
Towards a Framework to Verify Knowledge Sharing
Technology

ASUNCIÓN G Ó M E Z - P É R E Z

Laboratorio de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo sn.,
Boadilla del Monte, 28660 Madrid, Spain

Abstract—Based on the empirical verification of bibliographic-data and other Ontolingua ontologies,
this paper provides an initial framework for verifying Knowledge Sharing Technology (KST). Verification
of KST refers to the engineering activity that guarantees the correctness of the definitions in an ontology,
its associated software environments and documentation with respect to a frame of reference during each
phase and between phases of its life cycle. Verification of the ontologies refers to building the correct
ontology, and it verifies that (1) the architecture of the ontology is sound, (2) the lexicon and the syntax
of the definitions are correct and (3) the content of the ontologies and their definitions are internally and
metaphysically consistent, complete, concise, expandable and sensitive. Copyright © 1996 Elsevier
Science Ltd

1. INTRODUCTION

DURING RECENT YEARS, considerable progress has been
made in developing the conceptual bases for building
technology that allows the reuse and sharing of knowl
edge. As libraries of definitions, ontologies are essential
for both building intelligent systems and enabling
interoperation of agents. Evaluation of ontologies as well
as evaluation of the documentation and software envi
ronments is critical to the integration of this technology
in real applications. In this sense, judging an ontology to
be used for knowledge representation is just as necessary
as getting a thorough inspection before purchasing a
second-hand car. Just as one does not buy a car without
first taking it to a mechanic for a checkup to ensure that
the car is mechanically sound, it is unwise to publish
your ontology, or to implement a software application
that relies on ontologies written by others, without first
evaluating and assessing their definitions and axioms. A
well-evaluated ontology will not guarantee the absence
of problems, but it will make its use safer.

The word "ontology" is a fashionable word in the
knowledge engineering community. Although there exist
many possible interpretations of this term, Guarino and
Giaretta (1995) discuss different definitions and propose
the following interpretation. An ontology is: (sense 1) a
logical theory which gives an explicit, partial account of
a conceptualization; (sense 2) a synonym of con
ceptualization. Although ontologies differ from
knowledge bases (KBs) (Gómez-Pérez, 1994), both have

a common foundational problem. Ontologies and KBs by
nature are incomplete, as it is impossible to capture
everything known about the real world in a finite
structure. Since ontologies are developed incrementally
by adding new definitions and modifying the old ones,
one of the most important problems is to guarantee
complete, consistent and concise definitions from the
beginning, during each stage and between stages of its
development process. The maintenance of ontologies
would also require complete evaluation of the whole
ontology if a definition is added, modified or removed.

Therefore, the knowledge sharing community needs to
draw up a complete framework (Gómez-Pérez et al.,
1995) with terminology, definitions, criteria, methods
and tools for Knowledge Sharing Technology (KST)
evaluation. This evaluation includes: ontologies, soft
ware and documentation. Some works have been done:

(a) Related to terminology and definitions of terms,
the main terms are (Gómez-Pérez et al., 1995):
"evaluation", "verification", "validation" and
"assessment". In this paper, the differences
between "evaluation" and "assessment" are also
emphasized.
• "Evaluation of KST" subsumes "verification"

and "validation". "Evaluation" means to judge
the ontologies, their associated software envi
ronments and documentation technically with
respect to a frame of reference during each

phase and between phases of their life cycle.
Examples of frames of references are the real
world, a set of requirements or a set of
competency questions (Gruninger & Fox,
1994).

• "Verification of KST" refers to the technical
activity that guarantees the correctness of an
ontology, its associated software environments
and documentation with respect to a frame of
reference during each phase and between phases
of its life cycle.

• "Validation of KST" guarantees that the ontolo
gies, the software environments and the
documentation correspond to the systems that
they are supposed to represent.

• "Assessment of KST" refers to the usability and
utility of the ontologies, software environments,
and their documentation when they are reused
by KB S or shared by software agents.

This paper is focused on verification of KST,
that is, verification of ontologies, verification of
software and verification of documentation. The
next sections cover these issues.

(b) In relation to the criteria for evaluating knowl
edge sharing technology, a few examples of
verification of class definitions, hierarchies and
relations and functions appear in Gómez-Pérez
(1995).

(c) With regard to the methods, competency questions
(Gruninger & Fox, 1994) are proposed as a
methodology for evaluating ontologies in the
domain of enterprise engineering. The compe
tency questions are the basis for a rigorous
characterization of the problems that the ontology
has to cover, and they specify the problem and
what constitutes a good solution to the problem.

(d) Concerning tools, Ontolingua (Gruber, 1993a)
provides a parser for legal KIF (Genesereth &
Fikes, 1993) sentences, analyses of whether
definitions are well formed and generates a report
on undefined concepts and intra-ontology
dependencies.

Since the evaluation of knowledge sharing technology
is very immature and there is an absence of a deep core
of previous ideas, this paper is focused exclusively on
providing some criteria and examples that guide the
verification of KST. The paper gathers the experience on
the evaluation of the bibliographic-data (Gruber, 1994)
and other Ontolingua (Gruber, 1993a) ontologies. It is
organized as follows. Section 2 deals with how to verify
ontologies. Section 3 shows how to verify software used
to build ontologies. Finally, Section 4 shows verification
of documentation.

2. VERIFICATION OF ONTOLOGIES

Ontology verification refers to correct building of the
ontology, that is, ensuring that its definitions1 correctly
implement its requirements, its competence questions or
perform correctly in the real world. Ontologies verifica
tion is orthogonal to the use of the definitions by any
KBS or software agent. Ontology verification includes
verification of:

(1) Each individual definition and axiom.
(2) Collection of definitions and axioms that are stated

explicitly in the definitions of the ontology.
(3) Definitions that are imported from other ontologies.
(4) Axioms that can be inferred using other definitions

and axioms.

To verify an ontology we have to determine the
correctness of definitions and axioms by figuring out
what the ontology explicitly defines, does not define or
defines incorrectly. We also have to look at the scope of
definitions and axioms by figuring out what can be
inferred, cannot be inferred or can be inferred incor
rectly. To guarantee that an ontology is well-verified, we
have to judge its architecture, its lexicon and syntax and
its content using criteria specified in Table 1.

2.1. Verification of the Architecture

At this point, we look to see if the structure of an
ontology has been developed following the principles of
design of the environment in which the ontology is
included. For example, ontologies built in the Ontolingua
environment should satisfy the five design criteria given
by Gruber (1993b).

2.2. Verification of the Lexis and Syntax

The ontology definitions must be lexically and syntac
tically correct. The environment should provide a
scanner to detect that the lexical structure of the
expressions is correct, and a parser to detect that its
syntactic structure is also correct. It is particularly
important that the lexical and syntax analyzer compo-

TABLE1
Levels and Criteria in the Verification of Ontologies

Levels Criteria

Verification of the architecture
Verification of the lexicon and
syntax
Verification of the content

soundness
correctness

consistency, completeness,
conciseness, expandability
and sensitiveness

' A definition is written in natural language (informal definition) and
in a formal language (formal definition).

nents of the software environment rigorously implement
the definitions of the lexis and grammar rules for the
portable language. Failure to do this will allow the
writing of non-portable definitions. As an example we
have the use of wrong keywords in formal definitions.

2.3. Verification of Content

Verification of the content is concerned with the analysis
of completeness, consistency, conciseness, expandability
and sensitiveness of the definitions and axioms that are
explicitly set out in the ontology, and with the analysis of
those that can be inferred using other definitions and
axioms.

2.3.1. Consistency. Consistency refers to whether it is
possible to obtain contradictory conclusions from valid
input data (Gómez-Pérez, 1996). With the goal of
providing mechanisms that help to verify semantically
the consistency of an ontology and its definitions, we
assume that:

• A definition Def is composed of an informal definition
IDef and a formal definition FDef.

• An informal definition IDef is a free text documentation
written in English.

• A formal definition FDef is a collection of sentences
written in a formal language.

r Def=

((Senti)...(Sentn))
Since the semantics of KIF (Knowledge Interchange
Format)2 unambiguously determines the referent of
any term and the truth or falsity of any sentence, we
assume that formal definitions are written in this
language.

• Given a definition Def, the function InterpretationFDef

(IDef) interprets the meaning of an informal definition
IDef with respect to its formal definition FDef. This
function maps the documentation string IDef into the
truth values true or false.

Interpretation FDejJDe¡):IDef=
:> {true, false}

• Defined(Def Ont) is a function that determines if the

2 The semantics of KIF is a correlation between the terms and
sentences of the language and a conceptualization of the world. The
semantic value of a term and the truth value of a sentence are defined
using the notions of interpretation of constants and variable assign
ment. An interpretation is a function i that associates the constants of
KIF with the elements of a conceptualization. A variable assignment is
a function v that maps (1) individual variables V into objects in a
universe of discourse O and (2) maps sequence variables W into finite
sequences of objects. Given an interpretation and a variable assign
ment, the semantic value of every term in the language is a function siv

from the set T of terms into the set O of objects in the universe of
discourse. The truth value for sentences is defined as a function tw that
maps sentences 5 into the truth values true ox false.

definition Défis defined in the ontology Ont.

Defined(DefOnt)=
(true if Def is defined in Ont

\ false otherwise

* Inferred(FSenl Def Ont) is a function that determines if
the formal sentence F&„, is inferred using the definition
Def and the ontology Ont.

Inferred(FSeM Def Ont) =
(true ifFSent is inferred using Def and Ont
[false otherwise

An ontology Ont is semantically consistent S-Con-
sistency{Ont) if, and only if, each definition Def in the
ontology is semantically consistent.

S- Consistencyi Ont)<¿>
{Ç4Def)Defmed(Def Ont)A S-Consistency0n,(Def))

A given definition Def in the ontology Ont is semanti
cally consistent S-Consistency0„,(Def) if, and only if: (1)
the individual definition is consistent and (2) no
contradictory sentences may be inferred using other
definitions and axioms.

(VDef, Ont) S-Consistency0m(Def)<=>
(S-Individual-ConsistencyDej(Def)A
S-Inferred- Consistency0„,(Def))

2.3.1.1. Individual Consistency. A given definition Def
is individually consistent S-Individual-ConsistencyDef

(Def) if, and only if: (1) the definition Def is metaphys
ically consistent, that is, it is consistent with respect to
the real world RW and (2) it is internally consistent.

S-Individual-ConsistencyDeJ(Def)<=>
S-ConsistencyRv^Def)/\S-ConsistencyDe^Def)

To guarantee that the definition Def is metaphysically
consistent S-ConsistencyRW(Def), we prove that its formal
as well as its informal definitions are metaphysically
consistent.

S-ConsistencyRW(Def)<d>
(S-ConsistencyRK(FDef)A S-ConsistencyRW(IDei))

A formal definition FDef is metaphysically consistent S-
ConsistencyRW(FDef) if, and only if, there is no
contradiction in the interpretation of the formal defini
tion with respect to the real world. The goal is to prove
compliance of the world model (if it exists and is known)
with the world modeled formally. So, S-Consis-
tencyRW(FDef) maps a formal definition FDef into the truth
values true or false.

S-ConsistencyRW(FDef):FDej=>{true, false}

Since a formal definition is a set of KIF sentences, the

function S-ConsistencyRW(FDí.f) is equivalent to determin
ing the truth value of each KIF sentence Sent¡ in the
formal definition.

S-ConsistencyRW((Senti)...(Sentn)) =
(true &tiv(Sent¡)=true for all i in [1. .n]
\ false otherwise

An informal definition IDef is metaphysically consistent
S-ConsistencyRW(IDef) if, and only if, there is no contra
diction in the interpretation of the informal definition
with respect to the real world. The goal is to prove the
compliance of the world with the world modeled
informally. This function maps the documentation string
IDef into the truth values true or false.

S-ConsistencyRW(IDi;fy.IDef=*{true, false]

We assure that the definition Def is internally consistent
S-Consistency^Def), by proving that its formal as well
as its informal definitions have the same meaning.

5- Consistency DeJ(Def)<^
(Interpretation FAIDef) - S-ConsistencyRW(FDe^)

To prove the individual consistency of the definition
MONTH-NAME in Example 1, we verify its internal and
metaphysical consistency. As the terms used to name the
months are the same in the formal and informal
definitions, the definition of MONTH-NAME is inter
nally consistent. However, both, its formal and informal
definitions are metaphysically inconsistent because the
term "house" is not a month in the real world. If we
replace the term "house" by the term "January" in the
formal definition of MONTH-NAME, then the whole
definition is internally inconsistent, the formal definition
is metaphysically consistent, and the informal definition
is metaphysically inconsistent. To solve the incon
sistencies, we replace the term "house" by "January" in
the informal definition. However, if we were to replace
the term "house" by the term "Enero" (this means
January in Spanish), for those English speakers who are
not Spanish speakers there is still a metaphysical
inconsistency in the informal definition (something other
than January is written in the informal definition).
However, for those who are Spanish speakers, the formal
definition and the informal definition are metaphysically
consistent, but the whole definition is internally incon
sistent because the symbols that name the months are
different.

(Define-Class MONTH-NAME (?Month)
"The months of the year are: House, February, March,
April, May, June, July, August, September, October,
November, December"
:iff-def (Member ?Month (setof House February
March April May June July August September Octo
ber November December)))

Example 1. Internally consistent definition, but not
metaphysically consistent

2.3.1.2. Inferred Consistency. For a definition to be
inferentially and semantically consistent, it must be
impossible to obtain contradictory conclusions using the
meaning of all the definitions and axioms in the current
logical theory. We guarantee the inferred consistency of
a given definition Inferred-Consistency0nt(Def) by prov
ing that if A is the set of inferred sentences for a given
definition Def, (1) each inferred formal sentence FSm is
individually consistent with respect to the definition Def
and that (2) the set A of inferred sentences is internally
consistent.

OfFSentF'SM€A)
QiDefOnuOnt')
(Inferred-Consistency0n,(Def)^

(Defined(DefOnt)A
Inferred(FSemDefOnt')A
S-Individual-FSen,-ConsistencyDe](Fse„t)A
Inferred(F'SenlDefOnt')A
S-A-Consistency(FSenlF'&„,))

To assure that an inferred formal sentence is individually
consistent with respect to the definition S-Individual-
Fsent-ConsistencyDe^FSenl), we prove that: (1) there are no
contradictions between the interpretation of the formal
definition FDef and the interpretation of the inferred
formal sentence FSe„, with respect to the real world and
(2) there are no contradictions between the interpretation
of the informal definition I0ef regarding the formal
definition FDef and the interpretation of the inferred
formal sentence FSenl regarding the real world.

(VDef,FSi.n,)S-Individual-FSenl-ConsistencyDe](FSeJ<^
(((S-ConsistencyRW(FDef)=S-ConsistencyRW(FSen,))A
(Interpretation fDef(IDef)=S-ConsistencyRW(FSe„,)))

We guarantee that a set A of inferred formal sentences is
internally consistent S-A-Consistency(FSen, F'Se„,), by
proving that there are no contradictions between the
interpretation of any inferred formal sentence FSenl and
the interpretation of any other inferred formal sentence

F'senr

(VFSenlF'SMeA)S-A-Consistency(FSenlF'Senl)**
(S-ConsistencyRV¿FSenl)=S-ConsistencyRW(F'Sen,))

Taking definitions in Example 2, the definition of
KEYWORD would seem to be individually consistent.
Since KEYWORD is a subclass of BIBLIO-TEXT, we
can infer the formal sentence (string ?keyword), which
means that ?keyword is a string. So, there is a
semantically inferred inconsistency between the mean
ings of the inferred formal sentence and the informal
definition of KEYWORD.

2.3.2. Completeness. Incompleteness is a fundamental
problem in ontologies. In fact, we cannot prove either the

(Define-Class
BIBLIO-TEXT (?String)
"The general class of
text objects"
:def (String?String))

(Define-Class
BIBLIO-NAME (?String)
"A name of something in the
bibliographic-data ontology"
:def (Biblio-Text?String))

(Define-Class
KEYWORD (?Keyword)
"A keyword is a number used as an
index"
:def (Biblio-Name?Keyword))

Example 2. Inferred inconsistency.

completeness of an ontology or the completeness of its
definitions, but we can prove both the incompleteness of
an individual definition to derive the incompleteness of
the ontology and the incompleteness of an ontology if at
least a definition is missed. So, an ontology is semanti-
cally complete if, and only if:

(1) All that is supposed to be in the ontology is explicitly
set out in it, or can be inferred using other definitions
and axioms.

(2) Each definition is complete. Semantic completeness
of a definition refers to the degree to which the
definitions in a user-independent ontology cover the
equivalent concepts in the real world. We determine
the completeness of a definition by figuring out: (a)
what information the definition defines or does not
explicitly define about the world; and (b) for all the
information that is not explicitly defined, but
required, we check if it can be inferred using other
axioms and definitions. If it can be inferred, the
definition is complete. Otherwise, it is incomplete.

Completeness of the definitions concerns complete
ness of their formal and informal definitions. An
informal definition written in natural language is com
plete if it expresses the same knowledge that the formal
definition provides. To determine whether a formal
definition or collection of formal definitions is complete
we need a frame of reference, certain criteria to measure
the degree of completeness and some guidelines to
perform it. If there are no requirements or competency
questions to be used as a frame of reference, other
sources of information such as: the real world, relevant
experts in developing ontologies, relevant users, books,
examples, other ontologies could be used. In this case,
the incompleteness of an ontology can be established by
failure of test of any of the following three properties.
Scope, which specifies the variety of different types of
applications that might reuse or share the definitions;
exhaustiveness, which refers to the level of precision of
the definitions; granularity, which denotes the level of
detail reached in each individual definition, as well as in
the ontology.

In order to provide a mechanism to verify the
completeness of an ontology, we assume that the world is
conceptualized in terms of KIF objects, relations and
functions. The following ordered set of activities might
help you to find incomplete definitions in an ontology.

Step 1: Check completeness of the class hierarchy
in which the current definition is included. The goal is
to determine whether the superclasses of a given class
exactly and precisely delimit the subclasses/superclasses
of the appropriate class in the real world. Errors appear
when: (a) the superclasses or subclasses of a given class
are imprecise, over-specified or when they include
classes that are not appropriate in the real world and (b)
information about subclasses that are mutually disjoint or
exhaustive subclass partitions are missing in their
superclasses.

Assume the following ontolingua classes definitions3

Def. 1. (Define-Class DOCUMENT (?X)
"A document is something created by author(s) that
may be viewed, listened to, etc., by some audi
ence..."
:def (And (Individual-Thing?X)

(Has-One?X Title-Of)
(Has-One?X Number-Of-Pages-Of))

:axiom-def
(Subclass-Partition Document
(Setof Book Thesis Miscellaneous-Publication)))

Def. 2. (Define-Class BOOK (?X)
"Pages in a bound cover. You can't judge it by its
cover."
:def (And (Document?X)

(Has-Some?X Has-Author)
(Has-One?X Title-Of)))

Def. 3. (Define-Class THESIS (?X)
"An official report on a bout of graduate work for
which one receives a degree, published by the
university. Never mind that some fields make a big
deal about the difference between dissertations and
theses. From the bibliographic perspective, they are
both of the same family."
:def (And (Document?X)

(Has-One-Of-Type?X Organization-Of
University)))

Def. 4. (Define-Class MASTERS-THESIS (?X)
"M.S. thesis document."
:def(Thesis?X))

3 These definitions might not correspond with definitions in the
Bibliographic-Data ontology.

Def. 5. (Define-Class DOCTORAL-THESIS (?X)
"Ph.D. thesis document."
:def(Thesis?X))

Def. 6. (Define Class MISCELLANEOUS-PUBLI
CATION (?X)

"A miscellaneous category of documents that are
infrequently found in bibliographic references"
:def ((Document?X))

Def.
(?X)

7. (Define-Class COMPUTER-PROGRAM

'The Has-Author is the programmer."
:def (Miscellaneous-Publication ?X))

Def. 8. (Define-Class PICTURE (?X)

:def (Miscellaneous-Publication ?X))

Their attached hierarchy is given in Fig. 1—which
does not exactly correspond to the hierarchy of the
bibliographic-data ontology (Gruber, 1994)—in which,
bold words represent classes, italic words mean proper
ties attached to the class, plain lines between classes
represent subclass-of relations between classes and
dashed lines mean that the subclasses of a class are
mutually disjoint. Notice that:

• The classes Doctoral-Thesis and Master-Thesis are
an exhaustive subclass partition of the class THE
SIS. The following Ontolingua sentence should be
included in the definition of Thesis.

:axiom-def
(Exhaustive-Subclass-Partition Thesis
(Setof Masters-Thesis Doctoral-Thesis)))

• The classes Computer-Program and Picture should

be mutually disjoint with respect to the class
Miscellaneous-Publication. The following should be
included in the definition of Miscellaneous-Publica
tion.

:axiom-def
(Subclass-Partition Miscellaneous-Publication
(Setof Computer-Program Picture)))

• The specialization of the class Book into different
subfields, that is, Computer-Book, Chemistry-Book
and so on is possible. Ontologies builders should
decide before building ontologies the level of
granularity and what to cut out.

Step 2: Check the completeness of the domains and
ranges of the functions and relations and that the
domains of these functions and relations are defined
in the class hierarchy of the ontology being ver
ified. The aim is to figure out whether the domain (or
range) of each argument of each function or relation in
the ontology exactly and precisely delimits the classes
that are appropriate for that argument. Errors appear
when the domains and ranges are imprecise, over-
specified or completely wrong.

For a given subgraph of the class hierarchy of the
current ontology, we find errors in the domain and range
of its functions and relations when we fill in their tables
of domains and ranges. These tables allow us to compare
the old and new domains and ranges of the functions and
relations in a hierarchy. In them, column 1 gathers the
names of all the functions and relations whose domains
are in the hierarchy. Columns 2 and 4 represent their
original domains and ranges (as they are defined in the
ontology you are verifying). Finally, columns 3 and 5 are
the new domains and ranges of the functions and
relations if they have to be modified (as you think they

Document
Title-Of

Number-Of-Pages-Of

- T
i Thesis MiscellaneousJPublication

Orgamzation-Of k
a I
I Picture

Doctoral-Thesis Computer-Program
Master-Thesis

FIGURE 1. A classes/subclasses hierarchy and their properties.

Book
Has-Author

Title-Of

TABLE 2
Domains and Ranges for the Functions of the Hierarchy in Fig. 1

Definition

Title-Of
Number-Of-Pages-Of
Organization-Of
Conference-Of
University-Of

Original
domain

New
domain

Original
range

Document
Document
Book
Proceeding
Document

Document

Title
Natural
Organization

Thesis University

New
range

Conference

TABLE 3
Domains and Ranges for the Relations of the Hierarchy in Fig. 1

Definition Original
domain

New
domain

Original
range

New
range

Has-Author Document — Author

should be defined).
Assume the following Ontolingua functions and

relations definitions. Tables 2 and 3 summarize the
domains and ranges of some functions and relations that
have as a domain some classes in the hierarchy of the
Fig. 1.

Def. 9. (Define-Relation Has-Author (?Doc?
Author)

"The creator(s) of a document. Not necessarily the
author of a work published in the document, but often
so. The author is a real agent, not a name of an
agent."
:def (And (Document?Doc)

(Author?Author)))

Def. 10. (Define-Function Title-Of (?Doc):—?Title
"The title of a document. Not necessarily the title of a
work published in the document."
:def (And (Document?Doc)

(TitleTTitle)))

Def. 11. (Define-Function Conference-Of (?Proc):-+
?Conference

'The conference associated with a proceedings."
:def (And (Proceedings ?Proc)))

Def. 12. (Define-Function Number-Of-Pages-Of
(?Doc):—?N

"Number of pages contained in a document. Not the
page numbers of an article."
:def (And (Document?Doc)

(Natural?N)))

Def. 13. (Define-Function Organization-Of
(?Doc):—^Organization

"The institution that publishes a document, like a
University or trade association."
:def (And (Book?Doc)

(Organization?Organization)))

Def. 14. (Define-Function University-Of
(?Doc):-+?University

'The University that publishes a thesis."
:def (And (Document ?Doc)

(Organization ?University)))

Taking these tables and hierarchy, we can say that:

(a) The domain and range of the functions Title-Of (the

title of a document) and Number-Of-Pages-Of (num
ber of pages of a document) are well-defined.

(b) The domain and range of the relation Has-Author
(the author of a document) is well-defined.

(c) The domain of the function University-Of (the
university of a thesis) is over-specified.

(d) The domain of the function Organization-Of (the
organization that publishes a document) is impre
cise—any document has an institution that publishes
it.

So, definitions 11,13 and 14 are modified as follow:

Def. 11. (Define-Function Conference-Of (?Proc):—•
?Conference

'The conference associated with a proceedings."
:def (And (Proceedings ?Proc)

(Organization ^Conference)))

Def. 13. (Define-Function Organization-Of (?Doc):—•
?Organization

"The institution that publishes a document, like a
university or trade association."
:def (And (Document ?Doc)

(Organization ?Organization)))

Def. 14. (Define-Function University-Of
(?Doc):—?University

'The university that publishes a thesis."
:def (And (Thesis ?Doc)

(Organization ?University)))

Step 3: Check the completeness of the classes. The
goal is to know if the class gathers as much information
as possible. So, the class should be defined by a predicate
defined by necessary and sufficient conditions, and the
set of properties attached to a given class represent the
set of properties that the class owns in the real world. In
this case, errors appear when:

(a) There are missed properties in the definition of a
class. We discover missed properties by checking
that all the functions and relations that have the
class as a domain are included as properties in the
definition of the class. For example, going through
columns 2 and 3 in Tables 1 and 2, we detect some
potential properties (Title-Of, Number-Of-Pages-
Of, Has-Author, Organization-Of) of the class
DOCUMENT by selecting those functions and
relations whose domain is DOCUMENT. Since
the class DOCUMENT (see definition 1) only

owns the properties Title-Of and Number-Of-
Pages-Of, we can say that the definition is
incomplete. To make the definition complete, we
introduce the missed properties (Organization-Of
and Has-Author) in the class DOCUMENT to
guarantee that the class as well as its subclasses
can have these properties defined. The following
Ontolingua sentences should be included in the
formal definition of DOCUMENT:

(Has-Some ?X Has-Author)
(Has-One ?X Institution-Of)

(b) There are errors in the cardinality of any
property. We detect errors in the cardinality by
comparing that the cardinality of the properties in
the world modeled formally is that which it is
supposed to have in the real world. Check also that
the minimum cardinality of a property is inferior
to the maximum cardinality. For example, in the
class THESIS we constrain the values of the
inherited properties Has-Author (a thesis only has
one author) when we use the following Onto
lingua sentence:

(Has-One ?X Doc.Author)

(c) Different classes have the same formal definition.
We find equal formal definitions by checking
classes that: (1) are classified under the same
superclasses, (2) own the same set of properties
and (3) the properties have the same cardinality.
Checking definitions 4 and 5, we find that there are
no semantic differences between the classes
MASTER-THESIS and DOCTORAL-THESIS
because they do not have any property that
differentiates them. We solve the problem by
defining a new function Degree-Of in the domain
of THESIS and in the range of DEGREE. We
differentiate between the two classes by including
the Ontolingua sentence (=Degree-Of Ph.D.) in
the formal definition of DOCTORAL-THESIS
and (=Degree-Of M.S.) in the formal definition of
MASTER-THESIS. The definitions of the func
tion Degree-Of and the definition of the class
DEGREE are given in Example 3.

(Define-Function DEGREE-OF (?Thesis)
:—»?Degree

"The degree of a thesis work."
:def (and (Thesis?Thesis)

(Degree ?Degree)))

(Define-Class DEGREE (?Degree)
"The degree of a study."
:axiom-def

(Subclass-Partition Degree
(SetofB.S. M.S. Ph.D.)))

Example 3. Definitions of a new function and class

(d) The class does not include properties that it
cannot have in the real world. The goal is to find
out which properties the class cannot have in the
real world and we include this information in the
definition of the class. In particular they should be
included if they may be inherited from its
superclasses. Looking at Fig. 1, we know that a
PICTURE is a subclass of the class DOCUMENT,
and that all documents can have pages. The
Ontolingua sentence (Cannot-Have ?X Number-
Of-Pages-Of) — or the equivalent in your
language — would forbid the definition of the
property Number-Of-Pages-Of in the instances of
PICTURE.

2.3.3. Conciseness. Conciseness refers to whether all
the information gathered in the ontology is useful and
precise. Conciseness does not imply absence of redun
dancies. Sometimes, some degree of controlled
redundancy can be useful in definitions. A priori, it is
difficult to prognosticate the conciseness of an ontology
or set of ontologies because they provide as many
abstract definitions as possible for a given domain. An
ontology is concise if:

(a) It does not store any unnecessary or useless
definition.

(b) Explicit redundancies do not exist between
definitions. For example, if a class is extension-
ally-defined by enumerating a set of objects, and
these objects are defined as instances in the
ontology, the ontology is redundant. Example 4
shows a case of explicit redundancy.

(Define-Class MONTH-NAME (?Month)
'The months of the year, specified as an
extensionally-defined (i.e. enumerated) set of
objects, in English. Instances of this class of
months are not symbols, they are months that
may be denoted by object constants."
:iff-def (Member?Month

(setof January february march april may
june july august September October
november december)))

(Define-Instance JANUARY (Month-Name))

Example 4. Explicit redundancy

(c) Redundancies cannot be inferred using axioms
attached to other definitions. Examples of inferred
redundancies are:

• A property that can be inherited from a
superclass is defined explicitly in any of its
subclasses. For example, the sentence (Has-One
?X Title-Of) in the class THESIS, would make
it redundant because we can get this property

from DOCUMENT by using inheritance. So, it
must be removed in BOOK.

• A subclass-of relation could be inferred using
other definitions. Given the definitions in Exam
ple 5 we could infer from the definition of
EXACT-RANGE—the EXACT-RANGE is the
class whose instances are exactly those that
appear in the last item of any tuple in the
relation—that the class AGENT-NAME is a
subclass of BIBLIO-NAME. Since AGENT-
NAME is the EXACT-RANGE of the
AGENT.NAME function, and a range of
AGENT.NAME is BIBLIO-NAME, and since
the EXACT-RANGE of a binary relation is a
subclass-of any of ranges, then it follows that
AGENT-NAME is a subclass of BIBLIO-
NAME. Consequently, the definition of
AGENT.NAME is concise and the inclusion of
the constraint in the definition makes it redun
dant.

(Define-Class AGENT-NAME (?Name)
"A string that is the name of some agent."
:def (Biblio-Name?Name)
:axiom-def (Exact-Range Agent.Name
Agent-Name))

(Define-Function AGENT.NAME (?Agent)
:—>?Name

"Function from an agent to the name by
which it goes."
:def (and (Agent?Agent)

(Biblio-Name?Name)))

(Define-Class BIBLIO-NAME (?String)
"A name of something in the bibliographic-
data ontology."
:def (Biblio-Text?String))

Example 5. An implicit redundancy is
inferred

(d) A definition is itself redundant. Given the defini
tions in Examples 5 and 6, we can say that the
definition of ORGANIZATION.NAME is redun
dant. It is explicitly said in Example 6 that the
function ORGANIZATION.NAME is a special
ization of the function AGENT.NAME. If the
domain and range of the ORGANIZATION
.NAME function are specializations of the domain
and range of the AGENT.NAME function, then all
the tuples in the ORGANIZATION.NAME func
tion are specializations of those in
AGENT.NAME. We have to delete the sentence
(Agent.Name ?Organization ?Name) in ORGANI
ZATION.NAME to make it non-redundant.

(Define-Function ORGANIZATION.NAME

(?Organization) :—» ?Name
"The name by which organizations go by.
One name per place."

:def (and (Organization?Organization)
(Biblio-Name?Name)
(Agent.Name?Organization?Name)))

(Define-Class ORGANIZATION (?X)
"An organization is a corporate orsimilar
institution, distinguished from persons and
other agents."

:def (Agent?X))

Example 6. The function ORGANIZATION.NAME
is itself redundant

2.3.4. Expandability and Sensitiveness. Expandability
refers to the effort required in adding new definitions to
an ontology, as well as the effort needed to add new
information to a definition, without altering the set of
well-defined properties that are already guaranteed after
the ontologies verification process.

2.3.5. Sensitiveness. Sensitiveness relates to how small
changes in a given definition alter the set of well-defined
properties that are already guaranteed. After including or
modifying a definition, this criterion must guarantee
that:

(1) The architecture of the ontology and the architecture
of its definitions are still sound.

(2) The definitions are lexically and syntactically cor
rect.

(3) The ontology and its definitions of conciseness,
consistency and completeness are tightly connected.

3. VERIFICATION OF SOFTWARE

Software verification refers to building the software
right, which means that the software that builds, reuses
and shares definitions and axioms correctly and com
pletely implements its requirements. Software
engineering methodologies, techniques and tools provide
the appropriate framework to verify KST software in
each stage and between stages of its life cycle.

4. VERIFICATION OF DOCUMENTATION

Documentation verification refers to building the docu
ments correctly. It seeks to guarantee that all the required
documents have been written, that nothing has been
overlooked in any document and that the documents
evolve in step with definitions and software environ
ments in each phase and between phases of the life cycle.
Verification of the documentation includes: the natural

language string in each definition, general information
about the ontology, basic ontological commitments, a
summary of definitions, cases studies, definitions taken
from other ontologies and also documentation about the
software that the environment provides, installation
manual, reference manual, release notes, frequently
asked questions and tutorials.

Special attention is required if WWW documents are
indexed automatically using a program. In this case,
mistakes in the indexes of the natural language doc
umentation appear easily due to the creative and flexible
use of the language. From the information retrieval point
of view, four categories of words can be found in the
indexed text.

(a) Correctly indexed words represent words in the
free text documentation that are properly indexed
with a word in the ontology vocabulary.

(b) Correctly non-indexed words represent words in
the free text documentation that are not indexed
with a word in the ontology.

(c) Incorrectly indexed words include words that have
been wrongly indexed with the ontology vocabu
lary. Errors in the indexes are classified in the
following categories:

• An index semantic blunder arises in natural
language documentation when the meaning of
the word in the documentation string is not the
same as the meaning of the term pointed in the
ontology vocabulary.

• A context error appears when there are no
semantic errors in the pointer, but the word in
the documentation string is not used in the
ontology theory context.

• Miscellaneous mistakes cover loops in indexes
and problems in polymorphical definitions.
While the former deal with indexes from words
in the natural language documentation of a
definition to the definition itself, polymorphical
errors deal with several and different definitions
of the same word in different ontologies.
Multiple definitions create ambiguity in the
selection of the indexes.

(d) Incorrectly non-indexed words concern words
used in the free text documentation in the
ontology theory context that are not indexed with
the ontology vocabulary because it is spelt
differently.

A study performed on Ontolingua ontologies reveals
that the majority of the errors can be easily avoided if the
ontology writer writes the words to be indexed using
certain conventions (i.e. using uppercase for all the
words, and/or using hyphenated strings of words).
Assuming that the natural language documentation has
been written following these conventions, the following
heuristics will provide new semantic, context and

morphological capabilities in the program that automat
ically generates the indexes:

(1) Pluralization of hyphenated and non-hyphenated
words in the lexicon.

(2) Detection of situations in which a word is followed
by unusual punctuation marks.

(3) Automatic generation of hyphenated words.
(4) Prevention of pointers to words that are out of the

scope of the current ontology and ontologies that are
included in the current ontologies.

(5) If a polymorphic word and a name of an ontology
appear together in a sentence, the polymorphical
word should point to the definition in that ontology.

(6) If a polymorphic definition is made in an ontology,
any index of the word in the ontology should point to
its definition, unless the name of any other ontology
appears in the sentence.

(7) Given a word, any index to that word from its natural
language documentation must be prevented.

5. CONCLUSIONS

Based on the empirical verification of ontolingua ontolo
gies, a novel approach to verify KST has been illustrated.
The main contributions are:

(a) We create a framework to verify KST. This
framework includes terminology, definitions, cri
teria and examples to carry out the verification.

(b) We split the verification process in three proc
esses: verification of ontologies, verification of
software for building, reusing and sharing defini
tions and verification of documentation. The most
important is verification of the ontologies. Soft
ware engineering provides the framework to
verify KST software and documentation.

(c) Verification of the ontologies includes verifying
that: the architecture of the ontologies and defini
tions are sound, the lexicon and syntax are correct
and the content of the definitions is consistent,
complete, concise, expandable and sensitive.
Regarding the content, we provide:
• A formal definition of internal, metaphysical

and inferred consistency, and examples that
show how to deal with these new concepts.

• An informal definition of completeness, and
stereotype of errors that make relations, func
tions and classes incomplete.

• An informal definition of conciseness and kinds
of errors that make ontologies redundant.

• We define expandability and sensitiveness of an
ontology, and we identify which kind of ver
ification has to be performed when definitions
are added or modified in an ontology.

Finally, we remark that conciseness, consistency and

completeness are tightly connected. An ontology can be
complete and not be concise if the formal sentence
written in a formal definition can be inferred using other
definitions. However, if the sentences are not explicitly
written and they cannot be inferred, the ontology could
be concise or not, but it is not complete.

Actually, we are developing a tool called ONE-T
(ONtologies Evaluation Tool) for Ontolingua ontologies.
The tool detects mistakes and omisions in ontologies and
corrects them automatically whenever it is possible. So,
it increases the performance and quality of the evaluation
process.

Acknowledgements—The research work has been performed at the
Knowledge Systems Laboratory in Stanford University, Stanford, CA,
U.S.A. It has been sponsored by grant number PF94-8821929 of the
Ministerio de Educación y Ciencia in Spain. Thanks to Richard Fikes
for his comments on the paper and advice during the work and to Mike
Uschold for his comments.

Genesereth, M. R. & Fikes, R. E. (1993). Knowledge interchange
format. Version 3.0. Reference manual. Report Logic-92-1, Com
puter Science Department, Stanford University.

Gómez-Pérez, A. (1994) From knowledge based systems to knowledge
sharing technology: Evaluation and assessment. Technical Report
KSL 94-73, Knowledge Systems Laboratory, Stanford University.

Gómez-Pérez, A. (1995). Some ideas and examples to evaluate
ontologies. In Proceedings of the Eleventh IEEE JConfereéce on
Artificial Intelligence for Applications, pp. 299-305^ New York:
IEEE Computer Society Press.

Gómez-Pérez, A. (1996). Guidelines to verify compfeieness and
consistency in ontologies. The Third World Congress hn Expert
Systems.

Gómez-Pérez, A., Juristo, N. & Pazos, J. (1995). Evaluation and
assessment of knowledge sharing technology. In Towards very
large knowledge bases: Knowledge building and knowledge
sharing, pp. 289-296. IOS Press.

Gruber, T. (1993a). A translation approach to portable ontology
specifications. Knowledge Acquisition, 5, 199-220.

Gruber, T. (1993b). Toward principles for the design of ontologies used
for knowledge sharing. Technical Report KSL 93-04, Knowledge
Systems Laboratory, Stanford University.

Gruber, T. (1994). Bibliographic-Data ontology. Available at hpp.
stanford.edu, as http://www-ksl.stanford.edu/knowledge-sharing
/ontologies/html/bibliographic-data/index.html

Gruninger, M. & Fox, M. S. (1994). The role of competency questions
in enterprise engineering. IFIP WG5.7 workshop on benchmarking,
theory and practice. Trondheim, Norway.

Guarino, N. & Giaretta, P. (1995). Ontologies and knowledge bases:
Towards a terminological clarification. In Towards very large
knowledge bases: Knowledge building and knowledge sharing, pp.
25-32. IOS Press.

http://stanford.edu
http://www-ksl.stanford.edu/knowledge-sharing

