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Abstract: - Case-based reasoning (CBR) attempts to solve new problems by using previous experiences. 

However traditional CBR systems are restricted by the similarity requirement, i.e., the availability of similar 

cases to new problems. This paper proposes a novel CBR approach that exploits dissimilarity information in 

problem solving. A fuzzy dissimilarity model consisting of fuzzy rules has been developed for assessing 

dissimilarity between cases. Further, it is indicated that the construction of fuzzy dissimilarity rules can be 

realized by learning from the case library. Empirical studies have demonstrated that fuzzy dissimilarity models 

can be built upon a small case library while still yielding competent performance of the CBR system.  
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1 Introduction 
Case-based reasoning (CBR) presents an important 

cognitive methodology in Artificial Intelligence, 

which aims to use previous experiences to solve 

new problems [1]. A fundamental principle for 

conventional CBR methods is the hypothesis that 

similar problems have similar solutions. Hence a 

CBR system usually first retrieves cases in the case 

base that are similar to a query problem and then 

refines the solutions of the retrieved cases to tackle 

the new situation at hand.  

However, the concept of similarity remains an 

unclear issue. The meaning of “similarity” may be 

subjective and vary from situation to situation. The 

metric of similarity is intrinsically defined on the 

space of problems yet there is no natural link 

between the problem space and the solution space to 

warrant that the most similar case is also the most 

relevant to the target problem. This implies that the 

basic CBR hypothesis that similar problems have 

similar solutions does not hold in all circumstances. 

Tackling situations when similar problems don‟t 

have similar solutions is a crucial challenge for CBR 

research [2]. 

This paper investigates a new CBR approach that 

relies on dissimilarity information for problem 

solving. We consider two cases to be dissimilar as 

long as they have distinct or “remote” solutions. The 

dissimilarity model will be established to enable 

identification of cases from the case library that are 

dissimilar to a query problem. A dissimilar case 

provides counter-evidence to some extent, 

suggesting the inappropriateness of using its 

solution for solving the query problem. It follows 

that the final decision from CBR will be the 

candidate solution that has accumulated the least 

amount of counter-evidence. 

Further the model of dissimilarity is represented 

as a set of fuzzy linguistic rules. We believe that 

fuzzy if-then rules present a powerful and flexible 

means to represent the rich domain knowledge for 

case evaluation. Fuzzy rule-based reasoning can be 

performed to predict whether and to which extent a 

case from the library is dissimilar to the problem in 

query. The construction of fuzzy dissimilarity rules 

can be realized by learning from the case library as a 

valuable resource. Our empirical studies have 

demonstrated that fuzzy dissimilarity models can be 

built upon a small case library while still yielding 

competent performance of the CBR system.  

The remaining of the paper is organized as 

follows: Section 2 surveys the related works. 

Section 3 outlines the new dissimilarity-based CBR 

approach proposed in the paper. The fuzzy 

dissimilarity model for case evaluation is presented 

in section 4.  Then, in section 5, we discuss the issue 

of how to learn these fuzzy dissimilarity rules from 

the case library. In section 6, we illustrate 

experimental results for evaluation of the proposed 

method. Finally, section 7 gives the conclusion. 
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2 Related Works 
Similarity evaluation is a key part for conventional 

CBR systems. So far the main stream of the works 

for construction of similarity models has been 

focused on feature weighting [2, 3]. Features are 

assigned with different weights in accordance with 

their importance, and the global similarity metric is 

defined as a weighted sum of the local matching 

values in single attributes. Different approaches of 

interest have been proposed for identifying such 

weights automatically. Incremental learning 

attempts to modify feature weights according to 

success/failure feedback of retrieval results [4]. The 

probability of ranking principle was utilized in [5] 

for the assignment of weight values to features. 

Case-ranking information was utilized in [6, 7] for 

weight adaptation towards similarity degrees of 

retrieved cases consistent with a desired order. 

Accuracy improvement represents another way for 

adapting the set of weights as discussed in [8] and 

[9]. Nevertheless, no matter how the values of 

weights are derived, the capability of these 

similarity learning methods is inherently constrained 

by weighted combination of the local matching 

degrees. This limitation in the structure of similarity 

makes it hard to represent more general knowledge 

and criteria for case assessment. 

A new similarity model without feature 

weighting was proposed in [10] and [11] as an effort 

to seek more powerful representation of knowledge 

for case retrieval. The idea was to encode the 

information about feature importance into local 

compatibility measures such that feature weighting 

is no longer needed. Later, in [12], it was analyzed 

and demonstrated that the parameters of such 

compatibility measures can be learned from the case 

library in favor of coherent matching, i.e. to 

maximize the supportive evidence while minimize 

the amount of inconsistence derived from pairwise 

matching of cases from the case base. 

The integration of fuzzy systems with CBR 

methodology has been an interesting topic addressed 

by some other researchers. Yager [13] identified that 

there was a close connection between fuzzy system 

modeling and case based reasoning. In [14] the 

central notion of similarity in CBR was treated as a 

fuzzy relation and fuzzy operations were applied as 

a tool for building composite similarity measures. 

Dubois and Prade [15] formalized the fundamental 

hypothesis of CBR in the context of fuzzy rules. 

They established a formal framework in which case-

based inference can be implemented as a special 

type of fuzzy set-based approximate reasoning. On 

the other hand, CBR can be used to assist fuzzy 

system modeling as well.  In [16] and [17] it 

was demonstrated that CBR could be exploited 

as feature selection criterion for building 

complex process models and fuzzy systems. 
 

 

3 Dissimilarity-Based CBR 
In this paper we propose a new CBR approach that 

relies on dissimilarity information, as is depicted in 

Fig. 1. It starts with comparison of the query 

problem with known cases in the case library. A 

properly defined dissimilarity function has to be 

employed at this stage. As the evaluated 

dissimilarity values reflect the strength of 

inappropriateness of solutions of the known cases to 

solve the new problem, they offer important 

information to be utilized in the next step of solution 

filtering to find out the least impossible choice as 

the final decision to solve the new problem.  

 

Case 
Library 

 

Dissimilarity 
Assessment 

 ? 

Solution 
Filtering 
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Solution Case Evaluation   Query  
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Fig. 1. CBR based on dissimilarity information 
 

In solution filtering, we are concerned with 

estimating the degrees of impossibility of candidate 

solutions by using the case information from the 

case library. We assume solutions of cases to be 

represented by discrete and mutually exclusive 

labels in the context of this paper. We define the 

degrees of impossibility contributed by a single case 

Ci (from the case library) by  
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where b represents a candidate solution, and 

Dsim(Q, Ci) denotes the degree of dissimilarity 

between query problem Q and case Ci. It bears 

mentioning that the impossibility degrees in (1) 

indeed represent a degree of exclusion, which is 

supported by the observation of the dissimilar case 

Ci having solution b. On the other hand, we will 

have Pi(b)=0 if Ci has a solution different from b, 

whereas it merely means that no evidence against 
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solution b is derived from case Ci, rather than the 

support for b as the solution to query problem Q.  

Next we consider the overall impossibility 

degrees in light of the whole case library. For 

calculating the overall degree of impossibility 

Imposs(b) for solution b, we only need to focus on a 

subset of cases which have that solution. This is 

owing to the fact that all other cases in the case 

library contribute no information for the 

impossibility of solution b, as indicated in Eq. (1). 

The ordered weighted averaging (OWA) operators 

provide a class of aggregation operators lying 

between and and or aggregations. Herein we adopt 

the S-OWA-OR (OR-like) aggregating operators as 

the parameterized OWA functions to combine the 

degrees of impossibility given by the individual 

cases in the case subset. Let 

 bCSolutionS ib  )(i  denote the set of indices 

of the cases having solution b, the overall 

impossibility value Imposs(b) is calculated as 
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Finally we select the solution 
*b  that has the 

lowest overall impossibility value as the final 

solution for query problem Q, i.e., 
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4 Fuzzy Dissimilarity Model  
This section introduces the structure of fuzzy rules 

that are used as representation of the dissimilarity 

model. Suppose there are n relevant features for 

problems in the underlying domain. A case Ci in the 

case library is described by an (n+1) tuple: 

 iiniii scccC ,,,, 21   where 
inii ccc ,,, 21   denote the 

feature values in this case and si is the 

corresponding solution. Likewise we use an n-tuple 

 nyyy ,,, 21   to represent a query problem Q with yj 

referring to the value of the jth feature in the 

problem. For comparing case Ci and query problem 

Q, we first need to calculate the values of 

differences 
ijjj cyx   on every feature j between 

them. Such feature differences are then employed as 

inputs for condition parts of the fuzzy rules, which 

collectively decide the dissimilarity value of case Ci 

with respect to the query problem.  

Assume that the fuzzy sets of feature difference 

xj (j=1 n) are represented by A(j,1), A(j,2), , 

A(j, q[j]) and q[j] is the number of linguistic terms 

for xj. By h() we denote an integer function 

mapping from {1, 2, ..., m (mn)} to {1, 2, ...., n} 

satisfying  ij,  h(i)h(j). The fuzzy rules 

employed in this paper for assessing case 

dissimilarity are formulated as follows: 
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where D(i) {1, 2,  ,q[h(i)]} for i=1m, and V 

{1.0,  0}. Note that the conclusion of the rule in (3) 

is a singleton being either unity or zero, it can be 

regarded as a zero-order Sugeno fuzzy rule. 

It also bears noting that the premise structure 

defined above is very general, offering a large 

degree of flexibility in specification. If the premise 

of the above rule in (3) includes all input variables 

in it (e.g. m=n), we say that this rule has a complete 

structure, otherwise its structure is incomplete. 

Another important feature of the rules in form (3) is 

that a union of input fuzzy sets is allowed in their 

premises. Rules having incomplete structure or 

containing OR connections of input fuzzy sets can 

achieve larger coverage of input domain, leading to 

substantial reduction of the number of rules [18, 19].  

Finally, with the availability of a set of fuzzy 

dissimilarity rules in the form of (3), the degree of 

dissimilarity between case Ci and query problem Q 

can be calculated as follows:  
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where Vk is the singleton conclusion for rule Rk, and 

tk denotes the firing strength of rule Rk when 

comparing case Ci and query problem Q. 

 

 

5 Learning Fuzzy Dissimilarity Rules 
We now discuss how to generate fuzzy rules as 

formulated in the preceding section to build a 

dissimilarity model. Our aim is to elicit dissimilarity 

values between cases that can precisely reflect the 

level of distinction between their solutions. 

Supervised learning will be performed in this paper 

to acquire competent fuzzy rules for dissimilarity 

evaluation. In the following we will first explain 

how adequate training examples can be created for 

learning and then we shall outline a genetic 

algorithm (GA) for automatic generation of fuzzy 

rules to mimic the training examples. 

 

5.1 Deriving Training Examples  
The training examples for fuzzy dissimilarity 

learning can be created by resorting to the case 
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library. Since case solutions there are available, it is 

straight forward to obtain the desired value of 

dissimilarity for a pair of cases by comparing their 

solutions. Hence the desired dissimilarity value 

between case Ci and Cj can be defined as: 

                  ),(),( jiji ssDistCCDsim                       (5) 

where Dist represents distinction level, and si and sj 

are the solutions of cases  Ci and Cj respectively. 

The criterion for judging distinction level 

between case solutions is usually domain dependent, 

thus we cannot further concretize equation (5) 

without considering problem context and specifics. 

Nevertheless, in this paper we assume case solutions 

are represented by discrete labels (e.g. classes), the 

distinction level between solutions can simply be 

expressed as follows:   

1. If the solutions (labels) have no orders, the 

   distinction level is a binary function as 
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2. If the solutions (labels) have ordinal values, 

the distinction level should reflect the relative 

distance in the order. Thus we have     
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where K is the total number of labels and e(si, sj) 

denotes the number of labels between si and sj in the 

order.     
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Fig. 2. Fuzzy learning from training samples 

 

The equations (5-7) enable us to acquire many 

training samples from pairs of cases in the case 

library. Since we can create a training example for 

every pair of cases, a much larger multitude of 

training samples than the number of cases will be 

created. Next, as shown in Fig. 2, the task of the 

learning algorithm is to identify optimal fuzzy rules 

together with associated membership functions such 

that the dissimilarity degrees assessed via fuzzy 

reasoning will comply with the distinction levels 

specified in the training samples. 

 

5.2 Learning Rule Premises by Genetic 

      Algorithms 
Learning the fuzzy rules formulated in (3) is solved 

by identifying suitable premises for different 

conclusions. For instance, we need to discover 

under what circumstances two cases in comparison 

should have a dissimilarity degree of unity. The 

issue as such is termed as premise learning. In this 

paper we apply the genetic algorithm (GA) 

introduced by Godenberg [20] to search for general 

premises of rules. The purpose is to take advantage 

of the strength of genetic search to find a set of 

suitable premise structures together with parameters 

of associated fuzzy set membership functions. In the 

following we shall state briefly about coding 

scheme, genetic operators and fitness function 

which present key points for the genetic learning of 

the fuzzy dissimilarity rules.  

Genetic Coding Scheme. The information 

concerning structure of rule premises can be 

considered as a set of discrete parameters, while the 

information about fuzzy set membership functions is 

described by a set of continuous parameters. Owing 

to the different natures between the information 

about rule structure and about membership 

functions, a hybrid string consisting of two 

substrings is used here as the coding scheme. The 

first substring is a binary code representing premise 

structure of the fuzzy knowledge base, and the 

second substring is an integer code corresponding to 

parameters of fuzzy sets used by the fuzzy rules.  

Usually membership functions of a feature 

difference as input are characterized by a set of 

parameters. Each of these parameters can further be 

mapped into an integer through discretization. The 

resulting integers are then combined to form an 

integer-vector depicting the fuzzy partition of that 

input variable. The integer code as one part of the 

hybrid string is formed by merging together integer-

vectors for all inputs (feature differences)  

Regarding rule premises, it is easy to see from 

(3) that premise structure of general rules is decided 

by integer subsets D(i) (i=1, 2, m). This fact 

suggests that a binary code be a suitable scheme for 

encoding structure of premises, since an integer 

from {1, 2, , q[h(i)]} is either included in the 

subset D(i) or excluded from it. For feature 

difference xj which is included in the premise (i.e.  

h
-1

(j)), q[j] binary bits need to be used to depict 

the subset D(h
-1

(j)){1, 2,...., q[j]}, with bit "1" 

representing the presence of the corresponding 
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fuzzy set in the OR-connection and vice versa. If 

feature difference xj does not appear in the premise, 

i.e., h
-1

(j)=, we use q[j] one-bits to describe the 

wildcard of „„don‟t care‟‟. For instance, the 

condition "if [x1=(small or large)] and [x3=medium] 

and [x4=(medium or large)]" can be coded by the 

binary group (101; 111; 010; 011). Further, the 

whole substring for the premise structure of the rule 

base is a merge of bit groups for all individual rule 

premises.  

Crossover. Owing to the distinct nature between 

the two substrings, it is preferable that the 

information in both substrings be mixed and 

exchanged separately. Here a three-point crossover 

is used. One breakpoint of this operation is fixed to 

be the splitting point between both substrings, and 

the other two breakpoints can be randomly selected 

within the two substrings respectively. At 

breakpoints the parent bits are alternatively passed 

on to the offspring. This means that offspring get 

bits from one of the parents until a breakpoint is 

encountered, at which they switch and take bits 

from the other parent. 

Mutation. Because of the distinct substrings 

used, different mutation schemes are needed. Since 

parameters of input membership functions are 

essentially continuous, a small mutation with high 

probability is more meaningful. Therefore it is so 

designed that each bit in the substring for 

membership functions undergoes a disturbance. The 

magnitude of this disturbance is determined by a 

Gaussian density function. For  the  binary  

substring  representing the structure  of   rule  

premises,  mutation  is  simply  to  inverse a bit, 

replace „1‟ with „0‟ and vice versa. Every bit in this 

substring undergoes a mutation with a quite low 

probability. 

Fitness Function. An individual (hybrid string), 

HS, in the population is evaluated according to its 

modeling accuracy with respect to the training 

examples. As many pairs of cases are included in 

the training data set, we have to consider the total 

sum of modeling errors for measuring the overall 

performance of the hybrid string. The total error 

function is given by 
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where si and sj are the solutions of cases Ci and Cj 

respectively, and SI  refers to the set of pairs of case 

indexes corresponding to pairs of cases included in 

the training data set. At last, the fitness of individual 

HS is defined with inverse relation to the mean 

modeling error as follows 
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6 Evaluation Results 
We have applied our proposed approach to the 

problems of classification and diagnosis. In this 

section we illustrate a case study made on the well-

known benchmark problem of wine data 

classification. The wine data can be downloaded 

from the address ftp.ics.uci.edu/pub/machine-

learning-databases. It consists of 178 samples with 

13 continuous attributes from three classes.  

To test the feasibility of learning fuzzy 

dissimilarity rules from a small number of cases, we 

randomly selected 33% of the cases from the Wine 

data set as the case base used for learning and the 

remaining cases as test data containing query 

problems. The fuzzy rules learnt from the case base 

were then applied for dissimilarity assessment in 

case-based classification of the problems in the test 

data set. We performed such tests 10 times.  

 Table 1 illustrates the classification accuracy on 

the test data in the 10 tests.  It is interesting to 

observe that, despite the small case bases with about 

66 instances in each, very good classification 

accuracy was still achieved by our CBR system 

employing the learned fuzzy dissimilarity models.  

 

Table 1: Classification accuracy on test data 

Numbers of 

tests 

Classification accuracy 

1 97.48% 

2 90.76% 

3 94.12% 

4 93.22% 

5 92.44% 

6 93.28% 

7 91.53% 

8 90.76% 

9 90.76% 

10 94.96% 

Average 92.93% 

 

In table 2, we compare our work with some other 

machine learning approaches in terms of 

classification accuracy (on test data) and the 

numbers of cases used for learning. The 

classification accuracy we obtained is rather close to 

the best result among the other works. In the other 

aspect, we employed a much lower number of cases 

for learning than any other work as indicated in the 

table. It demonstrates that our system can survive 

with learning from a small amount of examples. 

This is an attractive advantage distinguishing our 
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CBR system from other supervised learning systems 

for classification. 

 

Table 2: Comparison with other methods 

Learning 

methods 

Accuracy  Number of cases 

for learning 

This paper 92.93% 59 ~ 60 

C4.5 [21]  90.14% 160 ~ 161 

Hu [22]  91.63% 160 ~ 161 

MOP-1 [23]  96.01% 160 ~ 161 

 
 

7 Conclusion 
The significance of this paper is of two folds.  First, 

we proposed a new CBR approach that exploits 

dissimilarity information in problem solving. This 

new approach contributes to avoiding the similarity 

constraint with traditional CBR systems and thereby 

facilitating global utilization of more information 

from the case library. Secondly, we developed a 

new fuzzy dissimilarity model consisting of fuzzy 

rules for assessing dissimilarity between cases. We 

believe that fuzzy rules provide a powerful means to 

express rich domain knowledge for case evaluation 

in various situations. Further we have explained and 

demonstrated how competent fuzzy dissimilarity 

rules can be acquired from the case library by 

supervised learning.   
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