s
is

N
o

.
3

T
h

e
S

y
st

e
m

is
tr

y
in

g
to

p
ro

v
e

g
o

a
l

E
A

R
L

Y
-S

E
N

IL
E

-D
E

M
E

N
T

IA
­

A
L

Z
H

E
IM

E
R

-T
Y

P
E

-(
S

D
A

T
)

T
h

e
S

y
st

e
m

is
tr

y
in

g
to

p
ro

v
e

g
o

a
l

S
E

V
E

R
E

-D
E

C
L

IN
E

T
h

e
S

y
st

e
m

is
tr

y
in

g
to

p
ro

v
e

g
o

a
l

PO
O

R
-R

E
C

E
N

T
-M

E
M

O
R

Y

A
ll

re
le

v
a
n

t
ru

le
s

h
a
v

e
fi

re
d

,
c
a
n

't
p

ro
v

e
PO

O
R

-R
E

C
E

N
T

-M
E

M
O

R
Y

,
w

h
ic

h
is

n
o

t
in

ST
M

-D
B

n
o

r
th

e
c
o

n
se

q
u

e
n

t
o

f
a

R
u

le
.

S
h

o
rt

-t
e
rm

m
em

o
ry

(D
A

T
A

B
A

SE
)

no
w

c
o

n
ta

in
s
:

PO
O

R
-R

E
C

E
N

T
-M

E
M

O
R

Y
N

O
T

C
O

U
N

T
M

A
IN

T
A

IN
-C

O
N

V
E

R
SA

T
IO

N
S

E
V

E
R

E
-D

E
C

L
IN

E

T
h

e
S

y
st

e
m

is
tr

y
in

g
to

p
ro

v
e

g
o

a
l

N
O

T
S

E
L

F
-C

A
R

E
A

ll
re

le
v

a
n

t
ru

le
s

h
a
v

e
fi

re
d

,
c
a
n

't
p

ro
v

e
N

O
T

S
E

L
F

-C
A

R
E

,
w

h
ic

h
is

n
o

t
in

ST
M

-D
B

n
o

r
th

e
c
o

n
se

q
u

e
n

t
o

f
a

R
u

le
.

IS
T

H
IS

T
R

U
E

:
N

O
T

S
E

L
F

-C
A

R
E

Y
=

Y
es

N
=

N
o

D
=

D
o

n
't

k
n

o
w

(N
o

t
y

e
t

o
p

e
ra

ti
o

n
a
l)

W
=W

hy
(S

h
o

w
c
o

n
te

n
ts

o
f

ST
M

d
a
ta

b
a
se

)

R
E

S
P

O
N

S
E

:
N

U
N

A
B

LE
T

O
PR

O
V

E
H

Y
P

O
T

H
E

S
IS

:
E

A
R

L
Y

-S
E

N
IL

E
-D

E
M

E
N

T
IA

-A
L

Z
H

E
IM

E
R

-T
Y

P
E

­
(S

D
A

T
)

IS
T

H
IS

T
R

U
E

:
PO

O
R

-R
E

C
E

N
T

-M
E

M
O

R
Y

Y
=

Y
es

N
=

N
o

D
=

D
o

n
't

k
n

o
w

(N
o

t
y

e
t

o
p

e
ra

ti
o

n
a
l)

W
=W

hy
(S

h
o

w
c
o

n
te

n
ts

o
f

ST
M

d
a
ta

b
a
se

)

R
E

SP
O

N
SE

:
Y

0
2

-1
7

-1
9

8
8

1
4

:4
1

:0
4

N
O

R
M

A
L

T
E

R
M

IN
A

T
IO

N

o o a

T
h

e
S

y
st

e
m

is
tr

y
in

g
to

p
ro

v
e

g
o

a
l

N
O

T
C

O
U

N
T

A
ll

re
le

v
a
n

t
ru

le
s

h
a
v

e
fi

re
d

,
c
a
n

't
p

ro
v

e
N

O
T

C
O

U
N

T
,

w
h

ic
h

is
n

o
t

in
ST

M
-D

B
n

o
r

th
e

c
o

n
se

q
u

e
n

t
o

f
a

R
u

le
.

IS
T

H
IS

T
R

U
E

:
N

O
T

C
O

U
N

T
Y

=
Y

es
N

=
N

o
D

=
D

o
n

't
k

n
o

w
(N

o
t

y
e
t

o
p

e
ra

ti
o

n
a
l)

W
=W

hy
(S

h
o

w
c
o

n
te

n
ts

o
f

ST
M

d
a
ta

b
a
se

)

R
E

S
P

O
N

S
E

:
Y

T
h

e
S

y
st

e
m

is
tr

y
in

g
to

p
ro

v
e

g
o

a
l

N
O

T
S

E
L

F
-C

A
R

E
A

ll
re

le
v

a
n

t
ru

le
s

h
a
v

e
fi

re
d

,
c
a
n

't
p

ro
v

e
N

O
T

S
E

L
F

-C
A

R
E

,
w

h
ic

h
is

n
o

t
in

ST
M

-D
B

n
o

r
th

e
c
o

n
se

q
u

e
n

t
o

f
a

R
u

le
.

IS
T

H
IS

T
R

U
E

:
N

O
T

S
E

L
F

-C
A

R
E

Y
=

Y
es

N
=

N
o

D
=

D
o

n
't

k
n

o
w

(N
o

t
y

e
t

o
p

e
ra

ti
o

n
a
l)

W
=W

hy
(S

h
o

w
c
o

n
te

n
ts

o
f

ST
M

d
a
ta

b
a
se

)

R
E

S
P

O
N

S
E

:
Y

FI
N

A
L

R
E

S
U

L
T

:
E

A
R

L
Y

-S
E

N
IL

E
-D

E
M

E
N

T
IA

-A
L

Z
H

E
IM

E
R

-T
Y

P
E

-(
S

D
A

T
)

R
U

L
E

3
D

e
d

u
c
e
s

E
A

R
L

Y
-S

E
N

IL
E

-D
E

M
E

N
T

IA
-A

L
Z

H
E

IM
E

R
-T

Y
P

E
-(

S
D

A
T

)
S

h
o

rt
-t

e
rm

m
em

o
ry

(D
A

T
A

B
A

SE
)

no
w

c
o

n
ta

in
s
:

PO
O

R
-R

E
C

E
N

T
-M

E
M

O
R

Y
N

O
T

C
O

U
N

T
M

A
IN

T
A

IN
-C

O
N

V
E

R
S

A
T

IO
N

S
E

V
E

R
E

-D
E

C
L

IN
E

N
O

T
S

E
L

F
-C

A
R

E
E

A
R

L
Y

-S
E

N
IL

E
-D

E
M

E
N

T
IA

-A
L

Z
H

E
IM

E
R

-T
Y

P
E

-(
S

D
A

T
)

T
h

e
S

y
st

e
m

is
tr

y
in

g
to

p
ro

v
e

g
o

a
l

M
A

IN
T

A
IN

-C
O

N
V

E
R

SA
T

IO
N

A
ll

re
le

v
a
n

t
ru

le
s

h
a
v

e
fi

re
d

,
c
a
n

't
p

ro
v

e
M

A
IN

T
A

IN
-C

O
N

V
E

R
S

A
T

IO
N

,
w

h
ic

h
is

n
o

t
in

ST
M

-D
B

n
o

r
th

e
c
o

n
se

q
u

e
n

t
o

f
a

R
u

le
.

IS
T

H
IS

T
R

U
E

:
M

A
IN

T
A

IN
-C

O
N

V
E

R
S

A
T

IO
N

Y
=

Y
es

N
=

N
o

D
=

D
o

n
't

k
n

o
w

(N
o

t
y

e
t

o
p

e
ra

ti
o

n
a
l)

W
=W

hy
(S

h
o

w
c
o

n
te

n
ts

o
f

ST
M

d
a
ta

b
a
se

)

0
2

-1
7

-1
9

8
8

1
5

:0
4

:5
7

N
O

R
M

A
L

T
E

R
M

IN
A

T
IO

N

m >< -e tT
l

;;Q -l en -< en -l tT
l
~ en

R
E

S
P

O
N

S
E

:
Y

F
ig

ur
e

4.
C

om
pu

te
r

tr
an

sa
ct

lo
ns

fo
r

ba
ck

w
ar

d
ch

ai
ni

ng
on

th
e

D
E

M
E

N
T

IA
ru

le
ba

se
.

A
ll

us
er

en
tr

ie
s

ar
e

m
ad

e
to

th
e

pr
om

pt
"R

E
SP

O
N

SE
:"

.
E

nt
ri

es
ar

e
lim

it
ed

to
th

e
n

u
m

b
er

s
1

to
7

in
di

ca
ti

ng
th

e
ch

oi
ce

o
f

hy
po

th
es

is
,

an
d

to
th

e
le

tt
er

s
l<

\'"
fo

r
Y

es
,

"N
"

fo
r

N
o,

an
d

"W
"

fo
r

W
hy

.
tv o



202 LACHMAN

DENDRAL
(Organic Chemistry)

DART
(Computer RepairJ

I
Shell

Technology

I
Knowledge
Acquisition

TEIJSIAS

CENTAUR
J. GRAVIDA

WHEEZE CLOT
(Pulmonary Disease) (Bleeding)

MYCIN
(infectious Disease)

J.

NEOMYCIN ONCOCIN
(Cancer Chemotherapy)

I
ICAI:

Explanation

J~

I
Question

'T'"'
BAOBAB

1960s

I
1970s

T
Figure S. Program developed in the Stanford Heuristic Programming Project

(Buchanan & ShortlifJe, 1984).

Rule 3 If Severe-Decline
And Not Self-care
Then Early-senile-dementia-Alzheimer-type (SDAT)

Note-DEMENTIA.RB was constructed from expert opinions published
in Pearce (1984), Shamoian (1984), and other sources. The rule base
is used only for training in the cognitive theory and technology of rule­
based systems.

Table 1
Three Rules from the DEMENTIA Rule Base Diagnosing Levels

of Alzheimer's Disease, Multi-Infarct Dementia,
and Depressive Dementia

fore developed to handle probabilistic components of rules
and to combine separate elements of evidence for diag­
nostic hypotheses (Buchanan & Shortliffe, 1975).

The MYCIN system soon became the model for inves­
tigating a number of fundamental problems in AI and for
developing expert system tools. The family of AI research
programs was part of the Stanford Heuristic Programming
Project shown in Figure 5 (Buchanan & Shortliffe, 1984).
Research was conducted and programs were developed
for expert system programming environments, on-line
knowledge acquisition, tutorial packages, and consulta­
tion programs for a variety of domains, some of which
are shown in Figure 5. The specific programs developed
included inference, natural-language question answering

Sudden-onset-cog-Decline
Fluctuating-course
Impaired-consciousness
Vascular-disease
Multi-infarct-dementia

Poor-recent-memory
Not count
Maintain-Conversation
Severe-Decline

If
And
And
And
Then

If
And
And
Then

Rule 6

Rule 32

The initial objective of the MYCIN project was the de­
velopment of a computer-based consultation system for
the diagnosis of infectious disease and for giving advice
in the choice of antimicrobial therapy. In the case of acute
infections, immediate treatment is necessary even before
the results of all laboratory tests and cultures are avail­
able. In addition, antimicrobial therapy is subject to con­
siderable human error. Consequently, development of the
MYCIN system had practical significance, in addition to
the scientific importance of testing AI constructs. A
modified production system approach with a backward­
chaining strategy was selected for the program. In other
words, the system works backward from the goal of a
therapeutic regimen and tests various rule-based diagnoses
against facts supplied by the user interactively. The suc­
cess of a rule-based approach in the DENDRAL programs
was one reason for selecting a production-system
representation. Still more important was the discovery by
the developers of MYCIN that rules, and lines of reason­
ing based on chained rules, are easier to understand, cri­
tique, and modify than are alternative representations.
These characteristics made fast prototyping possible with
rule-based systems, an important property of production­
system-based representation. The separation of produc­
tion rules from the inference algorithms made it possible
to develop an explanation module. The advice offered in
a consultation was explained by the system, at least in part,
by tracing the chains of inferences, displaying a descrip­
tion of the rules invoked, and indicating why the system
requested certain pieces of information from the user. The
developers discovered, early in the project, that the
productions of MYCIN differed in a significant way from
those of DENDRAL, and that many of the inferences
produced in MYCIN were uncertain. A system was there-



(Bonnet, 1980), intelligent tutoring (Clancey, 1986),
computer-based knowledge acquisition (Davis, 1979), and
the expert-system shellEMYCIN (vanMelle, Shortliffe,
& Buchanan, 1984). EMYCIN is of practical importance
because it produced a technology thathasbeenduplicated
andextended in numerous commercial packages. Theshell
was created by removing the medical productions from
the rule base of MYCINand addingother procedures to
therulebase. Thismade it possible to formulate rules from
a variety of domains, including medical, engineering, and
commercial, and to builda working system at a consider­
able reduction in time and cost. The shell developed in
mylaboratory and its outputfor DEMENTIA.RB shown
in Figures 2, 3, and 4 were patterned on EMYCIN.

Many additional scientific lessons were learned from
MYCINand its progeny, someof whichare validated by
the demonstration of the expert-levelperformance of the
system. The MYCIN project demonstrated that signifi­
cant modifications to a program can be accomplished,
without any reprogramming, by changing or adding
declarative statements. From the origin of AI as a dis­
cipline, the capacity to improve performance without
reprogramming has been viewedas a significant dimen­
sionof machine intelligence (McCarthy, 1958). Theabil­
ity of the system to use the sameknowledge in morethan
one way (e.g., for advising and for explaining) is also
symptomatic of intelligence. An important lesson for cog­
nitive psychologists is therepeated demonstration, through
progeny of MYCIN, thata fewhundred rulesmaysuffice
to represent the deep knowledge of various significant

EXPERT SYSTEMS 203

domains. Perhaps the final lesson of the projectis thedis­
covery of the limits of rule-based systems, of the kinds
of problems for which theydo notworkwell or at all (e.g.,
continuous monitoring tasks, such as monitoring of life
support systems in intensive care medical facilities).

COMPARING KNOWLEDGE-BASED SYSTEMS
WITH CONVENTIONAL SOFfWARE

The distinction between conventional and knowledge­
basedsystems is both real and important. However, this
distinction cannotbe appreciated simply by reference to
the basic formalisms that supporteither of the systems.
There are several reasons that formal comparisons are
problematic. First,experimental systems, such as MYCIN,
explore variations in many aspects of a formalism, as well
as in combinations of formalisms; this makes it unclear
exactly what is being compared. Second, the previous
description of procedural languages as being Turing­
complete means that anything that can be computed with
a production system can also be computed with a high­
level procedural language (Haugeland, 1981). Thus, at
the formal level of description, there is no distinction to
be made between any of the Turing-complete computa­
tional systems. In physics and elsewhere, vastly differ­
ent ontological domains canbe represented byan identical
mathematical formalism (Lachman, 1960). Consequently,
although categories suchas knowledge-based systems and
conventional programs are identical at one level of
representation, theyare vastly different at another. There-

Table 2
Programming Environments

Standard Programming System Knowledge-based System

Applications Operates in well-defined Operates in poorly defined
domains with well-defined domains with poorly structured
problems problems

Flexibility Literal, inflexible

Certainty Algorithmic, guaranteed to be
correct

Consistency Requires absolute consistency

Environment supplies Iteration, branching, subroutine
calls, etc.

Program A description of a set of
calculations or formal
operations

Control flow Decision of process currently
executing

Viewpoint Calculations performed,
procedures implemented

Programmer's job Describe algorithms needed to
solve problem

Flexible

Not guaranteed correct, but
can reach performance level
better than human expert

Deals with some inconsistency

Forward and backward
reasoning, traces its decisions,
recursive calling of rules, etc.

A description of relationships
between variables, objects, or
a system and its components

Select-execute loop, unity of
data and control

Knowledge or rules applied,
expanded view of a program

Select knowledge needed to
solve problem



204 LACHMAN

fore, both categories must ultimately be described, not
only in formal terms, but in terms of their presupposi­
tions and in their style of approach. Newell (1984) has
observed that many kinds of conventional software are
designated as expert systems, which "mongrelizes" the
field of AI-based knowledge systems. It is conceptually
worthwhile to distinguish between the two categories, and
major differences have been described throughout this
paper. A summary of the features of each approach is
presented in Table 2. Several of the differences are, as
previously described. only a matter of degree. However,
the categories of Table 2 represent different perspectives
on the concepts employed, the external systems modeled,
the program, and the programmer. Taken together, the
features of knowledge-based systems may alter human in­
tellectual capacity to such a degree that both science and
society are fundamentally changed.

REFERENCES

ANDERSON, J. R. (1976). Language, memory, and thought. Hillsdale,
NJ: Erlbaum.

BoNNET, A. (1980). Analysede textesau moyend'unegrammaire seman­
tique et de schemas. Application a La comprehension de resumes
medicauxen langagenature/.Thesed'etat, Universite Paris VI, Paris,
France.

BUCHANAN, B. G., & SHORTLIFFE, E. H. (1975). A model of inexact
reasoning in medicine. Mathematical Biosciences, 23, 351-379.

BUCHANAN, B. G., & SHORTLIFFE, E. H. (Eds.) (1984). Rule-based
expert systems. Reading, MA: Addison-Wesley.

CARROLL, J. M. (Ed.) (1987). Interfacing thought: Cognitive aspects
of human computer interaction. Cambridge, MA: MIT Press.

CLANCEY, W. J. (1985). Heuristicclassification. Anificial Intelligence,
27, 1-67.

CLANCEY, W. J. (1986). From GUIDON to NEOMYCIN and
HERACLES in twenty short lessons: ONR final report 1979-1985.
AI Magazine, 7, 40-60.

DAVIS, R. (1979). Interactive transferof expertise. Anificiallntelligence,
12, 121-157.

FEIGENBAUM, E. A. (1961). The simulation ofverballeaming behavior.
Proceedingsofthe WesternJointComputerConjerence, 19,121-132.

FEIGENBAUM, E. A., BUCHANAN, B. G., & LEDERBERG, J. (1971). On
generality and problemsolving: A casestudyinvolving the DENDRAL
program. In B. Meltzer & D. Michie (Eds.), Machine intelligence
6 (pp. 165-190). New York: Elsevier.

GoDEL, K. (1965). Theundecidable: Basicpaperson undecidable propo­
sitions. unsolvable problems and computable functions (M. Davis,
Ed. & Trans.). Hewlitt, NY: Raven Press. (Originalwork published
1931)

HAUGELAND, J. (1981). Semantic engines:An introduction to mindde­
sign. In J. Haugeland (Ed.), Minddesign(pp. 1-34). Cambridge, MA:
MIT Press.

LACHMAN, R. (1960). The model in theory construction. Psychologi­
cal Review, 67, 113-129.

LACHMAN, R., & LACHMAN, J. L. (1986). Informationprocessingpsy­
chology: Originsand extensions. In R. E. Ingram (Ed.), Information
processing approaches to psychopathology and clinical psychology
(pp. 23-49). New York: Academic Press.

LAKATOS, I. (1970). Falsification and the methodology of science
research programs. In I. Lakatos& A. Musgrave, Criticismand the
growth ofknowledge (pp. 91-195). Cambridge, England: Cambridge
University Press.

LINDSAY, R. K., BUCHANAN, B. G., FEIGENBAUM, E. A., & LEDER­
BERG, J. (1980). Applications of artificial intelligence for organic
chemistry: The DENDRAL project. New York: McGraw-Hill.

MCCARTHY, J. (1958). Programswithcommonsense. In M. L. Minsky
(Ed.), Proceedingsofthe symposiumon the mechanization ofthought
processes (pp. 403-409). Cambridge, MA: MIT Press.

MINSKY, M. (1967). Computation: Finiteand infinitemachines. Engle­
wood Cliffs, NJ: Prentice-Hall.

NEWELL A. (1980). Physical symbol systems. Cognitive Science, 4,
135-183.

NEWELL, A. (1984). Forward. In B. G. Buchanan & E. H. Shortliffe
(Eds.), Rule-based expertsystems(pp. xi-xvi). Reading, MA: Addison­
Wesley.

NEWELL, A., & SIMON, H. A. (1956). The logic theory machine: A
complex informationprocessing system. IRE Transactions on Infor­
mation Processing, IT-2, 61-79.

NEWELL, A., & SIMON, H. A. (1961). GPS, a program that simulates
human thought. In H. Billing (Ed.), Lernende Automaten (pp. 109­
124). Munich: R. Oldenberg.

NEWELL, A., & SIMON, H. A. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

NEWELL, A., & SIMON, H. A. (1976). Computer science as empirical
inquiry: Symbols and search. Communications of the ACM, 19,
113-126.

NILSSON, N. J. (1980). Principles ofartificial intelligence. Palo Alto,
CA: Tioga Press.

PEARCE, J. M. S. (1984). Dementia: A clinical approach. Oxford,
England: Blackwell.

POST, E. L. (1936). Finitecombinatory processes-Formulation I. Jour­
nal of Symbolic Logic, 1, 103-105.

SHAMOIAN, C. A. (Ed.) (1984). Dementia in the elderly. Washington,
DC: American Psychiatric Press.

TURING, A. M. (1936). On computable numbers, with an application
to the Entscheidungsproblem. Proceedingsofthe London Mathemat­
ical Society (Series 2), 42, 230-265.

VAN MELLE, W., SHORTLIFFE, E. H., & BUCHANAN, B. G. (1984).
EMYCIN: A knowledgeengineer's tool for constructing rule-based
expert systems. In B. G. Buchanan& E. H. Shortliffe (Eds.), Rule­
based expert systems (pp. 314--328). Reading, MA: Addison-Wesley.

WINOGRAD, T. (1982). Languageas a cognitiveprocess. Reading,MA:
Addison-Wesley.




