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ABSTRACT 

The fuzzy expert system we are concerned about in this paper is a rule-based fuzzy 
expert system using any method of  approximate reasoning to evaluate the rules when 
given new data. In this paper we argue that: (1) any continuous fuzzy expert system may 
be approximated by a neural net; and (2) any continuous neural net (feedforward, 
multilayered) may be approximated by a fuzzy expert system. We show how to train the 
neural net and how to write down the rules in the fuzzy expert system. 

K E Y W O R D S :  Neural networks, fuzzy expert systems, approximations 

1. INTRODUCTION 

The fuzzy expert system we are concerned about in this paper  is a 
continuous rule-based fuzzy expert system using any method of approxi- 
mate reasoning to evaluate the rules when given new data. There will be 
no uncertainties in the data or the rules, and there is no thresholding in 
the firing of a rule. That  is, all rules fire given new data. The neural nets 
will be continuous (no thresholding within neurons) feedforward, multilay- 
ered, employing any learning algorithm [1]. 

In the next section we begin by showing that a three-layered neural net 
can be trained to approximate a given discrete, continuous, fuzzy expert 
system uniformly, to any degree of accuracy, over all inputs. The motiva- 
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tion for this part of our research is to build fast parallel computation (a 
neural net) for discrete fuzzy expert systems. In [2] we discussed approxi- 
mating fuzzy expert systems by neural nets, but the discussion was based 
on an existence proof. That is, used results that state continuous function 
can be approximated uniformly on compact sets by neural networks. In this 
study we show how to train a three-layered neural net, having a sufficient 
number of neurons in the hidden layer, to approximate a given continuous, 
discrete, fuzzy expert system. In [3] the authors also train neural nets to 
approximate fuzzy rules in a fuzzy expert system. However, they train a 
neural net to approximate one or two explicit fuzzy rules. Our results are 
more general in that our continuous, discrete, fuzzy expert system has any 
number of rules and uses any method of approximate reasoning to infer its 
final conclusion. 

In the second part of the next section we explain how to construct a 
continuous, discrete, fuzzy expert system to approximate a given neural net 
uniformly, to any degree of accuracy, over all inputs. We are not suggest- 
ing replacing neural nets by fuzzy expert systems. This is an important 
theoretical result showing that fuzzy expert systems can be computationally 
equivalent to neural nets. In [2] we also discussed this approximation 
result, but there we presented more of an existence proof. We showed that 
given the neural net, we can build a discrete fuzzy expert system, in 
particular we showed that there exists a method of approximate reasoning, 
to approximate the net. In this paper we present a more general discussion 
on the construction of the discrete fuzzy expert system. 

We will use a bar over a symbol to represent a fuzzy set. So A, B, C . . . .  
are all fuzzy sets. Also, all our fuzzy sets will be subsets of the real 
numbers. If ,4  is a fuzzy set, then ,4(x) denotes its membership function 
evaluated at real number x. Similarly, B(x), C(x) are the membership 
functions for B, C, respectively. 

2. APPROXIMATIONS 

We will first discuss how to approximate a fuzzy expert system with a 
neural net and then use a fuzzy expert system to approximate a neural net. 

2.1. Fuzzy Expert System 

Consider a fuzzy expert system (abbreviated FES) having one block of 
rules 

d r :  If X = .~ and Y = Bj, then Z = Cp, (1) 
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for 1 < r < n. For simplicity we have assumed that each rule has only two 
simple clauses in its antecedent. Also, we are using fuzzy sets directly in 
the rules instead of having their equivalent linguistic values. In equation 
(1) we connected the two clauses with an "and," but one can use "and" or 
"or"  in the rules. We will assume that: (1) the interval [al, b 1] contains the 
support of all the fuzzy sets than can be used for X; (2) [a 2, b2] contains 
all the fuzzy sets that may be used for Y; and (3) [a 3, b 3 ] has the support of 
all the fuzzy sets that can be identified with variable Z. 

The expert system will use some method of approximate reasoning to 
evaluate the rules when given data X = .~  and Y = B' .  One method of 
approximate reasoning involves: (1) choosing animplica_tion operator; (2) 
picking a method of composing the data X = A',  Y = B' ,  with the infor- 
mation in a rule; and (3) deciding on how to combine the results of each 
rule into a final conclusion [4]. There  are other methods like first combin- 
ing all the rules into one fuzzy relation [4], but we need not exactly specify 
any particular procedure of approximate reasoning in this paper. We now 
assume some method of approximate reasoning has been chosen, and we 
will denote this method by ~¢2. So, given the data X = A and Y = B' ,  the 
block of rules .9~r, 1 < r < n, and s¢~2, the fuzzy expert system produces 
its conclusion Z = C'.  

Now assume we run this fuzzy expert system on some test data X = 
~zTk, Y - B~,, 1 _< k _< K. Let the corresponding conclusions be Z = C~,, 
1 < k _< K. In a computer  one usually uses discrete versions of the 
continuous fuzzy sets A i ,  B j ,  Cp,  Z ' ,  B ' ,  C ' ,  etc. So let ~ be a discretiza- 
tion of the intervals [ai, bi], 1 < i _< 3. In this paper we will choose the 
following discretization: (1) pick x i in [a~, b 1 ] as x o = a 1, x i = a 1 + i(b~ - 

a l ) / N  1 1 < i <_ N 1, for positive integer N1; (2) choose Yi in [a2, b2] as 
Yo = a2,  Yi = a2 + i (b2  - a 2 ) / N 2 ,  1 <_ i <_ N 2, for positive integer N2; and 
(3) let z i be in [a3, b 3] so that z 0 = a3, z i = a 3 + i ( b  3 - a 3 ) / N 3 ,  1 < i < 

N 3, N 3 a positive integer. ~ consists of x 0 . . . . .  xN1, Y0 . . . .  , YN2, Z o , ' " ,  ZN~" 

Let M = N1 + N2. Then we input the numbers a~k(xi  ), 0 < i < N 1, for 
X = A ~  and the numbers B ~ ( y  i) . . . .  O < i < N  2 and Y=Bk, '  into the fuzzy 
expert system and obtain the numbers ff~,(z~), 0 < i <  N3, for Z = C'~,, 
l < _ k < K .  

We now construct, and train, a neural network that will compute 
(approximately) the same results as the fuzzy expert system for the inputs 
~.~k(x~), 0 < i < N~,  B~(y i ) ,  0 < i < N 2, for 1 _< k _< K. That is, the neural 
net computes the same as the fuzzy expert system, with respect to .~, for 
the test data X = -~k, Y = B~,, 1 < k < K. 

It is well-known that neural nets are universal approximators. What this 
means is that given a continuous F: R d ~ R there is a neural net that can 
uniformly approximate F, to any degree of accuracy, on compact subsets of 
R a. See [5-17] for a survey of this literature. From the discussion above we 
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see that a discrete fuzzy expert system FES will be a mapping from [0, l] d 
into [0, 1 e, for d = M + 2, e = N 3 + 1. We now argue that we would 
normally expert FES to be a continuous mapping. 

In [18] it is shown that Zadeh ' s  compositional rule of inference is a 
continuous operat ion on discrete fuzzy sets, when it is based on a continu- 
ous t-norm• We would therefore expect that the method of approximate 
reasoning, used within the fuzzy expert system is also continuous. This 
then implies that the FES is a continuous mapping from [0, 1] d into [0, 1] e. 
It  can be shown that there is a neural net that can approximate FES, 
uniformly to any degree of accuracy, on compact  [0, 1] d. However, this 
argument  is only an existence argument  and it does not tell you how to 
construct and train the neural net. So, for the rest of this subsection we 
will discuss how to obtain a neural net that will approximate the given 
FES. 

The neural net will have M + 2 input neurons, one hidden layer, and 
N 3 + 1 output neurons• There  are different methods of specifying a 
sufficient number  of  neurons in the hidden layer ([19-21]), and we assume 
that one such method has been chosen so that the hidden layer has a 
sufficient number  of  neurons to learn the training set. Label the input 
neurons 11, 12 , . . .  , IM+2, and the output  neurons O1 , . . . ,  ON3+l.._We now 
describe how to train the neural network. We input A'k(x o) to 

~'7 --t --r 
I 1 . . . .  ,Ak(x  N) to  [N+l, Bk(yo)to IN+2, . . . ,Bk(y  N ) to  IM+ 2 and  the  

l - -  l - -  2 • • ! 

desired output is Ck~ 3 - z 0) from O1 . . . . .  Ck(z N ) from ON~+V That  IS, the 
training set has K pairs of  inputs-outputs with {A'k(xi)[0 < i < N 1} U 
--t _ _  _ _  {Ck(Zi)]O < i < N 3} the output set. {Bk(y i )[O<i<N 2} the input set and - '  _ _ 

Figure 1 shows how the neural net will approximate the fuzzy expert 
system for the special case of  N 1 = Ne = N 3 = 10. Then the neural net 
and the fuzzy expert system compute  the same output, with respect to ~ ,  
for the test data X ~7 - ,  = A k , Y = B k ,  1 < k  <K.  

Now one wonders how the outputs, from the two systems, compare  if we 
input new data X = A'-; and Y = B '  where these fuzzy sets do not belong 
to the test data set. The result depends on how we pick__ed the test data set. 
Suppose first that we chose A~ = A i, B'~ = Bj, C~ = Cp, the fuzzy sets in 
the rules. That  is, we do not run the fuzzy expert system to compute 
Z = C~, but set the input pair to be the fuzzy sets in the antecedent of  a 
rule and the output fuzzy set is the fuzzy set in the rule's consequence. The 
test set has all the fuzzy sets in the rules and no other fuzzy sets. We then 
train the neural net only on the knowledge base (rules) of  the fuzzy expert 
system and the net will know nothing about ~¢.~. So, the two systems can 
differ considerably for new data X = -,~ and Y = B ' .  However,  if the test 
data set has a number  of  pairs {A'k, B~,}, where these fuzzy sets do not 

= Q ,  then belong to some rule's antecedent,  and use J ~ '  to compute Z - '  
the net trained on this information will incorporate some of ~¢~' into its 
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Figure 1. Neural net approximating fuzzy expert system. 

weights. Then the two systems can produce similar results for new data 
X = ~ and Y = B'. So, one should pick the test data so that the input 
pairs (A'k, B~,) broadly cover applications of the fuzzy expert system and 
then train the neural net on this information. Then the net will better 
approximate the FES on new data. 

In the appendix we present a more formal argument (mathematical) on 
why you should not use only the rules in the FES as the training set for the 
neural network. 

2.2. Neural Net 

Consider a continuous neural net (NN) with m input neurons, any 
number of hidden layers, and n output neurons. Assume that all the input, 
and output, signals are bounded between zero and one. Therefore, NN is a 
continuous mapping from [0, 1] m into [0, 1] n. 
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Recently, there have been a number of papers showing that certain 
types of fuzzy systems are universal approximators ([22-28]). All of these 
fuzzy systems resemble a fuzzy controller in that they have singleton (crisp) 
inputs and defuzzified (crisp) output. We may use these results to obtain a 
generalized fuzzy system (multiple outputs) that can approximate NN 
uniformly, to any degree of accuracy, over [0, l] m. However, we shall not 
pursue that idea in this paper but instead we will be interested in building 
a fuzzy expert system to approximate NN. This FES will have one block of 
rules, we will use a fuzzy relation to model the implication in each rule, 
use Zadeh's compositional rule of inference to evaluate each rule given 
new data, and finally combine the outputs from all the rules into one final 
conclusion. Input, and output, from the FES will be discrete versions of 
continuous fuzzy sets. The arguments that fuzzy systems are universal 
approximators are existence proofs, they do not show you how to build the 
approximating fuzzy system. Our method is more constructive in that we 
show how to construct rules and we can specify the method of approximate 
reasoning to be used to evaluate the rules. 

We first choose wj, 1 < j <_ J, uniformly spread around [0, 1] m and let 
N N ( w j )  = qj, 1 < j < J. We are using functional notation where wj 
[0, l] m is input to the neural net and N N ( w j )  is its output, a vector qj in 
[0, 1] n. The FES will have one block of rules 

. 9 ~ j : I f X = A j ,  then Z = C j , 1  < j < J .  (2) 

The interval that contains all the fuzzy sets for X ( Z )  is [1, m]([1, n]). The 
discretization of these intervals is: (1) x 0 = 1, x I = 2 . . . . .  xm i = m; and 
(2) z 0 = 1, zl = 2 , . . . ,  z ,_  ~ = n. We define A i and Ci with respect to this 
discretization as follows: (A) ~ . i )  = the i th component of w i, 1 <_ i < m; 
and_ (2) ~( i )  = the i th component  of qj, 1 _< i < n. The fuzzy sets ~ .  and 
C i have no physical meaning nor do they represent linguistic variables. 
They are defined to match the input (wj)-output (qj) pairs from NN so that 
the FES will be able to uniformly approximate the neural net. 

Next we need to specify the method of approximate reasoning used to 
evaluate the rules given input u in [0, 1] m on X. That is, data on X will be 
A ,  a fuzzy subset of [0, m l, and the fuzzy expert system then concludes 
Z --t = C ,  a fuzzy subset of [0, n]. However, discrete versions of these fuzzy 
sets will be used so that the input data will be X = u in [0, 1] m, where 
~zV(i) = the i th component  of u for 1 _< i < m, and the output from the 
FES will be Z = u in [0, 1] ~, where ~,0) = the i th component of u for 
1 < i _< n. In functional notation FES(~,)  = u. 

The main requirement of the method of approximate reasoning is 
FES(wj )  = qj all j, or F E S ( w ~ ) =  NN(w~) all j. What this means is if 
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X = z~ = A~ (discrete version _~) in rule 3 i ,  then the final conclusion 
from the expert system is Z = C'  = Cj (discrete version qi), for all rules. 
We first must guarantee that this will happen for each rule because the 
rules will all fire separately, and then we will combine their results to get 
final output Z = C'.  

We first combine the data ( ~  and ~ )  in each rule ~ i  into a discrete 
fuzzy relation Ri on [0, m] × [0, hi. Given input data X = v in [0, 1] m each 
rule fires producing conclusion Z = u o R j, for some composition operator 
"o ." Then the FES combines the results v o Rj across all rules (1 < j < J)  
into its final conclusion (output) Z = u in [0, 1] n. We need to choose the 
Rj and " o "  so that w i o Rj = qj all j. There are a number of different 
choices if the fuzzy sets are normalized (at least one component of wj is 
equal to one, all j). However, our (discrete) fuzzy sets are not necessarily 
normalized since wj = 0 (all components zero) could be a choice for a wj. 
But, there are methods of approximate reasoning ([2]) with the property 
~) o Rj = qj all j, for any wj in [0, 1]". Then we have w~ o Rj equal to qj for 
each rule 3~j. All that is left to do is to specify how the FES combines the 
results into its final output. For any v in [0, 1] m, the FES averages the 
results wj o Rj, for those wi nearest to v in [0, 1] m. 

Then given e > 0, we choose the wj, 1 _< j _< J, uniformly spread around 
[0,1] m, construct the FES as described above, and obtain I N N ( v ) -  
FES(v)I<e for all v in [0,1] m. That is, we may build an FES to 
approximate a neural net, uniformly to any degree of accuracy, over all 
inputs from [0, 1] m. 

3. SUMMARY AND CONCLUSIONS 

In this paper we first argued that given any continuous, discrete, rule- 
based fuzzy expert system using any method of approximate reasoning to 
evaluate the rules, we can build and train a neural net to uniformly 
approximate, to any degree of accuracy, the fuzzy expert system. We also 
argued that you should not train the neural net only on the rules in the 
fuzzy expert system. We showed (in the Appendix) how to train the net to 
uniformly approximate the fuzzy expert system. A practical application of 
this result is to substitute fast parallel computation (the neural net) for a 
fuzzy expert system. 

Next we argued that given any continuous, multilayered, feedforward 
neural net, one can construct a fuzzy expert system to uniformly approxi- 
mate, to any degree of accuracy, the neural net. We showed how to 
construct the rules in the fuzzy expert system and discussed the properties 
needed in the method of approximate reasoning to obtain the desired 
result. Mathematical details may be found in [2]. 
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Both  approx imat ion  results toge ther  say that  cer ta in neural  nets and 
fuzzy exper t  systems are  computa t iona l ly  equivalent.  

A P P E N D I X  

In this appendix  we first show how to train the neura l  net  so that  it can 
uniformly approx ima te  the FES over  all possible  inputs. Then  we argue 
that  one should not  train the ne twork  only on the rules in the fuzzy expert  
system• 

Let  v ~ [0, 1] a be  a possible  input  to the FES or  to the neural  net  (NN). 
• 7 )  ~-5 - t  Tha t  is, v = ( A  (Xo), A (x  1) . . . .  , B (YN2))" We have assumed  that  the FES 

is a cont inuous  mapp ing  f rom [0, 1] a into [0, 1] e SO it is uniformly cont inu-  
ous. Wha t  this means  is that  given s > 0  there  is a 8 1 > 0  so that  
IFES(v I ) - F E S ( v 2 ) I < e / 2  if Iv t -  v 2 1 < 6  l , v l , v  z in [0,1] a. W e  are 
using the funct ional  no ta t ion  of  v i input  to FES producing  F E S ( v  i) as 
(discrete)  output ,  a vec tor  in [0, 1] e. 

Le t  N N  be a cont inuous  three- layered,  feedforward ,  neura l  net  with d 
input  neurons ,  e ou tpu t  neurons ,  and a sufficient n u m b e r  of  neurons  in 
the hidden layer  so that  it can learn a da ta  set of  size L. Suppose  that  u t, 
1 _< l _< L,  is a set of  vectors  spread  a round  [0, 1] a. Le t  u ) =  FES(u  l) a 
vector  in [0, 1] e, 1 _< l _< L. W e  have assumed that  N N  can learn (u l, u)), 
1 _< l _< L,  which means  that  the weights can be  adjusted so that  N N ( u  t) 
= u ' t , l  < l  < L .  

N N  is a cont inuous  mapp ing  f rom [0, 1] a into [0, 1] e, all signals are in the 
interval [0, 1], so it is uni formly continuous• There fo re ,  there  is a 82 > 0 so 
that  [ N N ( v ~ ) - N N ( v 2 ) [  < s / 2  if Iv l - v2[ < 32, vl, v 2 in [0,1] a. Again  
we are using funct ional  no ta t ion  with /"i input  to the neural  net  and 
N N ( v  i) its ou tpu t  vector  in [0, l ]e .  Define 6 to be  the m i n i m u m  of  61 and 
t~ 2 . 

Choose  wj, 1 <_ j < J, uniformly spread  a round  [0, 1] d with the p roper ty  
that  given any v in [0, 1] d there  is a wj so that  I v -  wjl < 8. Assume  that  
J < L .  1 

Let  FES(w  i) = qj, 1 < j <_ J. The  learning da ta  for  N N  will be (wj, qj), 
1 < j < J. Tha t  is, train the N N  so that  NN(wj )  = qj all j. 

We  now argue  that  this N N  will uni formly approx imate  the FES. Le t  v 
be any vec tor  in [0, 1] d and choose  wj also in [0, 1] a so that  Iv - wjl < 8. 

1We k/lOW there is an NN (sufficient number of neurons in the hidden layer) that will 
approximate FES, uniformly over all inputs v in [0, 1] a, to any degree of accuracy e > 0. So 
this NN will have L large enough. 
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Then 

[ F E S ( v )  - N N ( v ) I  = f F E S ( v )  - F E S ( w j )  + N N ( w j )  - N N (  v)[ 

< [ F E S ( v )  - FES(wi ) l  + I N N ( w j )  - N N ( v ) l  

< ~ /2  + ~ /2  = 

because: (1) FES(wj )  = NN(wj ) ;  (2) Iv - wjl < 6j; and (3) Iv - wj[ < 82. 
So, this neural net will compute, within e, the same as the FES, across all 
possible inputs. 

Now suppose you train the NN only on the rules (knowledge base). Let 
s r ~ [0, 1] d denote the discretization of A i and Bj in the antecedent of rule 
~'r, 1 < r _< n. Next let t r in [0, 1] e be the discretization of Cp, the fuzzy set 
in the conclusion of rule ~q~r, 1 < r < n. Train the NN on the set (st, t~), 
1 < r < n, so that NN(s~)  = t~ all r. Now pick any v in [0, 1] a. We would 
not expect I F E S ( v )  - N N ( v ) I  to be small because: (1) the s r, 1 _< r < n 
does not necessarily form a uniform span of the input space [0, 1]a; and (2) 
it may happen, depending on ~¢~, that F E S ( s  r) -~ t r for some rules. That 
is, if u is not near any st, then we would not expect N N ( u )  to be close to 
F E S ( v ) .  Also, NN may differ from FES even on the training set. For  these 
reasons we do not recommend training the neural net only on the rules of 
the fuzzy expert system. 
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