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Abstract

Recommender systems aim to recommend users with some of their potentially inter-

esting items by exploiting various information, especially the absolute ratings. Nev-

ertheless, recent literature has suggested that rating-based systems are less reliable

comparing to those based on relative preferences, i.e., “which one is better?” instead

of “what do you think of this one?” However, a problem of these emerging relative

preference-based models is that they consider either the second order interactions,

such as similarities between users, or the higher order interactions, such as latent

factors. This limitation reduces the performance of relative preference-based systems

as the two types of interactions are complementary. On the other hand, due to the

change of input format, existing relative preference-based systems do not consider side

information such as user profiles and item content, which can be helpful to further

improve the performance. Furthermore, the potential of relative preference-based

systems to merge heterogeneous data sets was not identified in literature, which can

help alleviate the cold-start problem of having limited information for new users or

items.

In this thesis, we tackle these three issues. We propose a novel model to exploit

the ordinal properties possessed by ratings, where both the second and higher order

interactions are considered. In this model, ratings are no longer considered as num-

bers, but a sequence of ordinal labels. The proposed model used Markov Random

Fields to combine two types of interactions.

Another type of relative preference is Preference Relation (PR), i.e., compar-

isons of items. For PR-based systems, we proposed a modified version of Markov

xiii
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Random Fields which accepts PR instead of ordinal preferences, by converting PR

into user-wise preferences, and then into ordinal distributions through ordinal logis-

tic regression. This process produces the first PR-based recommender system that

captures both types of interactions. For incorporating side information, we extended

the Markov Random Fields to Conditional Random Fields, in which the users profiles

and item content are considered by designing new features.

Despite of improving existing PR-based systems, we also identified a great po-

tential of such systems to merge heterogeneous data sets. Specifically, data sets in

different format, such as 5-star ratings, binary ratings, page views, and mouse clicks

can all be converted into PR format and used by PR-based systems. This observation

makes it possible to alleviate the cold-start problem by generating a much denser data

set, which could not be done for rating-based systems.

To evaluate the performance of proposed models, we conducted experiments on

different public data sets against the state-of-the-art relative preference-based models

measured by different metrics. The results presented in the experiment sections of

each chapter show statistically significant improvement over existing models. The

main contributions of this research are proposing the first relative preference-based

models that can capture both types of interactions, and using PR-based models to

alleviate the cold-start problem.

Keywords: Recommender Systems, Preference Relation, Collaborative Filtering,

Relative Preference, Ordinal Preference



Chapter 1

Introduction

1.1 Background and Motivation

Recommender Systems (RecSys) aim to suggest items (books, movies, tourism attrac-

tions, etc.) that are potentially to be liked by the user. To identify the appropriate

items, RecSys use various sources of information, such as historical ratings given by

users [38] or content of items [5]. RecSys were originally designed for users with in-

sufficient personal experience or with limited knowledge on the items. However, with

the rapid expansion of Web 2.0 and e-commerce, overwhelming number of items are

offered, and now every user can be benefited from RecSys [66].

Over the last decade there have been rapid advances in RecSys, from both academia

and industry [7, 20, 37, 44, 49, 76]. One of the most important events in RecSys was

the one million Netflix Prize [7] launched in 2006, which sought for RecSys that out-

perform Netflix company’s own RecSys. The dataset released in this competition

contains historical ratings on movies given by individuals. The Netflix dataset, to-

gether with other datasets released by companies such as Amazon and Yahoo! have

become the popular benchmark datasets in this field. Due to the extensive use of

1
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these datasets, which contain ratings, most RecSys to date are designed to exploit

ratings [40, 41,69].

However, user feedbacks are not always expressed in form of absolute ratings, and

it is often expensive to collect such explicit feedbacks. Furthermore, studies [12, 42]

have reported that absolute ratings may not be completely trustworthy. For example,

the rating 4 out of 5 may in general indicate high quality, but it can mean just OK for

critics. In fact, users’ quantitative judgment can be affected by a number of irrelevant

factors such as the mood when rating, and in psychology this is called misattribution

of memory [71].

While users are not good at making consistent quantitative judgment, the relative

preferences such as ordinal preferences [42,46,79,82] and preference relations (PR) [12,

18,19] have been considered as more consistent form of feedbacks across like-minded

users. For example, by measuring the relative order between items, the PR is usually

less variant to irrelevant factors: a user in bad mood may give lower ratings to all

items but the relative orderings between items remain the same. Being a more reliable

type of user preferences, PR is also easier to collect comparing to ratings as it can

be inferred from implicit feedbacks. For example, the PR between two items can

be inferred by comparing their ratings, page views, played counts, mouse clicks, etc.

This property is important as not all users are willing to rate their preferences, where

collecting feedbacks implicitly delivers a more user-friendly recommender system. In

addition, as the ultimate goal of RecSys, obtaining the ranking of items by itself is to

obtain the relative preferences, a more natural input than absolute ratings [42, 81].

Despite of its potential, the newly emerged relative preference-based RecSys pro-

vides less features comparing to the well-established rating-based RecSys. Meanwhile,
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relative preference-based RecSys provides an alternative view of user preferences, thus

can be used to resolve issues of rating-based RecSys. Currently, relative preference-

based RecSys still faces the following unresolved issues:

• Different Structures in User Preferences : Existing recommendation techniques

can be largely divided into two forms: memory-based [65,69] and model-based [38].

Memory-based approaches focus on capturing the second-order interactions be-

tween similar users [65] or items [69]. This type of information is called Local

Structure (LS) of user preferences. On the other hand, model-based approaches

focus on discovering the weaker but higher-order interactions among all users

and items. This type of information is called Global Structure (GS) of user

preferences. Previous studies have suggested that these two types of struc-

ture are complementary since they address different aspects of the preferences

[38, 46, 79]. However, there is yet no relative preference-based RecSys that can

capture both LS and GS.

• Side Information of User Preferences : While existing recommendation tech-

niques focus on exploiting user preferences, side information such as item con-

tent and user attributes [79] are also shown to be useful in improving recom-

mendation quality. However, due to the change of input format, there is yet no

relative preference-based RecSys can incorporate side information.

• User Preferences from Heterogeneous Sources : Last decade has seen a growing

trend towards creating and managing more profiles in Online Social Networks.

User are now providing feedbacks on different platforms in different formats,

such as 5-star ratings, thumbs up/down, as well as implicitly as mouse clicks.
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These rich, but heterogeneous, user preferences provide an opportunity of allevi-

ate the cold-start problem [72]. However, existing recommendation techniques

usually assume the user preferences are in the same format, and therefore are

unable to exploit these heterogeneous user preferences.

The first two issues have constrained the potentials of relative preference-based

RecSys, while the third issue is faced by all existing recommendation techniques.

This thesis aims to address these issues to make relative preference-based ReSys

more effective and applicable.

1.2 Research Objectives

The objective of this work is to overcome the aforementioned weaknesses of existing

relative preference-based RecSys, as well as resolving the heterogeneous data sources

issue of traditional RecSys. More specifically, the research objectives of this work are:

• Learning Local and Global Structures : Capturing both the local and global

structures of user preferences have been done in rating-based recommendation

techniques [38]. However, existing approaches are not directly applicable to

relative preference-based RecSys as the format of input has changed. Recent

advances in Markov Random Fields-based RecSys [79] have made it possible

to capture both structures in a principled way by utilizing the flexibility of

graphical models. This thesis will investigate how the two structures can be

compiled into a single model in a probabilistic manner.

• Incorporating Side Information: How to incorporate side information such as
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item content and user attributes is a problem for relative preference-based Rec-

Sys. In fact, no existing relative preference-based RecSys has attempted this

task as these models are designed particularly for user preferences and have no

flexibility to incorporate side information in a proper way. On the other hand,

Conditional Random Fields [79], as an the extended version of Markov Ran-

dom Fields, can easily incorporate side information in a probabilistic manner.

However, it remains unknown how Conditional Random Fields can accept rel-

ative preferences as input. This thesis will investigate how to design a relative

preference-based Conditional Random Fields model.

• Learning from Heterogeneous Data Sources : How to unify user preferences in

different formats has been a problem for traditional rating-based RecSys. The

main difficulty is that there is no suitable method to convert user preferences

among formats without introducing noises. Furthermore, some conversions are

impractical, such as converting mouse clicks to 5-star ratings. Fortunately, the

relative preference provides a unified interface for all kinds of user preferences,

where both mouse clicks and 5-star ratings can be converted into pairwise

preference relations. In this thesis, we will investigate how to learn from het-

erogeneous data sources using relative preference-based RecSys.

1.3 Overview of the Proposed Methodology

Firstly, to address the problem of learning both local and global structures, we

propose two Markov Random Fields-based models to capture and unify both the LS

andGS information. Specifically, the proposed model employsMarkov Random Fields
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(MRF) to investigate the LS information while the Ordinal Matrix Factorization

(OMF) captures the GS information. In this way, we take advantages of both the

representational power of the MRF and the ease of modeling ordinal preferences by

the OMF. Experimental result on public datasets demonstrates that the proposed

model can capture both types of interactions, resulting in improved recommendation

accuracy. On the other hand, when the input format is pairwise preference relation,

the Preference Relation-based Markov Random Fields model is proposed to deal with

the input format of pairwise comparisons of items.

Secondly, to address the problem of incorporating side information, we extended

the proposed Markov Random Fields-based models to Conditional Random Fields-

based models, in which the side information are modeled as global observations of

the graphical models. We performed experiments on public datasets and demonstrate

that side information has been properly incorporated, and significantly improved

recommendation performance has been achieved and validated by statistical tests.

Finally, to address the problem unifying information from heterogeneous data

sources, we employed the several models to convert and exploit user preferences of

different formats. Specifically, all types of user preferences are converted into the

unified preference relation format and modeled by our proposed models. Experiment

results on public datasets demonstrate that our solutions to unifying data from het-

erogeneous sources have successfully minimized the noises information introduced,

resulting improved recommendation quality, especially in cold-start cases where each

data source provides a limited amount of data.
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1.4 Thesis Outline

This section presents the overall organization of this thesis. As the objective of this

thesis is to address the problems of relative preference-based RecSys, the content of

each chapter is organized as follows:

• Chapter 2 presents a comprehensive survey on recommender systems in gen-

eral with a focus on relative preference-based RecSys. Specifically, the relevant

concepts, assumptions, and emerging research issues in this area will be dis-

cussed. Efforts have been made to identify current and future issues of relative

preference-based RecSys.

• Chapter 3 focuses on resolving the issue of learning from both the local and

global structures in ordinal user preferences. This chapter specifically inves-

tigates the scenario of using ordinal type of preference as input. An Ordinal

Random Fields (ORF) method is proposed to capture and unify both types of

structures in a principled way. Experiments on multiple public datasets are con-

ducted to show that the proposed method effectively improves the performance

of recommendation by utilizing both types of structures.

• Chapter 4 proposes a novel Preference Relation-based Markov Random Fields

model to address the issue of learning from both the local and global structures

in preference relations. This chapter also proposes a Preference Relation-based

Conditional Random Fields model, which incorporates side information of users

and items. The proposed model does not rely on ratings but pairwise compar-

isons of items, thus offers better reliability and can be applied to a wider range of

applications. To validate its performance, we conducted experiments on several
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public datasets together with side information, and performance improvements

have been confirmed statistically.

• Chapter 5 addresses the issue of learning from multiple heterogeneous data

sources. This chapter identifies and formalizes the heterogeneous data sources

problem, and proposes the preference relation-based method to unify heteroge-

neous data. With consideration of multiple data sources, the proposed method

can reduce the effect of cold-start problem where each data source provides

limited amount of data. With the help of the proposed method, implicit user

preferences such as page views and mouse clicks can be easily exploited to alle-

viate the cold-start problem.

• Chapter 6 summarizes the contributions of this thesis, as well as discusses

some possible extensions and directions of future research.

To maintain readability, some essential concepts, definitions, and motivations are

recounted in each chapter to make it self-contained. For basic concepts of recom-

mender systems, readers may refer to the recommender system handbook [66].



Chapter 2

Literature Review

This chapter is devoted to provides an extensive literature review on recommender

systems by racing the trends and directions of current research. We chronologically

review contributions along each research direction regarding recommender systems

with a focus on relative preference-based RecSys. Specifically, Section 2.1 introduces

the basic notations and related concepts of recommender systems. Section 2.2 reviews

popular recommendation techniques along with the latest developments. Section 2.3

focuses on relative preference-based RecSys, and will introduce the recent develop-

ments on this emerging topic. Section 2.4 presents evaluation metrics that are used

to evaluate recommendation performance.

2.1 Notation and Problem Formulation

RecSys use historical data to predict future interest in items by users. Two objects

are involved in RecSys: items and users. Let U = {u1, u2, ..., um} denote a set of m

users, and T = {t1, t2, ..., tn} denote a set of n items, such as books, movies, etc. The

interest of user u ∈ U in item t ∈ T is encoded as the preference ru,t ∈ R, where

9
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R captures the known preferences for all users U . A typical form of preferences is

the ratings (e.g. 1 − 5 stars), though many other forms exist, such as like/dislike,

clicked/not clicked, etc.

Definition 1 (Recommender System). Given item collection T and known preferences

R of all users U , RecSys aims to identify the item t̂ ∈ T that maximizes the preference

rua,t of the active user ua ∈ U [1]:

t̂ = argmax
t∈T

(rua,t) (2.1.1)

This definition often implies that individual items are suggested to the individual

users, however, real-world applications may require suggesting a set of items and/or

to a group of users. To handle such cases, Definition 1 needs to be extended, how-

ever, it remains a challenging task to making recommendations to groups of users or

recommending a set of items. For ease of reference, notations used by rating-based

RecSys are summarized in Table 2.1.

Over the last decade, the development on RecSys has been carried out along

two research lines: Recommendation Techniques and Evaluation Metrics. Works on

the recommendation techniques focus on how to generate recommendations based on

various information sources, ranging from the item content, the known preferences,

to more recent sources such as the context [2] and the social trust [28].

After the recommendations have been generated, the next task is to evaluate the

quality of recommendations using evaluation metrics. Evaluating common machine

learning tasks such as classification are in general less difficult as the ground truth

is available to assess the predictions. Accuracy metrics such as mean absolute error

(MAE) are often employed to assess the performance of machine learning tasks as

well as the RecSys. However, it becomes tricky in RecSys where the ground truth



11

Table 2.1: Notations used in rating-based RecSys

Notations Mathematical Meanings

U set of all users U = {u1, u2, ..., un}

T set of all items T = {t1, t2, ..., tm}

G a user group, G ⊆ U

K an item package, K ⊆ T

R available preferences data of all users

ru,t the preference of user u on item t

R(ux) the set of items rated by user ux

S(tx) the set of users rated item tx

Txy the set of items co-rated by user ux and uy

rG,K the group G’s preference on package K

Ir(G,K) the inter-relevance between group G and package K

Ih(K) the aggregation of inherence properties of package K

|·| the cardinality of the set

·̂ the prediction, e.g. t̂ is the predicted item t

·̄ the arithmetic mean
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(user’s satisfaction) may not be well represented by the preferences data such as

ratings. For example, a user rated 5-star for the movie Titanic but he/she may not

want to watch Titanic Extended Version, but a RecSys focuses on ratings may still

consider Titanic Extended Version as a 5-star recommendation. For this reason,

research of RecSys has gone beyond the accuracy metrics to many novel metrics such

as diversity [11], novelty [25], etc. Figure 2.1 provides an overview of recommendation

techniques and evaluation metrics in RecSys.

2.2 Recommendation Techniques

Recommendation techniques aims to identify the right item for the user, where two

fundamental approaches are Content-based methods [62] and Collaborative Filtering

methods [65]. Conventionally, Content-based methods generate recommendations

by exploiting regularities in the item content, while Collaborative Filtering methods

generate recommendations based on available preferences data of users. More recent

approaches are exploiting extra information such as the context [2] and the social

trust [28]. In this section, we briefly review these recommendation techniques.

2.2.1 Content-based Recommender Systems

Content-based methods generate recommendations for the active user ua based on the

contents of related items, where other users’ information is not utilized. The basic

idea is to identify the unrated items that are similar to the active user’s highly rated

items.
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The prediction of active user’s preference rua,t on unrated item t is calculated

based on known preferences of items similar to t. The similarity between two items

is measured by comparing the content of the items. For example, two movies can

be compared in terms of the actors, directors, genres, etc [47]. For text-based items,

the features can be represented by keywords using term frequency/inverse document

frequency (TF-IDF) [67]. Given the features, the similarity can be calculated using

standard metrics such as the cosine distance.

Despite of the simplicity, content-based methods have three limitations. Firstly,

it can be difficult to define features or extract content from some types of items, such

as audio, videos, and pictures. Secondly, the user will always be recommended with

items that are highly similar to the items he/she liked, which leads to the lacking of

diversity [11]. Finally, it is difficult to identify items for new users or users with few

ratings, and this is referred to as the cold-start problem [72].

2.2.2 Collaborative Filtering

Collaborative Filtering (CF) looks for items highly rated by users similar to the

active user. CF methods can be classified into two classes: memory-based methods

and model-based methods.

Memory-based Methods In memory-based methods [59, 65], the preference pre-

dictions are based on the entire collection of known preferences. The idea is

that similar users should rate the same movie similarly. The preference rua,t

of unrated item t for active user ua is calculated based on the preference ruj ,t

from every user uj ∈ U who is similar to the active user ua. The similarity

between two users is defined by comparing their known preferences, and two



15

popular measures are Pearson Correlation Coefficient (PCC) [65] and Vector

Space Similarity (VS) [1]:

Pearson Correlation Coefficient (PCC)

sim(ux, uy) =

∑
ti∈Txy

(rxi − r̄x)(ryi − r̄y)√∑
ti∈Txy

(rxi − r̄x)2
∑

ti∈Txy
(ryi − r̄y)2

(2.2.1)

Vector Space Similarity (VS)

sim(ux, uy) = cos(ux,uy) =

∑
ti∈Txy

rxiryi√∑
ti∈Txy

r2xi
∑

ti∈Txy
r2yi

(2.2.2)

where Txy = {ti ∈ T |rxi �= Ø, ryi �= Ø} denotes the set of items co-rated by both

ux and uy.

Model-based Methods In contrast to memory-based methods, model-based meth-

ods [57,68] will construct a model from the known preferences, and make future

recommendations based on the model. Model-based methods often take more

training time than memory-based methods, however, they are more efficient

in generating recommendations. According to the type of model, model-based

methods can be further divided into three classes: supervised learning-based [57],

unsupervised learning-based [31, 70], and matrix factorization-based [9, 38].

Similar to content-based methods, CF also suffers from cold-start problem. In

addition, new items rated by a small number of users will have a low chance to

be recommended. However, CF has been one of the most popular recommendation

techniques for to its efficiency and high quality recommendations.
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2.2.3 Context-Aware Recommendation

Both content-based methods and CF focus on the preferences, however, users’ inter-

ests could also be affected by the context. For example, whether a user would like a

movie not only depends on the user’s taste, but also the context such as when, where,

and with whom.

One of the first considered context is temporal information. In 2001, Zimdars et

al. [86] treated CF as a uni-variate time series problem, where a user’s next preference

is predicted based on the previous preference. However, temporal information did not

attract much attention until the successful of timeSVD++ method [39] in Netflix

Progress Prize competition. The timeSVD++ method predicts preference of active

user ua on item i at time t as:

r̂ai(t) = μ+ bi(t) + ba(t) + qTi

⎛⎝pa(t) + |R(ua)| 12 ∑
j∈R(ua)

yj

⎞⎠ , (2.2.3)

where μ denotes the overall average preference, bi(t) is the item’s bias at time t, ba(t)

is the user’s bias at time t, R(ua) is the set of items rated by user ua, qi and yj are

item-factor vectors, and pa(t) is the user-factor vector at time t, pa(t), qi, and yj are

in a joint latent factor space as used in matrix factorization techniques [38]. In this

formulation, temporal information is modeled by the time-based bias, and this makes

it superior to other competitors.

Recently, it has been recognized that temporal is not the only important context

and various kinds of context can be exploited to improve the recommendation quality,

and this kind of RecSys is referred to as Context-Aware Recommender Systems [2].
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2.2.4 Graph-based Recommendation

Graph-based methods consider the recommendation task as a link prediction problem

of bipartite graph [85]. On bitpartite graph, users U and items T are represented by

two sets of nodes, and each pair of < user, item > can be connected with an edge.

These edges represent users’ interests in items, and making recommendations is the

same as connecting the missing edges.

A representative work is the Network-Based Inference (NBI) proposed by Zhou

et al. [85] which generates recommendations based on the resource-allocation process.

To make predictions for user ua, NBI first initializes the network as:

AC(ua, ti) =

⎧⎨⎩1 if ti ∈ R(ua)

0 otherwise
(2.2.4)

where R(ua) denotes the set of items rated by user ua, and AC(ua, ti) is the Allocated

Resource (AC) to node of item ti that represents user’s interests. In this initialization,

1 is assigned to every item ti if rated by user ua, and 0 otherwise. After this initial-

ization for all users, the allocated resources will be redistributed among all items in

the following two steps and the item with the most AC at the final stage will be

recommended to the active user ua.

Spreading Step In spreading step, all initially allocated resources will flow from all

items T to all users U . The resources flow to each user ux is calculated as:

AC(ux) =

|T |∑
i=1

cxiAC(ux, ti)

|S(ti)|
(2.2.5)

where S(ti) denotes the set of users who rated item ti, AC(ux, ti) denotes the

initial resources allocated to item ti by user ux, and cxi is 1 if ux rated item ti

and 0 otherwise.
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Redistribution Step In this step, the resources will flow back to items T from users

U . The final resources allocated to each item ti is calculated as:

ÂC(ti) =

|U|∑
x=1

cxiAC(ui)

|Tx|
(2.2.6)

The item with most resources ÂC(ti) allocated will be recommended to the

active user ua.

2.2.5 Trust-based Recommendation

Similarity in typical recommendation methods is often defined by standard metrics

such as cosine. However, instead of finding recommendations from similar users, it

is also reasonable to find recommendations from familiar users [28]. Intuitively, an

item liked by the user’s good friend has the potential to be liked by the user.

Recent developments in social networks have further revealed the social trust rela-

tionships among users, and Massa and Avesani [53] termed this kind of recommender

systems as Trust-Aware Recommendation. Empirical results from Guy’s work [28] in-

dicated that familiarity-based methods can be superior to similarity-based methods.

Despite of the performance comparison, the key advantage of trust-aware methods is

that it provides a promising approach to cold-start problem [27,28].

2.3 Relative Preference-based Recommender Sys-

tems
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User preferences can be modeled in three types: pointwise, pairwise, and listwise.

Though RecSys is not limited to pointwise absolute ratings, the recommendation

task is usually considered as a rating prediction problem [38, 40, 69, 78]. Recently,

a considerable literature [12, 19, 45, 64, 74] has grown up around the theme of rela-

tive preferences, especially the pairwise PR. Meanwhile, recommendation task is also

shifting from rating prediction to item ranking [56,74,83] in which the ranking itself

is also relative preferences.

The use of relative preferences has been widely studied in the field of Information

Retrieval for learning to rank tasks [21,22,35]. Recently, PR-based [12,19,45,64] and

listwise-based [74] RecSys have been proposed. Among them, the PR-based approach

is the most popular, which can be further categorized as memory-based methods [12]

that capture local structure and model-based methods [19, 45, 64] that capture global

structure. We summarize the capabilities of the existing methods in Table 2.2.

Table 2.2: Capabilities of existing methods

Method Input Output LS GS

Pointwise Memory-based Ratings Ratings �

Pointwise Model-based Ratings Ratings �

Pointwise Hybrid Ratings Ratings � �

Pairwise Memory-based Preference Relations Item Rankings �

Pairwise Model-based Preference Relations Item Rankings �



20

2.3.1 Notation and Problem Statement

Preference Relation

A preference relation (PR) encodes user preferences in form of pairwise ordering

between items. This representation is a useful alternative to absolute ratings for

three reasons.

Firstly, PR is more consistent across like-minded users [12, 19] as it is invariant

to many irrelevant factors, such as mood. Secondly, PR is a more natural and direct

input for Top-N recommendation, as both the input and the output are relative

preferences. Finally, and perhaps most importantly, PR can be obtained implicitly

rather than asking the users explicitly. For example, the PR over two Web pages

can be inferred by the stayed time, and consequently applies to the displayed items.

This property is important as not all users are willing to rate their preferences, where

collecting feedbacks implicitly delivers a more user-friendly RecSys. In addition, PR-

based RecSys provides an opportunity to utilize the vast amount of implicit data

that have already been collected over the years, such as activity logs. With these

potential benefits, we shall take a closer look at the PR, and investigate how they

can be utilized in RecSys.

We formally define the PR as follows. Let U = {u}n and I = {i}m denote the set

of n users and m items, respectively. The preference of a user u ∈ U between items i

and j is encoded as πuij, which indicates the strength of user u’s PR for the ordered

item pair (i, j). A higher value of πuij indicates a stronger preference on the first item

over the second item.
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Definition 2 (Preference Relation). The preference relation is defined as

πuij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2
3
, 1] if i � j (u prefers i over j)

[1
3
, 2
3
] if i � j (i and j are equally preferable to u)

[0, 1
3
) if i ≺ j (u prefers j over i)

(2.3.1)

where πuij ∈ [0, 1] and πuij = 1− πuji.

This definition is similar to [19], however, we allocate an interval for each pref-

erence category, i.e., preferred, equally preferred, and less preferred. Indeed, each

preference category can be further break down into more intervals.

Similar to [12], the PR can be converted into user-wise preferences over items.

Definition 3 (User-wise Preference). The user-wise preference is defined as

pui =

∑
j∈Iu [[πuij >

2
3
]]−∑

j∈Iu [[πuij <
1
3
]]

|Πui|
(2.3.2)

where [[·]] gives 1 for true and 0 for false, and Πui is the set of user u’s PR related to

item i.

The user-wise preference pui falls in the interval [−1, 1], where −1 and 1 indicate

that item i is the least or the most preferred item for user u, respectively. The user-

wise preference measures the relative position of an item for a particular user, which

is different from absolute ratings.

Preference relation has been widely studied in the field of Information Retrieval [14,

21,22,35]. Nevertheless, PR-based RecSys have only emerged recently [12,19,45,64].

Problem Statement

Generally, the task of PR-based RecSys is to take PR as input and output Top-N

recommendations. Specifically, let πuij ∈ Π encode the PR of each user u ∈ U .
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Each πuij is defined over an ordered item pair (i, j), denoting i ≺ j, i � j, or

i � j as described in Eq. 2.3.1. The goal is to estimate the value of each unknown

πuij ∈ Πunknown, such that π̂uij approximates πuij. This can be considered as an

optimization task performs directly on the PR:

π̂uij = argmin
π̂uij∈[0,1]

(πuij − π̂uij)
2 (2.3.3)

However, it can be easier to estimate the π̂uij by the difference between the two

user-wise preferences pui and puj, i.e., π̂uij = φ(p̂ui− p̂uj), where φ(·) is a function that

bounds the value into [0, 1] and ensures φ(0) = 0.5. For example, the inverse-logit

function φ(x) = ex

1+ex
can be used when user-wise preferences involve large values.

Therefore, the objective of this paper is to solve the following optimization problem:

(p̂ui, p̂uj) = argmin
p̂ui,p̂uj

(πuij − φ(p̂ui − p̂uj))
2 (2.3.4)

which optimizes the user-wise preferences directly, and Top-N recommendations can

be obtained by simply sorting the estimated user-wise preferences.

Let us consider an instance space X = {xi} (e.g. items) and a finite set of labels

(e.g. ratings) Y = {yi|i = 1, 2, ..., k}. One task of preference learning is to find a

label ranking for any instance, e.g., determine the most likely rating for an item. The

other task is to find an object ranking, e.g., to determine the ranking of items.

For ease of reference, notations used in Relative Preference-based RecSys are

summarized in Table 2.3. The letters u, v, a, b represent users, and the letters i,

j, k, l represent items.
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Table 2.3: Notations used in Relative Preference-based RecSys

Notations Mathematical Meanings

U the set of users

I the set of items

Π the set of preference relations

pui the user-wise preference of user u on item i

G an undirected graph encodes relations of user-wise preferences

V the set of vertices each represents a user-wise preference

E the set of edges each connects two vertices

fuv the correlation feature between users u and v

fij the correlation feature between items i and j

wuv the weight associated to the user-user correlation feature fuv

wij the weight associated to the item-item correlation feature fij

Q(pui | u, i) the ordinal distribution

o the side information, e.g., user attributes and item content
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2.3.2 Memory-based Models

A memory-based model is proposed in [12] to take preference relations as input and

compute similarities between users. The proposed model has the following three steps:

Collecting User Profiles

When preference relations are employed, four values are possible for user preferences:

• i � j indicates item i is preferred over item j

• i ≺ j indicates item j is preferred over item i

• i ≈ j indicates item i and j are equally preferable

Each value correspond to one question answered by a user. However, there are too

many possible questions which cannot be asked. Therefore, a decision must be made

to decide which subset of questions to ask.

Computing Similarities Between Users

Let Iu be the set of preference relations of user u, and fu1,u2(i, j) indicating whether

two users u1 and u2 agree on their preference on the two items i and j. Given an item

pair (i, j), the function fu1,u2(i, j) gives the value 1 if the two users have the same

preference, and 0 otherwise. The similarity measure between two users u1 and u2 is

then defined as:

cos�(u1, u2) =

∑
(i,j)∈I1∩I2 fu1,u2(i, j)√∑

(i,j)∈I1 fu1,u1(i, j) ·
√∑

(i,j)∈I2 fu2,u2(i, j)

=

∑
(i,j)∈I1∩I2 fu1,u2(i, j)√

|I1| · |I2|

(2.3.5)
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where the numerator represents the number preferences that both users agreed, and

the denominator normalizes the result.

Making Recommendations

To make recommendations, the preference relations are first converted into user-wise

preferences. Denote:

• c+u,i: the number of preference relations that i is preferred

• c=u,i: the number of preference relations that i is equally preferred to others

• c−u,i: the number of preference relations that i is less preferred

Then the user-wise preference of item i by user u is defined as:

pui =
c−u,i − c+u,i

c−u,i + c+u,i + c=u,i
(2.3.6)

With the user-wise preferences computed, the preference over an unknown item j

can be predicted by:

puj =

∑
v∈Nu

sim(u, v) · pvj∑
v∈Nu

sim(u, v)
(2.3.7)

where Nu is the set of users that have similar profiles to user u.

2.3.3 Model-based Models

Ordinal Matrix Factorization

The ordinal nature of preferences has been overlooked in RecSys literature, until

recently Ordinal Matrix Factorization (OMF) [32, 42, 61, 82] has emerged to explore

the ordinal properties of ratings.
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In general, OMF aims to generate an ordinal distribution Q(rui|u, i) over all pos-

sible rating values for each user/item pair. Predicting the rating for user u on item

i is then equivalent to identifying the rating with the greatest mass in the ordinal

distribution Q(rui|u, i). While traditional RecSys approaches make only a point esti-

mate, the OMF produces a full distribution and each prediction is associated with a

probability as a confidence measure.

Typical OMF approaches assume the existence of a latent utility xui that captures

how much the user u is interested in the item i. The latent utility xui can be defined

in different ways [32, 42, 61, 82], but under the same framework of Random Utility

Models [55]

xui = μui + εui (2.3.8)

where μui is an internal score represents the interaction between the user u and the

item i. The εui is the random noise normally assumed to follow the logistic distribution

in practice [42]. The latent utility xui is then generated from a logistic distribution

centred at μui with the scale parameter sui proportional to the standard deviation

xui ∼ Logi(μui, sui) (2.3.9)

In collaborative filtering, the user-item interaction is often captured by MF tech-

niques, thereby the internal score μui can be substituted with the MF term bui+pT
uqi

xui = bui + pT
uqi + εui (2.3.10)

where pu and qi are, respectively, the latent feature vectors of the user u and the

item i. Modelling the latent utility with MF reflects the name OMF.

Despite how the latent utility is modelled, an ordinal assumption is required to

convert the numerical utility into ordinal values. A common approach is the ordinal
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logistic regression originally described by McCullagh [54], which assumes that the

rating is chosen based on the interval to which the utility belongs

rui = l if xui ∈ (θl−1, θl] for l < L and rui = L if xui > θL−1 (2.3.11)

where L is the number of ordinal levels and θl are the threshold values of interest.

Other assumptions [51] are also possible but McCullagh’s model is by far the most

popular. The probability of receiving a rating l is therefore

Q(rui = l|u, i) =
∫ θl

θl−1

P (xui|θ) = F (θl)− F (θl−1) (2.3.12)

where F (θl) is the cumulative logistic distribution evaluated at θl

F (xui ≤ l|θl) =
1

1 + exp(− θuil−μui

sui
)

(2.3.13)

where the thresholds θl can be parameterised to depend on user or item. This paper

employs the user-specific thresholds parameterisation described in [42]. Therefore a

set of thresholds {θul}Ll=1 is defined for each user u to replace the thresholds θuil in

Eq. 2.3.13.

Given the learned ordinal distribution Q(rui|u, i), not only the ratings can be

predicted but also the confidence for each prediction.

Preference Relation-based Matrix Factorization

Matrix Factorization (MF) [41] is a popular approach to RecSys that has mainly

been applied to absolute ratings. Recently, the PrefNMF [19] model was proposed

to adopt PR input for MF models. The PrefNMF model discovers the latent factor

space shared between users and items, where the latent factors describe both the taste

of users and the characteristics of items. The attractiveness of an item to a user is

then measured by the inner product of their latent feature vectors.
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Formally, each user u is associated with a latent feature vector uu ∈ Rk and each

item i is associated with a latent feature vector vi ∈ Rk, where k is the dimension of

the latent factor space. The attractiveness of items i and j to the user u are u�
u vi

and u�
u vj, respectively. When u�

u vi > u�
u vj the item i is said to be more preferable

to the user u than the item j, i.e., i � j. The strength of this preference relation πuij

can be estimated by u�
u (vi − vj), and the inverse-logit function is applied to ensure

π̂uij ∈ [0, 1]:

π̂uij =
eu

�
u (vi−vj)

1 + eu�
u (vi−vj)

(2.3.14)

The latent feature vectors uu and vi are learned by minimizing regularized squared

error with respect to the set of all known preference relations Π:

min
uu,vi∈Rk

∑
πuij∈Π∧(i<j)

(πuij − π̂uij)
2 + λ(‖uu‖2 + ‖vi‖2) (2.3.15)

where λ is the regularization coefficient. The optimization can be done with Stochastic

Gradient Descent for the favor of speed on sparse data, or with Alternating Least

Squares for the favor of parallelization on dense data.

2.4 Evaluation Metrics

Classic problems such as classification often have some agreed evaluation metrics.

However, recommendation techniques are evaluated in many different ways depending

on the form of recommendation as well as the goal of recommendation. For example

when predicting a user’s rating on a movie, accuracy metrics are often used to measure

how close the predicted rating is to the true rating. On the other hand, if the RecSys

predicts a ranking of items for a user, then other metrics will be required to measure



29

the correctness, diversity, etc. In this section, we describe some commonly used

evaluation metrics for both rating and ranking based RecSys.

2.4.1 Accuracy Metrics

To measure the recommendation quality, various accuracy metrics can be used. Two

popular metrics are Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE), which measure how close the prediction is to the ground truth Let
∑

a|R(ua)|

be the number of unrated items by user ua, and r̂i be the predicted rating of item ti,

the definition of MAE and RMSE are as follows:

MAE =

∑
a,i |R̂x,i −Ra,i|∑

a|R(ua)|
(2.4.1)

RMSE =

√∑
a,i |R̂a,i −Ra,i|∑

a|R(ua)|
(2.4.2)

MAE and RMSE are the commonly used metric in literature [68, 69] as well as

in various competitions [7]. However, the prediction accuracy can also be measured

in terms of correlations between the predicted and the ground truth. Different cor-

relation measures exist and a popular one is Pearson Correlation Coefficient (PCC)

defined as:

PCC =

∑
a(R̂a − R̂)(Ra −R)√∑

a(R̂a − R̂)2 ·
√∑

a(Ra −R)

(2.4.3)

Other accuracy metrics are also developed, such as Accuracy/Precision [29], and

Area Under ROC Curve (AUC) [85].
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2.4.2 Diversity

Traditionally, the evaluation of RecSys is mainly based on accuracy metrics such as

RMSE. However, the accuracy metrics can not evaluate the some properties of the

items other than the preferences, such as Serendipity [25], Diversity [11], etc.

One diversity metric is Personalization, in which the uniqueness of each user’s

recommendation list is measured. Personalization refers the inter-user diversity [84]

Personalization =
2

m(m− 1)

∑
x�=y

(
1− |Lk(ux) ∩ Lk(uy)|

|Lk(ux)|

)
, (2.4.4)

where m is the number of users, and (1 − |Lk(ux)∩Lk(uy)|
|Lk(ux)| ) is the Hamming distance

between recommendation lists Lk(ux) and Lk(uy).

2.4.3 Coverage

Coverage refers to the percentage of items of all items a RecSys can recommend. This

metric is based on the observation that some items may not have the chance to be

recommended to any user, which reduces the coverage of the system.

Let N be the number of top places to be considered, Ld be the number of distinct

items in all top-N recommendation lists, and L be the number of distinct items in all

recommendation lists. The N -dependent coverage is defined as [25]:

Coverage(N) = Ld/L (2.4.5)

A low coverage means the RecSys can only make recommendations on a small

number of distinct items, in other words, it always recommends the popular items.

It can be shown that RecSys with high coverage implies higher diversity [48].
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2.4.4 Stability

Stability measures consistency of recommendations for the same user [3]. The rec-

ommendations generated by a stable RecSys should be similar after some new pref-

erences are added. For example, the first recommendation of an unstable RecSys

predicts movie A as 5-star and movie B as 1-star. Then the user watched movie A

and rated it as 5-star. With this new preference added to the preferences data, the

unstable RecSys then generates the second recommendation that predicts movie B

as 5-star. The 5-star movie B which was 1-star, may lead to user confusion and lower

the trust of the RecSys. The Stability property has been studied in detail in [4].

With various evaluation metrics available, the choice highly depends on the goal

of the RecSys. In general, accuracy metrics such as MAE and RMSE are standard

metrics for benchmark, and other metrics such as diversity and novelty are used to

fulfill some additional requirements. Unlike other machine learning tasks which have

agreed metrics, the evaluation of RecSys has gained great research interests and new

metrics are keeping emerged.

2.4.5 Metrics for Relative Preference-based Models

Traditional recommender systems aim to optimize RMSE or MAE which emphasizes

on absolute ratings. However, the ultimate goal of recommender systems is usually

to obtain the ranking of items [42], where good performance on RMSE or MAE

may not be translated into good ranking results [42]. Therefore, we employ two

evaluation metrics: Normalized Cumulative Discounted Gain@T (NDCG@T) [34]

which is popular in academia, and Mean Average Precision@T (MAP@T) [13] which
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is popular in contests 1. Among them, the NDCG@T metric is defined as

NDCG@T =
1

K(T )

T∑
t=1

2rt − 1

log2 (t+ 1)
(2.4.6)

where rt is the relevance judgment of the item at position t, and K(T ) is the normal-

ization constant. The MAP@T metric is defined as

MAP@T =
1

|Utest|
∑

u∈Utest

T∑
t=1

Pu(t)

min(mu, t)
(2.4.7)

where mu is the number relevant items to user u, and Pu(t) is user u’s precision at

position t. Both metrics are normalized to [0, 1], and a higher value indicates better

performance.

These metrics, together with other ranking-based metrics, require a set of relevant

items to be defined in the test set such that the predicted rankings can be evaluated

against. The relevant items can be defined in different ways. In this paper, we follow

the same selection criteria used in the related work [12, 38] to consider items with

the highest ratings as relevant.

2.5 Summary

Numerous recommendation techniques have been developed over the last decade,

ranging from the basic ones of content-based methods to the recent ones of context-

based methods. These recommendation techniques performed well in real-world ap-

plications such as Amazon, MovieLens, and Netflix. However, due to the extensive

use of these rating-based datasets, existing models are specifically designed for the

ratings format, whereas vast amount of implicit feedback such as log files has been

1KDD Cup 2012 and Facebook Recruiting Competition
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stored but not utilized. The new emerged relative preference-based models provide a

solution to make use of such implicit feedback, but lacks of modeling abilities com-

paring to the well-established rating-based models. In the remaining chapters of this

thesis, we identify and tackle weaknesses of relative preference-based models to make

them more effective and applicable.



Chapter 3

Ordinal Random Fields for
Recommender Systems

3.1 Introduction

Recommender Systems (RecSys) aim to suggest items that are potentially of interest

to users, where the items can be virtually anything such as movies and attractions

for travel. To identify the appropriate items, RecSys use various sources of infor-

mation including item content [5] and user preferences [41]. By far, Collaborative

Filtering [41, 69] is one of the most popular RecSys techniques, which exploits user

preferences especially the numerical preferences.

However, numerical preferences are often difficult to collect as users may find it

easier to tell which item is preferable to others, rather than expressing the precise

degree of liking. Furthermore, researchers argued that numerical preferences may

not be completely trustworthy [12, 42]. For example, the internal scales of users

can be different, where the rating 4 out of 5 generally indicates high quality, but it is

possible to be just fine for critical users. While users are not good at making consistent

quantitative judgment, ordinal preferences are considered to be more consistent across

34
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like-minded users [18].

Ordinal preferences is an alternative view of user preferences, in which the relative

orders between items are measured. To adopt ordinal preferences, substantial research

efforts have been made over the past five years [42, 61, 73, 82]. While most data

collections are still dominated by numerical preferences, the shift from numerical to

ordinal is a slow process. Instead of going solely ordinal preferences in a sudden, most

existing ordinal approaches begin with exploiting the ordinal properties possessed by

numerical preferences. Among them, Ordinal Matrix Factorization (OMF) has been

suggested as an effective method in recent developments [32,42,61,82]. In contrast to

the numerical approaches, OMF makes weaker assumptions as the user preferences

are no longer required to be interpreted as numbers, instead, only the ordering of

items matters.

Despite of its effectiveness in modeling ordinal properties, OMF is incapable of

exploiting the local structure described as follows. Typical collaborative filtering

methods discover two types of information: the neighborhoods and the latent factors,

which we refer to as the local and the global structures of the preferences:

Local Structure The local structure (LS) refers to the second-order interactions

between similar users or items. This type of information is often used by

neighborhood-based collaborative filtering, in which the predictions are made

by looking at the neighborhood of users [65] or items [69]. Though the majority

of preferences will be ignored in making predictions, LS -based approaches are

effective when the users/items correlations are highly localized.

Global Structure The global structure (GS) refers to the weaker but higher-order

interactions among all users and items. This type of information is often used by
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latent factor models such as SVD [41] and LDA [52], which aim at discovering

the latent factor spaces in the preferences. GS -based approaches are often

competitive in terms of accuracy as well as computational efficiency.

Exiting literature has suggested that the LS and the GS are complementary since

they address different aspects of the preferences [38,79]. In 2008, a unified framework

has been proposed by Koren [38] to capture both structures, but only for numerical

preferences. To the best of our knowledge, there is yet no method for the OMF to

capture both the LS and the GS.

Recent advances in Probabilistic Graphical Models, especially the Markov Random

Fields (MRF), have provided methods of building RecSys capable of exploiting both

the LS and the GS [79]. However, there has been little attempt to address the ordinal

preferences issue due to the complication of modeling ordinal preferences with the

MRF.

This chapter aims to develop a unified model in which the OMF and the MRF

are seamlessly combined to take advantages of both the representational power of

the MRF and the ease of modeling ordinal preferences by the OMF. The proposed

Ordinal Random Fields (ORF) model is not designed for a particular OMF but can

incorporate any OMF model that produces ordinal distributions such as those in [32,

42,61,82]. While this work primarily focuses on exploiting the LS, the representational

power of the ORF is by no mean limited to this. For example, the MRF employed in

ORF can be extended to Conditional Random Fields (CRF) [43,78] to fuse auxiliary

information such as the item content [5] and social relations [50]. These information

has been shown helpful in making better recommendations [6,50], and becomes even

more valuable when the preferences data are highly sparse. Besides the extensibility,
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the ORF inherits other advantages of the probabilistic graphical models as well, such

as supporting missing data by its nature, and disciplined learning and inferences

techniques.

The remaining part of this chapter is organized as follows. Section 3.2 reviews

the basic concepts of the Matrix Factorization and the OMF which form the basis

of this work. Section 3.3 is devoted to the proposed ORF model. In Section 3.4,

experimental results of the proposed ORF model are presented. Finally, Section 3.5

concludes this chapter by summarizing the main contributions and future works.

3.2 Preliminaries

RecSys usually predict users ’ future interest in items. Let U and I, denote the set of

all users and the set of all items, respectively. The interest of the user u ∈ U in the

item i ∈ I is encoded as the preference rui ∈ R, where the rating matrix R contains

all known preferences.

Definition 4 (Recommender System). RecSys aims to identify the item î ∈ I that

maximizes the interest of the target user u ∈ U [1]

î = argmax
i∈I

(rui) (3.2.1)

In the rest of this section, we briefly review two RecSys approaches: Matrix Fac-

torization and Ordinal Matrix Factorization that form a basis of this work For ease of

reference, notations used throughout this chapter are summarized in Table 3.1, and

the term preference and rating will be used interchangeably.
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Table 3.1: Summary of Major Notations (Chapter 3)

Notations Mathematical Meanings

U the set of all users

I the set of all items

R the set of known preferences

G an undirected graph which encodes relations of preferences

V the set of vertices each represents a preference

E the set of edges each connects two vertices

ru the set of all preferences by user u

fij the correlation feature between items i and j

wij the weight associated to the correlation feature fij

L the number of rating levels, and the ratings are integers from 1 to L
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3.2.1 Matrix Factorization

Matrix Factorization (MF) [41] is a popular and accurate approach to RecSys. This

approach discovers the latent factor spaces shared between users and items, where the

latent factors can be used to describe both the taste of users and the characteristics of

items. The attractiveness of an item to a user is then measured by the inner product

of their latent feature vectors.

Formally, each user u is associated with a latent feature vector pu ∈ Rk and each

item i is associated with a latent feature vector qi ∈ Rk, where k is the number of

factors. The aim of MF is then to estimate r̂ui = bui + pT
uqi such that r̂ui � rui.

The bias term bui = μ + bu + bi takes the biases into consideration, where μ is the

overall average rating, bu is the user bias, and bi is the item bias. The latent feature

vectors are learned by minimizing regularized squared error with respect to all known

preferences

min
pu,qi∈Rk

∑
(u,i)∈R

(rui − bui − pT
uqi)

2 + λ(‖pu‖2 + ‖qi‖2) (3.2.2)

where λ is the regularization coefficient. The optimization can be done with Stochastic

Gradient Descent for the favor of speed on sparse data, or with Alternating Least

Squares for the favor of parallelization on dense data.

Comparing to neighbor-based approaches [69], MF-based approaches [38, 40] have

shown advantages in terms of accuracy and computational efficiency. Nevertheless, all

of these approaches treat the preferences as numerical and are incapable of exploiting

ordinal preferences.
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3.2.2 Ordinal Matrix Factorization

The ordinal nature of preferences has been overlooked in RecSys literature, until

recently Ordinal Matrix Factorization (OMF) [32, 42, 61, 82] has emerged to explore

the ordinal properties of ratings.

In general, OMF aims to generate an ordinal distribution Q(rui|u, i) over all pos-

sible rating values for each user/item pair. Predicting the rating for user u on item

i is then equivalent to identifying the rating with the greatest mass in the ordinal

distribution Q(rui|u, i). While traditional RecSys approaches make only a point esti-

mate, the OMF produces a full distribution and each prediction is associated with a

probability as a confidence measure.

Typical OMF approaches assume the existence of a latent utility xui that captures

how much the user u is interested in the item i. The latent utility xui can be defined

in different ways [32, 42, 61, 82], but under the same framework of Random Utility

Models [55]

xui = μui + εui (3.2.3)

where μui is an internal score represents the interaction between the user u and the

item i. The εui is the random noise normally assumed to follow the logistic distribution

in practice [42]. The latent utility xui is then generated from a logistic distribution

centered at μui with the scale parameter sui proportional to the standard deviation

xui ∼ Logi(μui, sui) (3.2.4)

In collaborative filtering, the user-item interaction is often captured by MF tech-

niques, thereby the internal score μui can be substituted with the MF term bui+pT
uqi

xui = bui + pT
uqi + εui (3.2.5)



41

where pu and qi are, respectively, the latent feature vectors of the user u and the

item i. Modelling the latent utility with MF reflects the name OMF.

Despite how the latent utility is modeled, an ordinal assumption is required to

convert the numerical utility into ordinal values. A common approach is the ordinal

logistic regression originally described by McCullagh [54], which assumes that the

rating is chosen based on the interval to which the utility belongs

rui = l if xui ∈ (θl−1, θl] for l < L and rui = L if xui > θL−1 (3.2.6)

where L is the number of ordinal levels and θl are the threshold values of interest.

Other assumptions [51] are also possible but McCullagh’s model is by far the most

popular. The probability of receiving a rating l is therefore

Q(rui = l|u, i) =
∫ θl

θl−1

P (xui|θ) = F (θl)− F (θl−1) (3.2.7)

where F (θl) is the cumulative logistic distribution evaluated at θl

F (xui ≤ l|θl) =
1

1 + exp(− θuil−μui

sui
)

(3.2.8)

where the thresholds θl can be parameterized to depend on user or item. This paper

employs the user-specific thresholds parameterization described in [42]. Therefore a

set of thresholds {θul}Ll=1 is defined for each user u to replace the thresholds θuil in

Eq. 3.2.8.

Given the learned ordinal distribution Q(rui|u, i), not only the ratings can be

predicted but also the confidence for each prediction.

3.2.3 Summary

Matrix Factorization has been one of the most popular RecSys approaches, which

primarily focuses on numerical preferences such as ratings. Nevertheless, the nature
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of user preferences is often ordinal, and the importance of modeling ordinal properties

has been recognized in recent works on OMF [32,42,61,82]. Although the OMF en-

ables the modeling of ordinal properties, the employment of MF makes it only focuses

on the higher-order interactions (the GS ) regardless of the localized interactions (the

LS ), whereas both information are valuable [38, 79]. Furthermore, the OMF by its

nature cannot model auxiliary information such as content [5] directly.

The powerful representation of Markov Random Fields (MRF) offers an oppor-

tunity to take advantages from all of these information, and have been developed in

recent works [78, 79]. Nevertheless, exploiting the ordinal properties is not an easy

task for MRF [79], therefore the strengths of the OMF and the MRF are nicely

complementary. This observation leads to a naturally extension of unifying these two

approaches, and motivates the present work.

3.3 Ordinal Random Fields

In this section, we propose the Ordinal Random Fields (ORF) to model the ordinal

properties and capture both the LS and the GS. Here we exploit the LS of the item-

item correlations only, while the user-user correlations can be modeled in a similar

manner. The rest of this section introduces the concept of the Markov Random Fields

followed a detailed discussion of the ORF including its feature design, parameter

estimation, and predictions.
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3.3.1 Markov Random Fields

Markov Random Fields (MRF) [16, 78] models a set of random variables having

Markov property with respect to an undirected graph G. The undirected graph G

consists a set of vertices V connected by a set of edges E without orientation, where

two vertices are neighborhood of each other when connected. Each vertex in V encodes

a random variable, and the Markov property implies that a variable is conditionally

independent of other variables given its neighborhoods.

In this work, we use MRF to model user preferences and their relations respect

to a set of undirected graphs. Specifically for each user u, there is a graph Gu with a

set of vertices Vu and a set of edges Eu. Each vertex in Vu represents a preference rui

of user u on item i, and each edge in Eu captures a relation between two preferences

by the same user.

As we consider only the item-item correlations in this work, two preferences are

connected by an edge if and only if they are given by the same user. Fig. 3.1 shows

an example of two graphs for users u and v. Note that vertices of different graphs

are not connected directly, however, the edges between the same pair of items are

associated to the same item-item correlation. For example, the edge between rui and

ruj and the edge between rvi and rvj are associated to the same item-item correlation

between items i and j (see the green dashed line in Fig. 3.1).

Formally, let I(u) be the set of all items rated by user u and ru = {rui|i ∈ I(u)}

be the joint set of all preferences (the variables) related to user u, then the MRF

defines a distribution P (ru) over the graph Gu:

P (ru) =
1

Zu

Ψ(ru) (3.3.1)
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ruj

ruk

rvj

rvk

rui rvi

i-j correlation

j-k correlation

i-k correlation

Figure 3.1: Example of undirected graphs for users u and v

Ψ(ru) =
∏

(ui,uj)∈Eu

ψij(rui, ruj) (3.3.2)

where Zu is the normalization term that ensures
∑

ru
P (ru) = 1, and ψ(·) is a positive

function known as potential.

The potential ψij(rui, ruj) captures the correlation between items i and j

ψij(rui, ruj) = exp{wijfij(rui, ruj)} (3.3.3)

where fij(·) is the feature function and wij is the corresponding weight. The cor-

relation features capture the LS, while the weights realize the importance of each

correlation feature. In ORF, the weights also control the relative importance between

the LS and the GS. With the weights estimated from data, the unknown preference

rui can be predicted as

r̂ui = argmax
rui

P (rui|ru) (3.3.4)

where P (rui|ru) serves as the confidence measure of the prediction.
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3.3.2 ORF: Unifying MRF and OMF

The standard MRF approach captures the LS by modeling item-item correlations

under the framework of probabilistic graphical models. However, it employs the

log-linear modeling as shown in Eq. 3.3.3, and therefore does not enable a simple

treatment of ordinal preferences. OMF, on the other hand, can nicely model the

ordinal preferences in a probabilistic way but is weak in capturing the LS. The com-

plementary between these two techniques calls for the unified ORF model to take all

of the advantages.

Essentially, the proposed ORF model promotes the agreement between the GS

discovered by the OMF and the LS discovered by the MRF. More specifically, the

ORF model combines the item-item correlations (Eq. 3.3.3) and the point-wise ordinal

distribution Q(rui|u, i) obtained from the OMF (Eq. 3.2.7)

P (ru) ∝ Ψu(ru)
∏

rui∈ru
Q(rui|u, i) (3.3.5)

where Ψu(ru) is the potential function capturing the interaction among items, and ru

is the set of preferences from user u.

The potential function Ψu(ru) can be further factorized into pairwise potentials

based on Eq. 3.3.3 and Eq. 3.3.2:

Ψu(ru) = exp

⎛⎝ ∑
rui,ruj∈ru

wijfij(rui, ruj)

⎞⎠ (3.3.6)

where fij(·) is the correlation feature between items i and j to be defined shortly in

Section 3.3.3, and wij is the corresponding weight controls the relative importance of

each correlation feature (LS ) to the ordinal distribution (GS ). Put all together, the
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joint distribution P (ru) for each user u can be modelled as

P (ru) ∝ exp

⎛⎝ ∑
rui,ruj∈ru

wijfij(rui, ruj)

⎞⎠ ∏
rui∈ru

Q(rui|u, i) (3.3.7)

where there is a graph for each user but the weights are optimised by all users.

In fact, the user-user correlations can also be captured as

P (R) ∝
∏
i

Ψi(ri)
∏
u

Ψu(ru)
∏
u,i

Q(rui|u, i) (3.3.8)

but we limit our discussion to item-item correlations in this paper.

3.3.3 Feature Design

A feature is essentially a function f of n > 1 arguments that maps the (n-dimensional)

input onto the unit interval f : Rn → [0, 1], where the input can be ratings or auxiliary

information such as content [78].

The item-item correlation is captured by the following feature

f(rui, ruj) = g(|(rui − r̄i)− (ruj − r̄j)|) (3.3.9)

where g(α) = 1−α/(L− 1) does normalization, and r̄i and r̄j are the average ratings

for items i and j, respectively. This correlation feature captures the intuition that

correlated items should receive similar ratings by the same user after offsetting the

goodness of each item.

Though this work focuses on the item-item correlations, the feature for user-user

correlations can be designed in a similar manner:

f(rui, rvi) = g(|(rui − r̄u)− (rvi − r̄v)|) (3.3.10)

where r̄u and r̄v are the global average ratings for users u and v respectively.
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Although the user and item bias have been modeled by the underlying OMF, the

ORF itself can also model the bias with identity features for item i and for user u

fi(rui, i) = g(|rui − r̄i|), fu(rui, u) = g(|rui − r̄u|) (3.3.11)

Indeed, auxiliary information such as content [5] and social relations [50] can also

be modeled by designing corresponding features. That being said, the ORF is a

generic framework with great extensibility to integrate multiple sub-components such

as neighborhood, content, and ordinal ratings.

Nevertheless, this work focuses on the item-item correlation features only. Since

one correlation feature exists for each possible pair of co-rated items, the number of

correlation features can be large, and this makes the estimation slow to converge and

less robust. Therefore we only keep the correlation features if strong correlation exists

between two items i and j. Specifically, the strong correlation features are extracted

based on the Pearson correlation and a user-specified minimum correlation threshold.

3.3.4 Parameter Estimation

In general, MRF models cannot be determined by standard maximum likelihood

approaches, instead, approximation techniques such as Markov Chain Monte Carlo

(MCMC) [26] and Pseudo-likelihood [8] are often used in practice. The pseudo-

likelihood leads to exact computation of the loss function and its gradient with respect

to parameters, and thus faster. The MCMC-based methods may, on the other hand,

lead to better estimation given enough time. As the experiments involve different

settings and large number of features, this study employs the pseudo-likelihood tech-

nique to perform efficient parameter estimation by maximizing the regularized sum
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of log local likelihoods

L(w) =
∑
rui∈R

logP (rui|ru\rui)−
1

2σ2

∑
u∈U

wT
uwu (3.3.12)

where σ is the regularization coefficient, and wu is the subset of weights related to

user u.

The local likelihood is defined as

P (rui|ru\rui) =
1

Zui

Q(rui|u, i) exp

⎛⎝ ∑
ruj∈ru\rui

wijfij(rui, ruj)

⎞⎠ (3.3.13)

where Zui is the normalization term.

Zui =
L∑

rui=1

Q(rui|u, i) exp

⎛⎝ ∑
ruj∈ru\rui

wijfij(rui, ruj)

⎞⎠ (3.3.14)

To optimize the parameters, we use the stochastic gradient ascent procedure that

updates the parameters by passing through the set of ratings of each user:

wu ← wu + η∇L(wu) (3.3.15)

where η is the learning rate. More specifically, for each rui and its neighbor ruj in

the set of ratings ru by user u, update the weight wij using the gradient of the log

pseudo-likelihood

∂logL
∂wij

= fij(rui, ruj)−
L∑

rui=1

P (rui|ru\rui)fij(rui, ruj) (3.3.16)

3.3.5 Preference Prediction

The prediction of rating rui is straightforward, which can be done by identifying the

rating with the greatest mass in local likelihood:

r̂ui = argmax
rui

P (rui|ru) (3.3.17)
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where the local likelihood is given by Eq. 3.3.13. Prediction made in this approach

identifies the most likely rating from discrete values 1 to L, and the local likelihood

serves as a confidence measure. For predictions of scalar values, the expectation can

be used instead:

r̂ui =
L∑

rui=1

ruiP (rui|ru) (3.3.18)

Finally, Alg. 1 summarizes the learning and prediction procedures for the ORF.

3.4 Experiment and Analysis

To study the performance of the proposed ORF model, comparisons were made with

the following representative algorithms: a) K-Nearest Neighbors (K-NN) [65, 69],

which represents the methods exploiting the LS ; b) OMF [42], which exploits the

GS and ordinal properties; c) and finally the ORF model, which takes ordinal prop-

erties into account and exploits both the LS and the GS. Details of the experimental

settings and results are presented in this section.

3.4.1 Experimental Settings

Datasets Experiments were conducted on two public movie rating datasets: the

MovieLens-100K and the MovieLens-1M 1 datasets. The MovieLens-1M dataset

contains roughly 1 million ratings by 6040 users on 3900 movies. The MovieLens-

100K dataset contains 100K ratings by 943 users on 1682 movies. Ratings are

on the 1− 5 scale.

To perform a reliable evaluation, we keep only users who rated at least 30

1http://grouplens.org/datasets/movielens
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Algorithm 1 Ordinal Random Fields Algorithm

Input: User preferences R; the ordinal distribution Q from Eq. 3.2.7.

Step 1: Generate strong correlation features: fstrong ← {fij|Pearson(i, j) ≥

minCorr}

Step 2: Initialize the weights: ∀wij ∈ w, wij ← N (0, 0.01);

Step 3: Repeat

for each u ∈ U do

for each rui, ruj ∈ ru, i �= j do

if fij ∈ fstrong then

Compute correlation feature fij according to Eq. 3.3.9

Compute normalization term Zui according to Eq. 3.3.14

Compute local likelihood according to Eq. 3.3.13

Compute the gradient for weight wij according to Eq. 3.3.16

Update wij with the gradient wij ← wij + η∇L(wij)

end if

end for

end for

Until stopping criteria met

Predictions:

* Predict most likely rating with confidence measure using Eq. 3.3.18.

* Predict expectation using Eq. 3.3.17
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movies, and each dataset is shuffled and split into the disjoint training set,

validation set and test set. For each user, 5 ratings are kept in the validation

set for tuning the hyper-parameters, 10 ratings are reserved for testing, and the

rest for training.

Evaluation Metric The Mean Absolute Error (MAE) and the Root Mean Square

Error (RMSE) are used as the evaluation metric

MAE =
1

|Rtest|
∑

(u,i)∈Rtest

|r̂ui − rui|, RMSE =

√∑
(u,i)∈Rtest

(r̂ui − rui)2

|Rtest|
(3.4.1)

where Rtest is the test set kept aside until all parameters have been tuned. A

smaller MAE or RMSE value indicates better performance. Although both

metrics are used, we consider the MAE metric to be more suitable for ordinal

preferences. The reason is that it makes more scenes to consider being off by

4 is just twice as bad as being off by 2 when the preferences are ordinal. The

RMSE metric, on the other hand, can be skewed to methods that are optimized

for numerical preferences.

Parameters To perform a fair comparison, we fix the number of latent factors to the

typical value of 50 for all algorithms, and all weights are randomly initialized

from N (0, 0.01). The number of neighbors for K-NN algorithms is set to 10 and

30. The minimum correlation threshold for the ORF is set to reasonable values

considering both the prediction performance and computational efficiency. We

will also report the effect of varying the minimum correlation threshold.
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3.4.2 Result and Analysis

We first compare the performance of the proposed ORF model with related algo-

rithms: user-based K-NN, item-based K-NN and OMF, where the OMF is the tar-

geted baseline. Then the impact of parameters is investigated for the ORF model, in

particular the regularization coefficient and the minimum correlation threshold.

Comparison with Other Methods

The comparison results in terms of prediction accuracy are shown in Table 3.2. The

global average is used only as a benchmark, which uses the average rating as the

predictions. The following observations can be made based on the results.

Firstly, the K-NN methods, especially the item-based K-NN, perform quite well.

As the K-NN methods exploit only the LS, this result indicates the effectiveness of the

LS. However, the ignorance of the GS makes the K-NN methods not less generalized

and thus highly susceptible to noisy data.

Secondly, the OMF fits the data quite well when predicting the most likely rat-

ings for the MAE metric. However, it exploits only the GS and therefore further

improvements are possible by incorporating the LS information.

Finally, the ORF has made further improvements upon the OMF by unifying

the modeling of both the LS and the GS, as well as ordinal properties. Note that

the performance of the ORF relies on the ordinal distributions generated by the

underlying OMF, which can be implemented in different ways [32, 42, 61, 82]. In

present work, the improvements over the OMF are soley based on incorporating the

LS information.

To confirm the improvements, a paired t-test (two-tailed) with a confidence level of
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Table 3.2: For both the OMF and the ORF, the expectation values (Eq. 3.3.18) are

used for RMSE and the most likely values (Eq. 3.3.17) are used for MAE.

MovieLens-100K MovieLens-1M

Method RMSE MAE RMSE MAE

Global Ave. 1.1186 0.9430 1.1123 0.9401

UserKNN, K=10 0.9687 0.7584 0.9350 0.7328

ItemKNN, K=10 0.9372 0.7305 0.9032 0.7041

UserKNN, K=30 0.9463 0.7413 0.9149 0.7173

ItemKNN, K=30 0.9315 0.7295 0.8987 0.70478

OMF 0.9525 0.7226 0.9144 0.6918

ORF, minCorr=0.4 0.9475 0.7185 0.9117 0.6887

ORF, minCorr=0.3 0.9448 0.7148 0.9093 0.6870

Table 3.3: Paired t-test for the ORF and the OMF.

t-test statistics

Methods df t p-value

ORF vs. OMF on MAE 9 6.0163 0.0002

ORF vs. OMF on RMSE 9 4.8586 0.0009
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95% has been applied to the ORF and the OMF. Results shown in Table 3.3 confirm

that the performance of methods with and without capturing the LS is statistically

significant.

Impact of Minimum Correlation Threshold

As mentioned in Section 3.3.3, the ORF model requires a minimum correlation thresh-

old to control the number of correlation features. The reason is that the number of

correlation features can be very large, which makes the model less robust and slow to

converge. Specifically, when this threshold goes to minimum (e.g. −1 for Pearson cor-

relation), the potential number of correlation features can be as large as n2/2 where

n is the number of items. On the other hand, the number of correlation features goes

to zero when the threshold goes to maximum, and the ORF reduces to the OMF.

(a) Number of Correlation Features (b) Coverage of Correlation Features

Figure 3.2: Impact of Minimum Correlation Threshold on Number of Correlation

Features
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Fig. 3.2(a) shows the number of correlation features for different minimum corre-

lation thresholds. Given that the MovieLens-100K dataset contains less items com-

paring the MovieLens-1M dataset, there are even more correlation features remained

in the MovieLens-100K dataset when the threshold becomes larger. This observation

implies that the items in the MovieLens-100K dataset are more correlated with each

other. We also show the coverage of correlation features for both datasets, and the

MovieLens-100K has consistently higher coverage of correlation features.

(a) MAE (b) RMSE

Figure 3.3: Impact of Minimum Correlation Threshold

Having these statistics result, we further examine the impact of the minimum cor-

relation threshold on prediction accuracy, as plotted in Fig. 3.3. It can be observed

that the prediction accuracy improves as the minimum correlation threshold becomes

smaller. However, we notice that the performance on the smaller MovieLens-100K

dataset is not as stable as that on the MovieLens-1M dataset, where the curve of the

MovieLens-1M dataset is smoother and shows better monotonicity. One explanation
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is that the MovieLens-100K dataset may not have enough data to make robust esti-

mation for large number of weights. However, given adequate data and time, the best

prediction performance can be achieved by including all correlation features, i.e., the

minimum correlation threshold is set to minimum.

Impact of Regularization Coefficient

While the number of correlation features can be large, the model might be prone to

over-fitting. Therefore we investigate the impact of varying the the regularization

coefficient. Fig. 3.4 shows the performance of the ORF under different regularization

(a) MAE (b) RMSE

Figure 3.4: Impact of Regularization Coefficient

settings. We observe that by varying the regularization coefficient the prediction

performance was not affected too much. One possible explanation is that the ordinal

distribution employed in the ORF is generated by the underlying OMF with its own

regularization mechanism, whereas the regularization term in the ORF controls only



57

the weights for the second-order item-item correlation features. In other words, the

ORF model by itself is unlikely to over-fit the data given that the underlying OMF

model has been properly regularized.

3.5 Summary

In this work we presented the ORF model that takes advantages of both the rep-

resentational power of the MRF and the ease of modeling ordinal preferences by the

OMF. While the standard OMF approaches exploit only the GS, the ORF model is

able to capture the LS as well. In addition, the ORF model defines a uniformed inter-

face for different OMF approaches with various internal implementations. Last but

not least, the ORF model is a generic framework that can be extended to incorporate

additional information by designing more features.

A future extension could take the user-user correlations into account as we modeled

only the item-item correlations in this work. Incorporating the user-user correlations

may further improve the prediction performance. Another future work is to take

auxiliary information into consideration by replacing the MRF with the Conditional

Random Fields [43]. Fusing auxiliary information such as the item content and social

relations could improve the prediction performance especially when the data is highly

sparse.



Chapter 4

Preferecen Relation-based
Recommender System

4.1 Introduction

RecSys aim to recommend users with some of their potentially interesting items,

which can be virtually anything ranging from movies to tourism attractions. To

identify the appropriate items, RecSys attempts to exploit user preferences [41] and

various side information including content [5,6], temporal dynamics [40], and social

relations [50]. By far, Collaborative Filtering [41] is one of the most popular RecSys

techniques, which exploits user preferences, especially in form of explicit absolute

ratings. Nevertheless, relying on solely absolute ratings is prone to the cold-start

problem [72] where few ratings are known for cold users or items. To alleviate the

cold-start problem, additional information, which is usually heterogeneous [6] and

implicit [64] must be acquired and exploited.

Recently, a considerable literature [12, 19, 45, 64, 74] has grown up around the

theme of relative preferences. The underlying motivation is that relative preferences

are often easier to collect and more reliable as a measure of user preferences. For

58
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example, it can be easier for users to tell which item is preferable than expressing

the precise degree of liking. Furthermore, studies [12,42] have reported that absolute

ratings may not be completely trustworthy. For example, rating 4 out of 5 may in

general indicate high quality, but it can mean just OK for critics. In fact, users’

quantitative judgment can be affected by irrelevant factors such as the mood when

rating, and this is called misattribution of memory [71].

While users are not good at making consistent quantitative judgment, the pref-

erence relation (PR), as a kind of relative preference, has been considered as more

consistent across like-minded users [12, 18, 19]. By measuring the relative order be-

tween items, the PR is usually less variant to irrelevant factors. For example, a user

in bad mood may give lower ratings to all items but the relative orderings between

items remain the same. Being a more reliable type of user preferences, PR is also eas-

ier to collect comparing to ratings as it can be inferred from implicit feedbacks. For

example, the PR between two items can be inferred by comparing their ratings, page

views, played counts, mouse clicks, etc. This property is important as not all users

are willing to rate their preferences, where collecting feedbacks implicitly delivers a

more user-friendly recommender system. In addition, as the ultimate goal of RecSys,

obtaining the ranking of items by itself is to obtain the relative preferences, a more

natural input than absolute ratings [42, 81].

While the PR captures the user preferences in the pairwise form, most existing

works [42,46] take the pointwise approach to exploiting ordinal properties possessed

by absolute ratings. To accept the PR as input and output item rankings, pair-

wise approaches to RecSys have recently emerged in two forms: memory-based [12]

and model-based [19, 45, 64]. These studies have shown the feasibility of PR-based
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methods, and demonstrated competitive performance comparing to their underly-

ing models, such as memory-based K-Nearest Neighbor (KNN) [12] and model-based

Matrix Factorization (MF) [19].

However, the limitations of these underlying models have constrained the poten-

tials of their PR extensions. More specifically, both KNN and MF based methods

can only capture one type of information at a time, while both the local and the global

information are essential in achieving good performance [38, 46, 79]. We refer these

two types of information as the local and the global structures of the preferences:

Local Structure The local structure (LS) refers to the second-order interactions

between similar users [65] or items [69]. This type of information is often used

by neighborhood-based collaborative filtering, in which the predictions are made

by looking at the neighborhood of users [65] or items [69]. LS -based approaches

ignore the majority of preferences in making predictions, but are effective when

the users or items correlations are highly localized.

Global Structure The global structure (GS) refers to the weaker but higher-order

interactions among all users and items [41]. This type of information is often

used by latent factor models such as Matrix Factorization [41], which aim to

discover the latent factor space in the preferences. GS -based approaches are

often competitive in terms of accuracy and computational efficiency [41].

Previous studies have suggested that these two structures are complementary since

they address different aspects of the preferences [38, 46, 79]. However, to the best

of our knowledge, there is yet no PR-based method that can capture both LS and

GS. Another problem of existing PR-based methods is that side information such

as item content and user attributes can’t be easily incorporated, which is critical in
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cold-start cases. All the above reasonings lead to the desired model with the following

properties: 1) Accept PR as input; 2) Capture both LS and GS ; 3) Side information

can be easily incorporated; 4) Output item rankings.

Recent advances inMarkov Random Fields-based RecSys [16,46,77,79] have made

it possible to achieve the above objectives. MRF -based RecSys was first developed

in [79] to capture both LS and GS. Later on, it has been extended in [46] to exploit

ordinal properties possessed by absolute ratings. Nevertheless, all of these attempts

rely on absolute ratings.

This work aims to push the MRF -based RecSys one step further by fitting it

into the PR framework, namely the Preference Relation-based Markov Random Fields

(PrefMRF) and the Preference Relation-based Conditional Random Fields (PrefCRF)

when side information is incorporated. The remaining part of this paper is organized

as follows. Section 4.2 introduces the concepts of PR-based RecSys and formalizes the

problem, followed by a review of related work. Section 4.3 is devoted to the proposed

PrefMRF and PrefCRF models. Benchmark results on Top-N recommendation are

presented in Section 4.4. Finally, Section 4.5 concludes this work by summarizing the

main contributions and envisaging future works.

4.2 Preliminaries

RecSys aim at predicting users’ future interest in items, and the recommendation

task can be considered as a preference learning problem, which aims to construct

a predictive preference model from observed preference information [58]. Existing

preference learning methods are based on different learning to rank approaches [23].
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Among them, the pointwise approach is the choice of most RecSys [38, 69], which

exploit absolute ratings, though pairwise approach that exploits PR has been largely

overlooked until recently. The rest of this section describes the basic concepts and

formalizes the PR-based RecSys followed by a review of related work.

4.2.1 Preference Relation

A preference relation (PR) encodes user preferences in form of pairwise ordering

between items. This representation is a useful alternative to absolute ratings for

three reasons.

Firstly, PR is more consistent across like-minded users [12, 19] as it is invariant

to many irrelevant factors, such as mood. Secondly, PR is a more natural and direct

input for Top-N recommendation, as both the input and the output are relative

preferences. Finally, and perhaps most importantly, PR can be obtained implicitly

rather than asking the users explicitly. For example, the PR over two Web pages

can be inferred by the stayed time, and consequently applies to the displayed items.

This property is important as not all users are willing to rate their preferences, where

collecting feedbacks implicitly delivers a more user-friendly RecSys. In addition, PR-

based RecSys provides an opportunity to utilize the vast amount of implicit data

that have already been collected over the years, such as activity logs. With these

potential benefits, we shall take a closer look at the PR, and investigate how they

can be utilized in RecSys.

We formally define the PR as follows. Let U = {u}n and I = {i}m denote the set

of n users and m items, respectively. The preference of a user u ∈ U between items i

and j is encoded as πuij, which indicates the strength of user u’s PR for the ordered
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item pair (i, j). A higher value of πuij indicates a stronger preference on the first item

over the second item.

Definition 5 (Preference Relation). The preference relation is defined as

πuij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2
3
, 1] if i � j (u prefers i over j)

[1
3
, 2
3
] if i � j (i and j are equally preferable to u)

[0, 1
3
) if i ≺ j (u prefers j over i)

(4.2.1)

where πuij ∈ [0, 1] and πuij = 1− πuji.

This definition is similar to [19], however, we allocate an interval for each pref-

erence category, i.e., preferred, equally preferred, and less preferred. Indeed, each

preference category can be further break down into more intervals.

Similar to [12], the PR can be converted into user-wise preferences over items.

Definition 6 (User-wise Preference). The user-wise preference is defined as

pui =

∑
j∈Iu [[πuij >

2
3
]]−∑

j∈Iu [[πuij <
1
3
]]

|Πui|
(4.2.2)

where [[·]] gives 1 for true and 0 for false, and Πui is the set of user u’s PR related to

item i.

The user-wise preference pui falls in the interval [−1, 1], where −1 and 1 indicate

that item i is the least or the most preferred item for user u, respectively. The user-

wise preference measures the relative position of an item for a particular user, which

is different from absolute ratings.

4.2.2 Problem Statement

Generally, the task of PR-based RecSys is to take PR as input and output Top-N

recommendations. Specifically, let πuij ∈ Π encode the PR of each user u ∈ U .
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Each πuij is defined over an ordered item pair (i, j), denoting i ≺ j, i � j, or

i � j as described in Eq. 4.2.1. The goal is to estimate the value of each unknown

πuij ∈ Πunknown, such that π̂uij approximates πuij. This can be considered as an

optimization task performs directly on the PR:

π̂uij = argmin
π̂uij∈[0,1]

(πuij − π̂uij)
2 (4.2.3)

However, it can be easier to estimate the π̂uij by the difference between the two

user-wise preferences pui and puj, i.e., π̂uij = φ(p̂ui− p̂uj), where φ(·) is a function that

bounds the value into [0, 1] and ensures φ(0) = 0.5. For example, the inverse-logit

function φ(x) = ex

1+ex
can be used when user-wise preferences involve large values.

Therefore, the objective of this paper is to solve the following optimization problem:

(p̂ui, p̂uj) = argmin
p̂ui,p̂uj

(πuij − φ(p̂ui − p̂uj))
2 (4.2.4)

which optimizes the user-wise preferences directly, and Top-N recommendations can

be obtained by simply sorting the estimated user-wise preferences.

For ease of reference, notations used throughout this chapter are summarized in

Table 4.1. The letters u, v, a, b represent users, and the letters i, j, k, l represent

items.

4.2.3 Related Work

User preferences can be modeled in three types: pointwise, pairwise, and listwise.

Though RecSys is not limited to the pointwise absolute ratings, the recommendation

task is usually considered as a rating prediction problem. Recently, a considerable

literature [12,17,19,24,36,45,64,74] has grown up around the theme of relative pref-

erences, especially the pairwise PR. Meanwhile, recommendation task is also shifting
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Table 4.1: Summary of Major Notations (Chapter 4)

Notations Mathematical Meanings

U the set of users

I the set of items

Π the set of preference relations

pui the user-wise preference of user u on item i

G an undirected graph encodes relations of user-wise preferences

V the set of vertices each represents a user-wise preference

E the set of edges each connects two vertices

fuv the correlation feature between users u and v

fij the correlation feature between items i and j

wuv the weight associated to the user-user correlation feature fuv

wij the weight associated to the item-item correlation feature fij

Q(pui | u, i) the ordinal distribution produced by PrefNMF

o the side information, e.g., user attributes and item content
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from rating prediction to item ranking [56, 74, 83], in which the ranking itself is also

relative preferences. Preference relation has been widely studied in the field of

The use of relative preferences has been widely studied in the field of Information

Retrieval [14,21,22,35,64] for learning to rank tasks. Recently, PR-based [12,19,45,

64] and listwise-based [74] RecSys have been proposed. Among them, the PR-based

approach is the most popular, which can be further categorized as memory-based

methods [12] that capture local structure and model-based methods [19, 45, 64] that

capture global structure. To the best of our knowledge, there is yet no PR-based

method that can capture both LS and GS.

Advances inMarkov Random Fields (MRF) and its extension Conditional Random

Fields (CRF) have made it possible to utilize both LS and GS by taking advantages

of MRF’s powerful representation capability. Nevertheless, exploiting the PR is not

an easy task for MRF and CRF [46, 79]. This observation leads to a natural exten-

sion of unifying the MRF models with the PR-based models, to complement their

strengths. We summarize the capabilities of the existing and our proposed PrefMRF

and PrefCRF models in Table 4.2.

4.3 Methodology

In this section, we propose the Preference Relation-based Markov Random Fields

(PrefMRF) to model the PR and capture both LS and GS. When side information is

taken into consideration, this model extends to Preference Relation-based Conditional

Random Fields (PrefCRF). In this work, we exploit LS in terms of the item-item

correlations as well as the user-user correlations. The rest of this section introduces
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Table 4.2: Capabilities of PR-based methods

Method Input Output LS GS Side Information

Pointwise Memory-based Ratings Ratings �

Pointwise Model-based Ratings Ratings �

Pointwise Hybrid Ratings Ratings � �

Pairwise Memory-based Preference Relations Item Rankings �

Pairwise Model-based Preference Relations Item Rankings �

PrefMRF Preference Relations Item Rankings � �

PrefCRF Preference Relations Item Rankings � � �

the concept of the Preference Relation-based Matrix Factorization(PrefNMF) [19]

that will be our underlying model, and then followed a detailed discussion of the

PrefMRF and PrefCRF on issues including feature design, parameter estimation,

and predictions.

4.3.1 Preference Relation-based Matrix Factorization

Matrix Factorization (MF) [41] is a popular approach to RecSys that has mainly been

applied to absolute ratings. Recently, the PrefNMF [19] model was proposed to adopt

PR input for MF models. Like MF models, the PrefNMF model discovers the latent

factor space shared between users and items, where the latent factors describe both

the taste of users and the characteristics of items. The attractiveness of an item to

a user is then measured by the inner product of their latent feature vectors.
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Point Estimation

The PrefNMF model described in [19] provides a point estimation to each preference,

i.e., a single value. Formally, each user u is associated with a latent feature vector

uu ∈ Rk and each item i is associated with a latent feature vector vi ∈ Rk, where

k is the dimension of the latent factor space. The attractiveness of items i and j to

the user u are u�
u vi and u�

u vj, respectively. When u�
u vi > u�

u vj the item i is said

to be more preferable to the user u than the item j, i.e., i � j. The strength of

this preference relation πuij can be estimated by u�
u (vi − vj), and the inverse-logit

function is applied to ensure π̂uij ∈ [0, 1]:

π̂uij =
eu

�
u (vi−vj)

1 + eu�
u (vi−vj)

(4.3.1)

The latent feature vectors uu and vi are learned by minimizing regularized squared

error with respect to the set of all known preference relations Π:

min
uu,vi∈Rk

∑
πuij∈Π∧(i<j)

(πuij − π̂uij)
2 + λ(‖uu‖2 + ‖vi‖2) (4.3.2)

where λ is the regularization coefficient. The optimization can be done with Stochastic

Gradient Descent for the favor of speed on sparse data, or with Alternating Least

Squares for the favor of parallelization on dense data.

Distribution Estimation

The original PrefNMF [19] computes the attractiveness of an item to a user by the

product of their latent feature vectors which results a scalar value, where the likeli-

hoods of other possible values remain unknown. However, in order to be combined

with MRF models, we wish to have the distributions over a set of possible values.
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Therefore the Random Utility Models [55] and the Ordinal Logistic Regression [54]

are applied to perform the conversion.

Random Utility Models [55] assume the existence of a latent utility xui = μui+ εui

that captures how much the user u is interested in the item i, where μui captures the

interest and εui is the random noise that follows the logistic distribution as in [42].

The latent utility xui is then generated from a logistic distribution centered at μui

with the scale parameter sui proportional to the standard deviation:

xui ∼ Logi(μui, sui) (4.3.3)

Recall that PrefNMF computes attractiveness of item to user by the product of

their latent feature vectors, thereby the internal score μui can be substituted with the

term u�
u vi:

xui = u�
u vi + εui (4.3.4)

where uu and vi are, respectively, the latent feature vectors of the user u and the

item i.

The Ordinal Logistic Regression [54] is then used to convert the user-wise prefer-

ences pui into ordinal values, which assumes that the preference pui is chosen based

on the interval to which the latent utility belongs:

pui = l if xui ∈ (θl−1, θl] for l < L and pui = L if xui > θL−1 (4.3.5)

where L is the number of ordinal levels and θl are the threshold values of interest.

The probability of receiving a preference l is therefore

Q(pui = l | u, i) =
∫ θl

θl−1

P (xui | θ) dθ = F (θl)− F (θl−1) (4.3.6)
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where F (θl) is the cumulative logistic distribution evaluated at θl with standard de-

viation sui:

F (xui ≤ l | θl) =
1

1 + exp(− θuil−μui

sui
)

(4.3.7)

The thresholds θl can be parameterized to depend on user or item. This paper

employs the user-specific thresholds parameterization described in [42]. Therefore a

set of thresholds {θul}Ll=1 is defined for each user u to replace the thresholds θuil in

Eq. 4.3.7, and is learned from data.

Given the learned ordinal distribution Q(pui | u, i), not only the preferences can be

predicted but also the confidence for each prediction. The ordinal distribution Q(pui |

u, i) captures the GS information in a probabilistic form, and will be incorporated

into MRF and CRF in Section 4.3.4. Note that the user preference is quantized into

ordinal values in this process.

4.3.2 Markov Random Fields

Markov Random Fields (MRF) [16,78] model a set of random variables having Markov

property with respect to an undirected graph G. The undirected graph G consists

a set of vertices V connected by a set of edges E without orientation, where two

vertices are neighborhood of each other when connected. Each vertex in V encodes

a random variable, and the Markov property implies that a variable is conditionally

independent of others given its neighborhoods.

In this work, we use MRF to model user-wise preference and their interactions

respect to a set of undirected graphs. Specifically for each user u, there is a graph

Gu with a set of vertices Vu and a set of edges Eu. Each vertex in Vu represents a

preference pui of user u on the item i. Note that the term preference is used instead
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of rating because in the new model the preference is not interpolated as absolute

ratings but user-wise ordering of items. Each edge in Eu captures a relation between

two preferences by the same user.

Two preferences are connected by an edge if they are given by the same user or

on the same item, corresponding to the item-item and user-user correlations, respec-

tively. Modeling these correlations is actually capturing the LS information in the

preferences. However, it is not easy to model two types of correlations at the same

time as it will result a large graph. Instead, we model the item-item and user-user

correlations separately, and merge their predictions. Fig. 4.1 shows an example of

four graphs for user u, user v, item i, and item j. Note that vertices of different

graphs are not connected directly, however, the weights are estimated across graphs

when the edges correspond to the same correlation. For example, the edge between

pui and puj and the edge between pvi and pvj are associated to the same item-item

correlation ψij between items i and j.

Formally, let Iu be the set of all items evaluated by the user u and Ui be the set

of all users rated the item i. Then denote pu = {pui | i ∈ Iu} be the joint set of all

preferences (the variables) expressed by user u, and pi = {pui | u ∈ Ui} be the joint

set of all preferences (the variables) rated on item i. Under this setting, the MRF

defines two distributions P (pu) and P (pi) over the graphs Gu and Gi, respectively:

P (pu) =
1

Zu

Ψu(pu) , P (pi) =
1

Zi

Ψi(pi) (4.3.8)

Ψu(pu) =
∏

(ui,uj)∈Eu

ψij(pui, puj) , Ψi(pi) =
∏

(ui,vi)∈Ei

ψuv(pui, pvi) (4.3.9)

where Zu and Zi are the normalization terms that ensure
∑

pu
P (pu) = 1 and

∑
pi
P (pi) = 1.

The term ψ(·) is a positive function known as potential.
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Figure 4.1: Example of MRF graphs. u, v, a, and b are users. i, j, l, and k are items.

The potentials ψij(pui, puj) and ψuv(pui, pvi) capture the correlation between items

i and j and correlation between users u and v, respectively:

ψij(pui, puj) = exp{wijfij(pui, puj)} (4.3.10)

ψuv(pui, pvi) = exp{wuvfuv(pui, pvi)} (4.3.11)

where fij(·) and fuv(·) are the feature functions to be designed shortly in Section 4.3.4,

and wij and wuv are the corresponding weights.

These correlation features capture the LS information, while the weights realize

the importance of each correlation feature. With the weights estimated from data,

the unknown preference pui can be predicted using item-item correlations:

p̂ui = argmax
pui∈[−1,1]

P (pui | pu) (4.3.12)
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or using user-user correlations:

p̂ui = argmax
pui∈[−1,1]

P (pui | pi) (4.3.13)

where the confidences of the predictions can be measured by P (pui | pu) and P (pui |

pi).

4.3.3 Conditional Random Fields

Despite of the user preferences, various side information including content [5, 6],

temporal dynamics [40], and social relations [50] are also important in making quality

recommendations. While there exist methods to incorporate side information, there

is yet no PR-based method that can achieve this.

One advantage of Markov Random Fields is its extensibility, thus side informa-

tion can be easily incorporated by extending the MRF to Conditional Random Fields

(CRF). In MRF, the item-item and user-user correlations are modeled in a set of

graphs, where each graph has a set of vertices representing the preferences. To incor-

porate side information, the MRF is extended to CRF by conditioning each vertex

on a set of global observations o, i.e., the side information in our context. Specif-

ically, each user u is associated with a set of attributes {ou} such as gender and

occupation. Similarly, each item i is associated with a set of attributes {oi} such as

genres of movie. This side information is encoded as the set of global observations

o = {{ou}, {oi}}. The graphs for item-item and user-user correlations conditioned

on global observations are illustrated in Fig. 4.2.

Using the same settings as MRF in Section 4.3.2, the CRF models the conditional
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Figure 4.2: Example of CRF graphs.  u ,  v ,  a , and  b  are users.  i  ,  j  ,  l  , and  k  are items.
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distributions P (pu | o) and P (pi | o) over the graphs Gu and Gi, respectively:

P (pu | o) =
1

Zu(o)
Ψu(pu,o) , P (pi | o) =

1

Zi(o)
Ψi(pi,o) (4.3.14)

Ψu(pu,o) =
∏

(ui)∈Vu

ψui(pui,o)
∏

(ui,uj)∈Eu

ψij(pui, puj) (4.3.15)

Ψi(pi,o) =
∏

(ui)∈Vi

ψui(pui,o)
∏

(ui,vi)∈Ei

ψuv(pui, pvi) (4.3.16)

where Zu(o) and Zi(o) are the normalization terms ensure
∑

pu
P (pu | o) = 1 and∑

pi
P (pi | o) = 1. The term ψ(·) is a positive function known as potential.

The potential ψui(·) captures the global observations associated to the user u and

the item i:

ψui(pui,o) = exp{w�
u fu(pui,oi) +w�

i fi(pui,ou))} (4.3.17)

The potentials ψij(·) and ψuv(·) capture the item-item and user-user correlations,

respectively:

ψij(pui, puj) = exp{wijfij(pui, puj)} (4.3.18)

ψuv(pui, pvi) = exp{wuvfuv(pui, pui)} (4.3.19)

where fu, fi, fij, and fuv are the features to be designed shortly in Section 4.3.4, and

wu, wi, wij, and wuv are the corresponding weights realize the importance of each

feature. With the weights estimated from data, the unknown preference pui can be

predicted using item-item correlations:

p̂ui = argmax
pui∈[−1,1]

P (pui | pu,o) (4.3.20)

or using user-user correlations:

p̂ui = argmax
pui∈[−1,1]

P (pui | pi,o) (4.3.21)

where P (pui | pu,o) and P (pui | pi,o) give the confidence of the predictions.
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4.3.4 PrefCRF: Unifying PrefNMF and CRF

The CRF model captures the LS information by modeling item-item and user-user

correlations under the framework of probabilistic graphical models. However, it em-

ploys the log-linear modeling as shown in Eq. 4.3.18 and Eq. 4.3.18, and therefore

does not enable a simple treatment of PR. The PrefNMF model, on the other hand,

can nicely model the PR but is weak in capturing the LS and side information. The

complementary between these two techniques calls for the unified PrefCRF model to

take all of the advantages.

Essentially, the proposed PrefCRF model promotes the agreement between the GS

discovered by the PrefNMF, the LS discovered by the MRF, and the side information

discovered by the CRF. More specifically, the PrefCRF model combines the item-item

and user-user correlations (Eq. 4.3.15 and Eq. 4.3.16) and the ordinal distributions

Q(pui | u, i) over user-wise preferences obtained from Eq. 4.3.6:

P (pu | o) ∝ Ψu(pu,o)
∏

pui∈pu

Q(pui | u, i) (4.3.22)

P (pi | o) ∝ Ψi(pi,o)
∏

pui∈pi

Q(pui | u, i) (4.3.23)

where Ψu is the potential function capturing the interaction among items evaluated

by user u, and Ψi is the potential function capturing the interaction among users

rated item i. Put all together, the joint distribution P (pu) for each user u can be

modeled as:

P (pu) ∝ exp

⎛⎝ ∑
pui,puj∈pu

wijfij(pui, puj) +
∑

(ui)∈Vu

ψui(pui,o)

⎞⎠ ∏
pui∈pu

Q(pui | u, i)

(4.3.24)



77

and the joint distribution P (pi) for each item i can be modeled as:

P (pi) ∝ exp

⎛⎝ ∑
pui,pvi∈pi

wuvfuv(pui, pvi) +
∑

(ui)∈Vi

ψui(pui,o)

⎞⎠ ∏
pui∈pi

Q(pui | u, i)

(4.3.25)

where there is a graph for each user or item but the weights are optimized by all users

or all items.

Feature Design

A feature is essentially a function f of n > 1 arguments that maps the n-dimensional

input into the unit interval f : Rn → [0, 1]. We design the following kinds of features:

Correlation Features The item-item correlation is captured by the feature:

fij(pui, puj) = g(|(pui − p̄i)− (puj − p̄j)|) (4.3.26)

and the user-user correlation is captured by the feature

fuv(pui, pvi) = g(|(pui − p̄u)− (pvi − p̄v)|) (4.3.27)

where g(α) normalizes feature values and α plays the role of deviation. The

terms p̄i, p̄j, p̄i, and p̄j are the item or user averages. The item-item correlation

feature captures the intuition that correlated items should be ranked similarly

by the same user after offsetting the goodness of each item. Similarly, the user-

user correlation feature captures the intuition that correlated users should rate

the same item similarly.
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Attribute Features Each user u and item i has a set of attributes ou and oi, respec-

tively. These attributes are mapped to preferences by the following features:

fi(pui) = oug(|(pui − p̄i)|)

fu(pui) = oig(|(pui − p̄u)|)
(4.3.28)

where fi models which users like the item i and fu models which classes of items

the user u likes.

Since one correlation feature exists for each possible pair of co-rated items, the

number of correlation features can be large which makes the estimation slow to con-

verge and less robust. Therefore we only keep the correlation features if strong item-

item correlation or user-user correlation exists. Specifically, the strong correlation

features fstrong are extracted based on the Pearson Correlation and a user-specified

minimum correlation threshold. Note that the correlation is calculated based on the

user-wise preferences generated from PR thus the rule of using PR as input is not

violated.

Parameter Estimation

In general, MRF -based models cannot be determined by standard maximum likeli-

hood approaches, instead, approximation techniques are often used in practice such

as Pseudo-likelihood [8] and Contrastive Divergence (CD) [30]. The Pseudo-likelihood

leads to exact computation of the loss function and its gradient with respect to pa-

rameters, and thus faster. The CD-based methods may, on the other hand, lead to

better estimation given enough time. As the experiments involve different settings

and large number of features, this study employs the Pseudo-likelihood technique to

perform efficient parameter estimation by maximizing the regularized sum of log local
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likelihoods:

logL(w) =
∑
pui∈Π

logP (pui | pu,o)−
1

2σ2
w�w (4.3.29)

where w are the weights and 1/2σ2 controls the regularization. To make the notation

uncluttered, we write pu instead of explicitly as pu\pui. In this section we describe

the parameter estimation of item-item correlations, where the user-user correlations

can be estimated in the same way by replacing items with users.

The local likelihood in Eq. 4.3.29 is defined as:

P (pui | pu,o) =
1

Zui(o)
Q(pui | u, i)ψui(pui,o)

∏
puj∈pu

ψij(pui, puj) (4.3.30)

where Zui(o) is the normalization term:

Zui =
lmax∑

pui=lmin

Q(pui | u, i)ψui(pui,o)
∏

puj∈pu

ψij(pui, puj) (4.3.31)

where lmin is the first and lmax is the last interval, i.e., 1 and 3 in our settings.

To optimize the parameters, we use the stochastic gradient ascent procedure that

updates the parameters by passing through the set of ratings of each user:

w← w + η∇logL(w) (4.3.32)

where η is the learning rate. More specifically, for each pui we update the attribute

weights wo = {wu,wi} and correlation weight wij for each neighbor puj ∈ pu using

the gradient of the log pseudo-likelihood

∂logL
∂wo

= fo(pui,o)−
lmax∑

pui=lmin

P (pui | pu,o)fo(pui,o)−
wi

σ2
(4.3.33)

∂logL
∂wij

= fij(pui, puj)−
∑lmax

pui=lmin
P (pui | pu,o)fij(pui, puj)− wij

σ2

(4.3.34)
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Item Recommendation

The ultimate goal of RecSys is often to rank the items and recommend the Top-N

items to the user. To obtain the item rankings, PrefMRF estimates distributions

over user-wise preferences which can be converted into point estimate: The PrefCRF

produces distributions over the user-wise preferences, which can be converted into

point estimate:

Most Likely Preference The preference can be determined by selecting the pref-

erence with the greatest mass in local likelihood:

p̂ui = argmax
pui

P (pui | pu,o) (4.3.35)

where the local likelihood is given by Eq. 4.3.30. The local likelihood serves as

a confidence measure.

Smoothed Expectation When the prediction is not strict to discrete values, the

expectation can be used instead:

p̂ui =
lmax∑

pui=lmin

puiP (pui | pu,o) (4.3.36)

where l refers to the intervals of user-wise preferences: from least to most preferred.

Note that l is limited to the simplest case of 3 intervals in our settings, but more

intervals are possible.

The predictions by item-item correlation and user-user correlations can be merged

by taking the mean value, and then items can be sorted and ranked accordingly.

Finally, Alg. 2 summarizes the learning and prediction procedures for the PrefCRF.
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Algorithm 2 PrefCRF Algorithm

Input: Explict or implicit preferences.

Step 1: Infer PR from preferences.

Step 2: Predict user-wise preferences p̂ui using Eq. 4.2.2.

Step 3: Predict distribution for each p̂ui using Eq. 4.3.6.

Step 4: Repeat

for each u ∈ U do

for each pui ∈ pu do

Compute normalization term Zui using Eq. 4.3.31

Compute local likelihood using Eq. 4.3.30

Compute attribute feature fi and fu using Eq. 4.3.28

Compute gradients for attribute features fo using Eq. 4.3.33

Update wo with the gradient using Eq. 4.3.32

for each puj ∈ pu, i �= j ∧ fij ∈ fstrong do

Get correlation feature fij and fuv using Eq. 4.3.26 and Eq. 4.3.27

Get gradient for correlation feature fij using Eq. 4.3.34

Update wij with the gradient using Eq. 4.3.32

end for

end for

end for

Until stopping criteria met

Predictions:

* Predict user-wise preferences using Eq. 4.3.36 or Eq. 4.3.35.

* Select Top-N items according to estimated preferences.
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Computational Complexity

We perform the computational complexity analysis on the PrefMRF and its under-

lying PrefNMF algorithms. Given n users and m items each with du and di prefer-

ences, respectively. Let us temporarily ignore the user-specified latent factors. Then

the complexity of both PrefNMF and PrefMRF is O(nd2u). However, in practice few

item co-rated by the same user are strong neighbors of each other due to the correla-

tion threshold defined in Section 4.3.4. As a result, the computation time of PrefMRF

tends to be O(nduc) where c is a factor of correlation threshold.

4.4 Experiment and Analysis

Datasets

Ideally, the experiments should be conducted on datasets that contain user preferences

in two forms: PR and absolute ratings. Unfortunately no such a dataset is publicly

available at the moment, therefore we choose to compile the rating-based datasets

into the form of PR. We use the same conversion method as in [19] by comparing the

ratings of each ordered pair of items co-rated by the same user. For example, 1 is

assigned to the PR πuij if pui > puj; 0 is assigned if pui < puj, and 0.5 is assigned if

pui = puj.

Experiments were conducted on two datasets: the MovieLens-1M 1 and the Each-

Movie 2 datasets. The MovieLens-1M dataset contains more than 1 million ratings

1http://grouplens.org/datasets/movielens
2http://grouplens.org/datasets/eachmovie
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by 6, 040 users on 3, 900 movies. The EachMovie dataset contains 2.8 million ratings

by 72, 916 users on 1, 628 movies. The minimum rating is 1 and we cap the maximum

at 5 for both datasets. The impact of side information is studied on the MovieLens-

1M dataset which provides gender, age, and occupation information about users and

genres of movies.

For a reliable and fair comparison, each dataset is split into train and test sets,

and the following settings are aligned to related work [83]. As the sparsity levels

differ between the MovieLens-1M and the EachMovie datasets, different number of

ratings are reserved for training and the rest for testing. Specifically, for each user in

the MovieLens-1M we randomly select N = 30, 40, 50, 60 ratings for training, and

put the rest for testing. Some users do not have enough ratings thus were excluded

from experiments. The EachMovie has less items but much more users comparing

to MovieLens-1M, therefore it is safe to remove some less active users and we set

N = 70, 80, 90, 100 to investigate the performance on dense dataset.

Evaluation Metrics

Traditional recommender systems aim to optimize RMSE or MAE which emphasizes

on absolute ratings. However, the ultimate goal of recommender systems is usually

to obtain the ranking of items [42], where good performance on RMSE or MAE

may not be translated into good ranking results [42]. Therefore, we employ two

evaluation metrics: Normalized Cumulative Discounted Gain@T (NDCG@T) [34]

which is popular in academia, and Mean Average Precision@T (MAP@T) [13] which
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is popular in contests 3. Among them, the NDCG@T metric is defined as

NDCG@T =
1

K(T )

T∑
t=1

2rt − 1

log2 (t+ 1)
(4.4.1)

where rt is the relevance judgment of the item at position t, and K(T ) is the normal-

ization constant. The MAP@T metric is defined as

MAP@T =
1

|Utest|
∑

u∈Utest

T∑
t=1

Pu(t)

min(mu, t)
(4.4.2)

where mu is the number relevant items to user u, and Pu(t) is user u’s precision at

position t. Both metrics are normalized to [0, 1], and a higher value indicates better

performance.

These metrics, together with other ranking-based metrics, require a set of relevant

items to be defined in the test set such that the predicted rankings can be evaluated

against. The relevant items can be defined in different ways. For example, for each

user we can consider only 5-star items in the testing set as relevant items, or those

items above each user’s average as relevant items. In this paper, we follow the same

selection criteria used in the related work [12,38] to consider items with the highest

ratings as relevant.

Parameter Setting

For a fair comparison, we fix the number of latent factors to 50 for all algorithms,

the same as in related work [15]. The number of neighbors for KNN algorithms is

set to 50. We vary the minimum correlation threshold to examine the performances

with different number of features. Different values of regularization coefficient are

also tested.

3KDD Cup 2012 and Facebook Recruiting Competition
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4.4.1 Results and Analysis

We first compare the performance of the proposed PrefMRF and PrefCRF models

with four related models: KNN, NMF, PrefKNN, and PrefNMF, where the PrefNMF

is the targeted model, and then investigate the impact of parameter settings.

Comparison on Top-N Recommendation

Comparison of these algorithms is conducted by measuring the NDCG and the MAP

metrics on Top-N recommendation tasks. Each experiment is repeated ten times with

different random seeds and we report the mean results with standard deviations on

MovieLens-1M dataset in Table 4.3 and EachMovie dataset in Table 4.4. Note that

only the MovieLens-1M dataset has side information which is used by the PrefCRF

model. The PrefMRF as well as other models are based on only preferences data.

We also report the NDCG and MAP values by varying the position T (i.e., how

many items to recommend) in Fig. 4.3 and Fig. 4.4 for MovieLens-1M dataset and in

Fig. 4.5 and Fig. 4.6 for MovieLens-1M dataset. The following observations can be

made based on the results.

Firstly, the KNN and the PrefKNN methods didn’t perform well on MovieLens-

1M comparing with Matrix Factorization based methods. One possible reason is

that predictions are made based only on the neighbors, and as a result too much

information has been ignored especially when the dataset is large. However, the

performance of KNN -based methods has improved on the EachMovie dataset as we

reserved more ratings for training, i.e., better neighbors can be found for prediction.

Secondly, PrefNMF outperforms NMF on MovieLens-1M dataset which is con-

sistent to the results reported in [19]. However, PreNMF does not perform well
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Table 4.3: Results over ten runs on MovieLens-1M dataset.

Given 30

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.3969± 0.0020 0.4081± 0.0029 0.2793± 0.0021 0.2744± 0.0025

NMF 0.5232± 0.0057 0.5195± 0.0040 0.3866± 0.0055 0.3549± 0.0037

PrefKNN 0.3910± 0.0044 0.4048± 0.0038 0.2745± 0.0043 0.2720± 0.0037

PrefNMF 0.5729± 0.0049 0.5680± 0.0041 0.4387± 0.0046 0.3992± 0.0033

PrefMRF 0.6020± 0.0050 0.5934± 0.0039 0.4721± 0.0050 0.4244± 0.0036

PrefCRF 0.6316± 0.0076 0.5966± 0.0028 0.6254± 0.0073 0.4245± 0.0028

Given 40

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.4108± 0.0040 0.4252± 0.0036 0.2936± 0.0036 0.2877± 0.0034

NMF 0.5323± 0.0050 0.5291± 0.0034 0.3976± 0.0045 0.3631± 0.0035

PrefKNN 0.4122± 0.0024 0.4283± 0.0024 0.2944± 0.0023 0.2904± 0.0023

PrefNMF 0.5773± 0.0037 0.5732± 0.0028 0.4437± 0.0041 0.4019± 0.0032

PrefMRF 0.6215± 0.0029 0.6140± 0.0023 0.4844± 0.0025 0.4420± 0.0020

PrefCRF 0.6435± 0.0064 0.6092± 0.0023 0.6420± 0.0062 0.4392± 0.0021

Given 50

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.4273± 0.0040 0.4424± 0.0027 0.3078± 0.0038 0.3015± 0.0026

NMF 0.5360± 0.0041 0.5326± 0.0036 0.4010± 0.0040 0.3669± 0.0025

PrefKNN 0.4326± 0.0027 0.4483± 0.0030 0.3125± 0.0024 0.3070± 0.0022

PrefNMF 0.5761± 0.0067 0.5745± 0.0035 0.4424± 0.0064 0.4019± 0.0033

PrefMRF 0.6248± 0.0053 0.6172± 0.0032 0.4896± 0.0053 0.4460± 0.0027

PrefCRF 0.6648± 0.0055 0.6158± 0.0018 0.6580± 0.0059 0.4471± 0.0024

Given 60

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.4480± 0.0044 0.4622± 0.0035 0.3266± 0.0036 0.3163± 0.0027

NMF 0.5462± 0.0068 0.5409± 0.0063 0.4109± 0.0069 0.3734± 0.0055

PrefKNN 0.4526± 0.0062 0.4689± 0.0039 0.3301± 0.0051 0.3223± 0.0033

PrefNMF 0.5756± 0.0062 0.5733± 0.0048 0.4409± 0.0059 0.4007± 0.0037

PrefMRF 0.6422± 0.0037 0.6301± 0.0037 0.5112± 0.0035 0.4600± 0.0026

PrefCRF 0.6772± 0.0074 0.6242± 0.0018 0.6715± 0.0072 0.4536± 0.0016
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Table 4.4: Results over ten runs on EachMovie dataset without side information.

Given 70

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.7088± 0.0020 0.7115± 0.0015 0.6012± 0.0027 0.5767± 0.0017

NMF 0.7581± 0.0022 0.7577± 0.0017 0.6524± 0.0026 0.6225± 0.0020

PrefKNN 0.7260± 0.0022 0.7307± 0.0018 0.6197± 0.0020 0.5990± 0.0016

PrefNMF 0.7408± 0.0033 0.7348± 0.0039 0.6330± 0.0035 0.5800± 0.0038

PrefMRF 0.8317± 0.0032 0.8245± 0.0029 0.7512± 0.0039 0.6921± 0.0034

Given 80

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.7146± 0.0018 0.7168± 0.0017 0.6070± 0.0021 0.5825± 0.0019

NMF 0.7636± 0.0021 0.7638± 0.0018 0.6583± 0.0025 0.6286± 0.0018

PrefKNN 0.7337± 0.0028 0.7377± 0.0018 0.6271± 0.0029 0.6057± 0.0021

PrefNMF 0.7422± 0.0036 0.7319± 0.0040 0.6329± 0.0039 0.5774± 0.0033

PrefMRF 0.8364± 0.0036 0.8232± 0.0030 0.7553± 0.0038 0.6991± 0.0032

Given 90

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.7191± 0.0022 0.7279± 0.0028 0.6120± 0.0021 0.5933± 0.0013

NMF 0.7712± 0.0039 0.7692± 0.0033 0.6663± 0.0043 0.6431± 0.0034

PrefKNN 0.7418± 0.0028 0.7421± 0.0015 0.6357± 0.0030 0.6192± 0.0020

PrefNMF 0.7456± 0.0031 0.7358± 0.0038 0.6357± 0.0040 0.5819± 0.0036

PrefMRF 0.8394± 0.0035 0.8249± 0.0032 0.7474± 0.0037 0.7046± 0.0032

Given 100

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.7279± 0.0028 0.7277± 0.0015 0.6238± 0.0032 0.5973± 0.0021

NMF 0.7741± 0.0030 0.7717± 0.0028 0.6719± 0.0034 0.6411± 0.0030

PrefKNN 0.7505± 0.0019 0.7511± 0.0012 0.6478± 0.0020 0.6231± 0.0014

PrefNMF 0.7391± 0.0033 0.7298± 0.0034 0.6318± 0.0039 0.5761± 0.0039

PrefMRF 0.8418± 0.0031 0.8277± 0.0030 0.7546± 0.0038 0.7063± 0.0036
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on EachMovie where its performance is only slightly better than user-based KNN.

The reason behind could be the EachMovie is much denser than the MovieLens-1M

dataset, which makes the number of PR huge and difficult to tune optimal parame-

ters. Besides, we observe that PrefNMF in general only achieves a slight improvement

with more training data and even drops a bit with Given 60. Similarly for the Each-

Movie dataset. With these observations, it appears that for a given number of users,

the PrefNMF can be trained reasonably well with fewer data.

Finally, the proposed PrefMRF and PrefCRF have made further improvement

on both datasets upon the PrefNMF through capturing both LS and GS, as well as

exploiting side information. From Fig. 4.3 and Fig. 4.4 we can see that the algorithms

stabilized around position 10 and PrefMRF and PrefCRF consistently deliver better

performance than others. It should be noted that the performance of PrefMRF and

PrefCRF rely on their underlying model that captures the GS. In other words, the

performance may vary when the PrefNMF is replaced with other alternative methods

such as [45].

To confirm the improvements, a paired t-test (two-tailed) with a significance level

of 95% has been applied to the best PrefMRF and the second best PrefNMF. Re-

sults shown in Table 4.5 confirm that the performance of models with and without

capturing the LS is statistically significant.

Performance on Various Data Sparsity Levels

To thoroughly examine the performance of these algorithms, we compare their per-

formances under different settings of training set sizes: from Given 30 to Given 60

on MovieLens-1M dataset, and from Given 70 to Given 100 on EachMovie dataset.
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(a) NDCG@T (Given 30) (b) MAP@T (Given 30)

(c) NDCG@T (Given 40) (d) MAP@T (Given 40)

Figure 4.3: Performance of different position T on MovieLens-1M dataset (Sparse).
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(a) NDCG@T (Given 50) (b) MAP@T (Given 50)

(c) NDCG@T (Given 60) (d) MAP@T (Given 60)

Figure 4.4: Performance of different position T on MovieLens-1M dataset (Dense).
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(a) NDCG@T (Given 70) (b) MAP@T (Given 70)

(c) NDCG@T (Given 80) (d) MAP@T (Given 80)

Figure 4.5: Performance of different position T on EachMovie dataset (Sparse).
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(a) NDCG@T (Given 90) (b) MAP@T (Given 90)

(c) NDCG@T (Given 100) (d) MAP@T (Given 100)

Figure 4.6: Performance of different position T on EachMovie dataset (Dense).
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Table 4.5: Paired t-test for PrefMRF and PrefNMF.

Settings t-test statistics

Dataset Sparsity Metric df t p-value

MovieLens Given 60 NDCG@10 9 16.6218 < 0.00001

MovieLens Given 60 MAP@10 9 23.5517 < 0.00001

EachMovie Given 100 NDCG@10 9 72.4189 < 0.00001

EachMovie Given 100 MAP@10 9 72.1346 < 0.00001

Results are plotted in Fig. 4.7. It can be observed that in general more training data

result in better performance. However, PrefNMF does not gain much benefit from

more data and even perform slightly worse in Given 60. The PrefMRF on the other

hand consistently gains performance from more data as the LS information can be

better captured.

Impact of Minimum Correlation Threshold

As described in Section 4.3.4, a minimum correlation threshold is required to control

the number of features in the PrefMRF model. By default, each pair of co-rated

items has a feature which results in a large number of features. However, many of

these features are useless if the item-item correlation are weak. To make the model

more robust and with faster convergence, a minimum correlation threshold is applied

to remove weak features. Specifically, the feature is removed if two items has a

correlation measured by Pearson correlation less than the threshold. Results are
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(a) Mean NDCG by training set sizes on

MovieLens-1M dataset.

(b) Mean MAP by training set sizes on

MovieLens-1M dataset.

(c) Mean NDCG by training set sizes on Each-

Movie dataset.

(d) Mean MAP by training set sizes on Each-

Movie dataset.

Figure 4.7: Impact of Sparsity Levels.
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plotted in Fig. 4.8(a).

It can be observed that a smaller correlation threshold delivers better performance,

however, the number of features will also increase. To balance the performance and

computation time, it is wise to select a moderate level of threshold depending on the

dataset.

(a) NDCG@10 by Threshold (b) NDCG@10 by Regularization

Figure 4.8: Impact of Parameters (MovieLens-1M)

Impact of Regularization Coefficient

As the number of features in PrefMRF can be large, the model might be prone to

over-fitting. Therefore, we investigate the impact of regularization settings as plotted

in Fig. 4.8(b).

We observe that the performance is better when a small regularization penalty

applies. In other words, the PrefMRF can generalize reasonable well without too

much regularization. This can be explained as the weights of item-item correlations
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are not user-specific but shared by all users, thus they cannot over-fit every user

perfectly.

4.5 Summary

In this chapter we presented the PrefMRF model, which takes advantages of

both the representational power of the MRF and the ease of modeling preference

relations by the PrefNMF. To the best of our knowledge, there was no PR-based

method that can capture both LS and GS, until the PrefMRF model is proposed

in this work. In addition, side information can be easily incorporated by extending

the PrefMRF model to the PrefCRF model. Experiment results on public datasets

demonstrate that both types of interactions have been properly captured by PrefMRF,

and significantly improved Top-N recommendation performance has been achieved.

In addition, the PrefMRF model provides a generic interface for unifying various

PR-based methods other than the PrefNMF used in this paper. In other words,

any PR-based method that captures the GS should be able to take advantages from

PrefMRF to capture LS as well.

For future work, we would like to work on several directions. First, the compu-

tation efficiency of PR-based matrix factorization needs to be improved given that

the number of preference relations is usually much larger than absolute ratings. This

is feasible as each user has his/her own set of preference relations, thus the learning

process can be parallelized. Secondly, it would be interesting to see how PR-based

methods perform on real implicit preferences dataset, such as page views and mouse

clicks.



Chapter 5

Learning from Heterogeneous Data
Sources for Improved Top-N
Recommendation

5.1 Introduction

RecSys aim to recommend users with some of their potentially interesting items, which

can be virtually anything ranging from movies to tourism attractions. To identify the

appropriate items, RecSys attempts to exploit user preferences [41] and various side

information [6]. However, the cold-start problem [72] raises when little information is

known for cold users or items, e.g., a newly registered user. To alleviate the cold-start

problem, additional information, which is usually heterogeneous, must be acquired.

The last decade has seen a growing trend towards creating and managing more

profiles in Online Social Networks (OSN), such as Facebook, LinkedIn, and Netflix

etc. In light of this trend, it becomes possible to alleviate the cold-start problem

by learning user preferences from heterogeneous data sources, e.g., a cold user of

Netflix may have been used Facebook for a while. Nevertheless, user preferences from

heterogeneous sources are heterogeneous whereas existing recommendation techniques

97
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require the user preferences to be homogeneous. For example, user preferences are

expressed as 5-star ratings for Netflix 1, 6-star ratings for EachMovie 2, and binary

ratings for Facebook. Sometimes the user preferences may not even be expressed

as ratings but as implicit feedbacks such as page views and clicks. Moreover, user

preferences collected from heterogeneous sources may have different biases, as the

user preferences not only reflect the quality of the items but also the quality of

service providers. When the user preferences are heterogeneous and with biases,

existing recommendation techniques cannot be directly applied. To the best of our

knowledge, no previous work has considered the heterogeneous sources problem, in

which the user preferences are heterogeneous with biases.

In this work, we identify that the preference relations (PR), which measures the

relative ordering between items, could be a key to the heterogeneous sources problem.

With the assistance of PR, user preferences from heterogeneous sources can be fused

seamlessly. For example, user preferences expressed as 5-star ratings, binary ratings,

and page views can not be directly fused in general. However, all those user preferences

can be deduced into the PR format by performing pairwise comparison on items.

Once the user preferences are represented in PR, a direct merge can be performed.

In fact, converting user preferences into PR not only provides a method to merge

heterogeneous data but also reduces the biases that come with heterogeneity, i.e.,

the relative ordering of items is resistant to biases. In addition to collecting more

user preferences, another method to alleviate the cold-start problem is to utilize the

heterogeneous side information, such as attributes like age or occupation of users and

items.

1http://www.netflixprize.com
2http://grouplens.org/datasets/eachmovie
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This chapter aims to propose the Preference Relation-based Conditional Random

Fields (PrefCRF) model to learn from heterogeneous data sources as well as the het-

erogeneous side information The remaining part of this paper is organized as follows.

Section 5.2 introduces the basic concepts of learning from heterogeneous sources and

preference relations, followed by a review of related work. Section 5.3 is devoted to

the proposed PrefCRF model. Benchmark results on Top-N recommendation are

presented in Section 5.4. Finally, Section 5.5 concludes this chapter by summarizing

the main contributions and envisaging future works.

5.2 Preliminaries

This section briefly summarizes necessary background related to the heterogeneous

sources problem and the preference relations that form the basis of our solution.

5.2.1 Heterogeneous Sources

User preferences are usually assumed to come from a single homogeneous source. This

assumption is becoming invalid given the rapid development of OSN, in which users

maintain multiple profiles and the form of preferences diverges. We define two sources

as heterogeneous if their preferences are 1) in different forms, e.g., ratings and clicks ;

2) in different scales, e.g., 5-star scale and 6-star scale;

3) or biased differently due to factors irrelevant to the items’ quality, e.g., quality

of the service providers. Based on this definition, not only the physically separated
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sources are heterogeneous but a source changed significantly is also considered het-

erogeneous to itself.

In general, user preferences from heterogeneous sources cannot be merged directly

as they may be in different forms. Even if their forms are the same, the scales could

be different, where a force casting may change the meaning of preferences. In case

that the scales are the same, biases are still introduced by the sources which make

the recommendations inaccurate.

5.2.2 Preference Relation

Preference relation (PR) encodes user preferences in the form of relative ordering

between items, which is a useful alternative representation to absolute ratings as

suggested in recent works [12, 19]. In fact, existing preferences such as ratings or

other types of preferences can be easily represented as PR and then merged into a

single dataset as shown in Fig. 5.1. . This property is particularly useful for the

cold-start problem but has been overlooked in literature.

We formally define the PR as follows. Let U = {u}n and I = {i}m denote the set

of n users and m items, respectively. The PR of a user u ∈ U between items i and j

is encoded as πuij, which indicates the strength of user u’s preference relation for the

ordered item pair (i, j). A higher value of πuij indicates a stronger preference to the

first item over the second item.
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Definition 7 (Preference Relation). The preference relation is defined as

πuij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2
3
, 1] if i � j (u prefers i over j)

[1
3
, 2
3
] if i � j (i and j are equally preferable)

[0, 1
3
) if i ≺ j (u prefers j over i)

(5.2.1)

where πuij ∈ [0, 1] and πuij = 1− πuji.

An interval is allocated for each preference category, i.e., preferred, equally pre-

ferred, and less preferred. Indeed, each preference category can be further break

down into more intervals, though here in this paper we consider the minimal case of

3 intervals.

Similar to [12], the PR can be converted into user-wise preferences over items

which encode the ranking of items evaluated by a particular user.

Definition 8 (User-wise Preference). The user-wise preference is defined as

pui =

∑
j∈Iu\i[[πuij >

2
3
]]−∑

j∈Iu\i[[πuij <
1
3
]]

|Πui|
(5.2.2)

where Iu is the set of items related to user u, [[·]] gives 1 for true and 0 for false, and

Πui is the set of user u’s PR related to item i.

The user-wise preference pui falls in the interval [−1, 1], where 1 and −1 indicate

that item i is the most and the least preferred item for u, respectively.

5.2.3 Related Work

Preference Relation (PR) has been widely studied in the field of Information Re-

trieval [33]. Nevertheless, PR-based RecSys have only emerged recently [12,19,45,64].
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User preferences are usually categorized into three classes: pointwise, pairwise, and

listwise. The pointwise preferences correspond to the absolute ratings widely used in

RecSys, the pairwise preferences correspond to the PR presented in this work, and

the listwise preferences is indeed the output of Top-N RecSys.

Though RecSys is not limited to absolute ratings, the recommendation task is

usually considered as a rating prediction problem. Recently, a considerable literature

[12,19,45,64,74] has grown up around the theme of relative preferences. Meanwhile,

recommendation task is also shifting from rating prediction to item ranking [74, 83],

in which the ranking itself is also relative preferences. Recently, pairwise preference

relation-based [12, 19, 45, 64] and listwise-based [74] RecSys have been proposed.

Among them, the pairwise approach is the most popular, which can be further cat-

egorized as memory-based methods [12] and model-based methods [19, 45, 64]. The

pairwise PR-based RecSys has the potential to unifying heterogeneous user prefer-

ences, and this property, to the best of our knowledge, is first recognized in the

present paper. Though the PR-based RecSys has the potential to alleviate the cold-

start problem, it does not utilize the side information.

Recent advances in PR-based RecSys [12, 19, 45, 64] and Conditional Random

Fields (CRF) [78] have made it possible to unify the heterogeneous preferences into

the unified PR format as well as modeling side information. This observation leads

to a natural extension presented in this work to unify the CRF -based method with

the PR-based methods, to complement their strengths.

There exist two similar research topics that should be distinguished from our work.

The first one is the cross-domain RecSys [60] which considers heterogeneous items,

i.e., mixing movies and books, while our work considers the heterogeneous preferences
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associated to the same type of items. The other topic is the mixture of experts [75], in

which the non-personalized expert opinions from different sources are weighted into

the personalized recommendations, while our work considers heterogeneous prefer-

ences of the same user distributed across various sources.

5.3 Preference Relation-based Conditional Random

Fields

In this section, we propose the Preference Relation-based Conditional Random

Fields (PrefCRF) to model both the heterogeneous preferences and the side informa-

tion. The rest of this section defines the PR-based RecSys problem, and introduces

the concept of the PrefNMF [19] that forms our underlying model, followed by a

detailed description of the PrefCRF and discussion on issues such as feature design,

parameter estimation, and predictions.

5.3.1 Problem Statement

Generally, the task of PR-based RecSys is to take PR as input and output Top-N

recommendations. Specifically, let πuij ∈ Π encode the PR of each user u ∈ U , and

each πuij is defined over an ordered item pair (i, j), denoting i ≺ j, i � j, or i � j.

The main task towards Top-N recommendations is to estimate the value of each

unknown πuij ∈ Πunknown, such that π̂uij approximates πuij. This can be considered
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as an optimization task that performs directly on the PR

π̂uij = argmin
π̂uij∈[0,1]

(πuij − π̂uij)
2 (5.3.1)

However, it can be easier to estimate the π̂uij by the difference between two user-

wise preferences pui and puj, i.e., π̂uij = φ(p̂ui − p̂uj), where φ(·) is a function that

bounds the value into [0, 1] and ensures φ(0) = 0.5. For example, the inverse-logit

function φ(x) = ex

1+ex
can be used when user-wise preferences involve large values.

The objective of this paper is then to solve the following optimization problem

(p̂ui, p̂uj) = argmin
p̂ui,p̂uj

(πuij − φ(p̂ui − p̂uj))
2 (5.3.2)

which optimizes the user-wise preferences directly, and Top-N recommendations can

be obtained by simply sorting the estimated user-wise preferences.

5.3.2 Preference Relation-based Matrix Factorization

Matrix Factorization (MF) [41] is a popular RecSys approach that has mainly been

applied to absolute ratings. Recently, the PrefNMF [19] model was proposed to

accommodate PR input for MF models. Like traditional MF models, the PrefNMF

model discovers the latent factor space shared between users and items, where the

latent factors describe both the taste of users and the characteristics of items. The

attractiveness of an item to a user is then measured by the inner product of their

latent feature vectors.

Formally, each user u is associated with a latent feature vector uu ∈ Rk, and each

item i is associated with a latent feature vector vi ∈ Rk, where k is the dimension

of the latent factor space. The attractiveness of items i and j to user u are u�
u vi

and u�
u vj, respectively. When u�

u vi > u�
u vj, the item i is said to be more preferable
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to the user u than item j, i.e., i � j. The strength of this preference relation πuij

can be estimated by u�
u (vi − vj), and the inverse-logit function is applied to ensure

π̂uij ∈ [0, 1]:

π̂uij =
eu

�
u (vi−vj)

1 + eu�
u (vi−vj)

(5.3.3)

The latent feature vectors uu and vi are learned by minimizing regularized squared

error with respect to the set of all known preference relations Π:

min
uu,vi∈Rk

∑
πuij∈Π∧(i<j)

(πuij − π̂uij)
2 + λ(‖uu‖2 + ‖vi‖2) (5.3.4)

where λ is the regularization coefficient. The optimization can be done with Stochastic

Gradient Descent for the favor of speed on sparse data, or with Alternating Least

Squares in favor of parallelization on dense data.

5.3.3 Conditional Random Fields

Conditional Random Fields (CRF) [78] model a set of random variables having

Markov property with respect to an undirected graph G, and each random variable

can be conditioned on a set of global observations o. The undirected graph G consists

of a set of vertexes V connected by a set of edges E without orientation, where two

vertexes are neighboring to each other when connected. Each vertex in V encodes

a random variable, and the Markov property implies that a variable is conditionally

independent of others given its neighbors.

In this work, we use CRF to model interactions among user-wise preferences

conditioned on side information with respect to a set of undirected graphs. Specifically

for each user u, there is a graph Gu with a set of vertexes Vu and a set of edges Eu.

Each vertex in Vu represents a user-wise preference pui of user u on the item i. Each



107

edge in Eu captures a relation between two preferences by the same user.

Specifically, two preferences are connected by an edge if they are given by the

same user. Fig. 5.2 shows an example of two graphs for users u and v. Note that

vertexes of different graphs are not directly connected, however, the edges between

the same pair of items are associated to the same item-item correlation. For example,

the edge between pui and puj and the edge between pvi and pvj are associated with

the same item-item correlation ψij between items i and j.

Each vertex is conditioned on a set of global observations o, which is the side

information in our context. Specifically, each user u is associated with a set of

L attributes {ou}L such as age, gender and occupation. Similarly, each item i is

associated with a set of M attributes {oi}M such as genres for movie. Those side

information is encoded as the set of global observations o = {{ou}L, {oi}M}.

Formally, let pu = {pui | i ∈ Iu} be the joint set of preferences expressed by user

u, then we are interested in modeling the conditional distribution P (pu | o) over the

graph Gu.

P (pu | o) =
1

Zu

Ψu(pu,o) (5.3.5)

Ψu(pu,o) =
∏

(ui)∈Vu

ψui(pui,o)
∏

(ui,uj)∈Eu

ψij(pui, puj) (5.3.6)

where Zu(o) is the normalization term that ensures
∑

pu
P (pu | o) = 1, and ψ(·)

is a positive function known as potential. The potential ψui(·) captures the global

observations associated to the user u and the item i, and the potential ψij(·) captures

the correlations between two preferences pui and puj

ψui(pui,o) = exp{w�
u fu(pui,oi) +w�

i fi(pui,ou))} (5.3.7)
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(a) Graph of user u
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item attributes
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(b) Graph of user v

Figure 5.2: Undirected graphs for users u and v
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ψij(pui, puj) = exp{wijfij(pui, puj)} (5.3.8)

where fu, fi, and fij are the features to be designed shortly in Section 5.3.5, and wu,

wi, and wij are the corresponding weights realizing the importance of each feature.

With the weights estimated from data, the unknown preference pui can be predicted

as

p̂ui = argmax
pui∈[−1,1]

P (pui | pu,o) (5.3.9)

where P (pui | pu,o) measures the prediction confidence.

5.3.4 Ordinal Logistic Regression

The original PrefNMF [19] computes the attractiveness of an item to a user as the

product of their latent feature vectors which results a scalar value. Instead of point

estimation, we wish to have the distributions over ordinal values. Therefore the

Random Utility Models [55] and the Ordinal Logistic Regression [54] are utilized for

the conversion.

Random Utility Models [55] assume the existence of a latent utility xui = μui+ εui

that captures how much the user u is interested in the item i, where μui captures

the interest and εui is the random noise, and here assumed to follow the logistic

distribution [42].

The Ordinal Logistic Regression [54] is then used to convert the user-wise prefer-

ences pui into ordinal values, which assumes that the preference pui is chosen based

on the interval to which the latent utility belongs:

pui = l if xui ∈ (θl−1, θl] and pui = L if xui > θL−1 (5.3.10)

where L is the number of ordinal levels and θl are the threshold values of interest.
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The probability of receiving a preference l is therefore:

Q(pui = l | u, i) =
∫ θl

θl−1

P (xui | θ) dθ = F (θl)− F (θl−1) (5.3.11)

where F (θl) is the cumulative logistic distribution evaluated at θl with standard de-

viation sui.

F (xui ≤ l | θl) =
1

1 + exp(− θuil−μui

sui
)

(5.3.12)

The thresholds θl can be user-specific or item-specific, and this work uses the user-

specific parametrization same as in [42]. Then the thresholds θuil in Eq. 5.3.12 are

replaced with a set of user-specific thresholds {θul}Ll=1 for each user u. These thresh-

olds are then estimated from data for each user.

5.3.5 PrefCRF: Unifying PrefNMF and CRF

The CRF provides a principled way of capturing both the side information and in-

teractions among preferences. However, it employs the log-linear modeling as shown

in Eq. 5.3.6, and therefore does not enable a simple treatment of PR. The PrefNMF,

on the other hand, accepts PR but is weak in utilizing side information. The com-

plementary between these two techniques calls for an unified PrefCRF model to take

all the advantages.

Unification

Essentially, the proposed PrefCRF model captures the side information and promotes

the agreement between the PrefNMF and the CRF. Specifically, the PrefCRF model

combines the item-item correlations (Eq. 5.3.8) and the ordinal distributions Q(pui |
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u, i) over user-wise preferences obtained from Eq. 5.3.11.

P (pu | o) ∝ Ψu(pu,o)
∏

pui∈pu

Q(pui | u, i) (5.3.13)

where Ψu is the potential function capturing the side information and interaction

among preferences related to user u. Though there is a separated graph for each user,

the weights are optimized across all graphs.

Feature Design

A feature is essentially a function f of n > 1 arguments that maps the n-dimensional

input into the unit interval f : Rn → [0, 1]. We design the following kinds of features:

Correlation Features The item-item correlation is captured by the feature

fij(pui, puj) = g(|(pui − p̄i)− (puj − p̄j)|) (5.3.14)

where g(α) normalizes feature values and α plays the role of deviation, and p̄i

and p̄j are the average user-wise preference for items i and j, respectively. This

correlation feature captures the intuition that correlated items should be ranked

similarly by the same user after offsetting the goodness of each item.

Attribute Features Each user u and item i has a set of attributes ou and oi, re-

spectively. These attributes are mapped to preferences by the following features

fi(pui) = oug(|(pui − p̄i)|)

fu(pui) = oig(|(pui − p̄u)|)
(5.3.15)

where fi models which users like the item i and fu models which classes of items

the user u likes.
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Since one correlation feature exists for each pair of co-rated items, the number

of correlation features can be large, and makes the estimation slow to converge and

less robust. Therefore, we only keep strong correlation features fstrong extracted based

on the Pearson correlation between items using a user-specified minimum correlation

threshold. The correlations are computed using user-wise preferences generated from

PR.

Parameter Estimation

In general, CRF models cannot be determined by standard maximum likelihood esti-

mations, instead, approximation techniques are used in practice. This study employs

the pseudo-likelihood [8] to estimate parameters by maximizing the regularized sum

of log local likelihoods:

logL(w) =
∑
pui∈Π

logP (pui | pu,o)−
1

2σ2
w�w (5.3.16)

where w are the weights and 1/2σ2 controls the regularization. To make the notation

uncluttered, we write pu instead of explicitly as pu\pui.

The local likelihood in Eq. 5.3.16 is defined as:

P (pui|pu,o) =
1

Zui

Q(pui|u, i)ψui(pui,o)
∏

puj∈pu

ψij(pui, puj) (5.3.17)

where Zui(o) is the normalization term:

Zui =
lmax∑

pui=lmin

Q(pui | u, i)ψui(pui,o)
∏

puj∈pu

ψij(pui, puj) (5.3.18)

where lmin is the first and lmax is the last interval, i.e., 1 and 3 in our settings.
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To optimize the parameters, we use the stochastic gradient ascent procedure that

updates the parameters by passing through the set of ratings of each user:

w← w + η∇logL(w) (5.3.19)

where η is the learning rate. More specifically, for each pui we update the attribute

weights wo = {wu,wi} and correlation weight wij for each neighbor puj ∈ pu using

the gradient of the log pseudo-likelihood

∂logL
∂wo

= fo(pui,o)−
lmax∑

pui=lmin

P (pui | pu,o)fo(pui,o)−
wi

σ2
(5.3.20)

∂logL
∂wij

= fij(pui, puj)−
∑lmax

pui=lmin
P (pui | pu,o)fij(pui, puj)− wij

σ2

(5.3.21)

Item Recommendation

The ultimate goal of RecSys is often to rank the items and recommend the Top-N

items to the user. As the input of PrefCRF is the preference relations, the final

output will be item rankings instead of ratings.

The PrefCRF produces distributions over the user-wise preferences, which can be

converted into point estimates by computing the expectation

p̂ui =
lmax∑

pui=lmin

puiP (pui | pu,o) (5.3.22)

where l refers to the intervals of user-wise preferences: from the least to the most

preferred.

Given the predicted user-wise preferences, the items can be sorted and ranked

accordingly. Alg. 3 summarizes the procedures of PrefCRF.
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Algorithm 3 PrefCRF Algorithm

Input: Heterogeneous preferences from sources.

Step 1: Infer and merge PR.

Step 2: Predict each user-wise preferences p̂ui using Eq. 5.3.3 and Eq. 5.2.2.

Step 3: Predict distributions of p̂ui with Eq. 5.3.11.

Step 4: Repeat

for each u ∈ U do

for each pui ∈ pu do

Get local likelihood using Eq. 5.3.17

Get attribute feature fv using Eq. 5.3.15

Get attribute feature gradients using Eq. 5.3.20

Update wo with gradients using Eq. 5.3.19

for each puj ∈ pu, i �= j ∧ fij ∈ fstrong do

Get correlation feature fij using Eq. 5.3.14

Get corr. feature gradient using Eq. 5.3.21

Update wij with gradient using Eq. 5.3.19

end for

end for

end for

Until stopping criteria met

Predictions:

* Predict user-wise preferences using Eq. 5.3.22.

* Sort and select the Top-N items.
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Computational Complexity

We perform the computational complexity analysis on the PrefCRF and its underly-

ing PrefNMF algorithms. Given n users and m items each with du and di preferences,

respectively. Let us temporarily ignore the user-specified latent factors. Then the

complexity of both PrefNMF and PrefCRF is O(nd2u). However, in practice few item

co-rated by the same user are strong neighbors of each other due to the correlation

threshold defined in Section 5.3.5. As a result, the computation time of PrefCRF

tends to be O(nduc) where c is a factor of correlation threshold.

5.4 Experiment and Analysis

To study the performance of the proposed PrefCRF model, comparisons were done

with the following representative algorithms: KNN [65], NMF [41], PrefKNN [12],

and PrefNMF [19]. We implemented PrefCRF as well as the compared algorithms

according to their original papers.

5.4.1 Experimental Settings

Datasets and Experiment Design

Experiments are conducted on four public datasets: MovieLens-1M 3, Amazon Movie

Reviews 4, EachMovie 5, and MovieLens-20M 3. These datasets or their subsets are

transformed to simulate four scenarios of heterogeneous data:

3http://grouplens.org/datasets/movielens
4http://snap.stanford.edu/data/web-Movies.html
5http://grouplens.org/datasets/eachmovie
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Side Information The impact of side information is studied on the MovieLens-1M

dataset which provides gender, age, and occupation information about users

and genres of movies. The dataset contains more than 1 million ratings by

6, 040 users on 3, 900 movies. For a reliable comparison, the dataset is split into

training and test sets with different sparsities, similar to related work [80, 83].

Specifically, for each user we randomly select N = 30, 40, 50 and 60 ratings for

training, and put the rest for testing. To ensure that each user has at least 10

movies for testing, users with less than 40, 50, 60 or 70 ratings are removed.

Different Forms Amazon Movie Reviews dataset contains two forms of preferences:

textual reviews and 5-star ratings. We extracted a dense subset by randomly

selecting 5141 items with at least 60 reviews for each, and 2000 users with at

least 60 movies reviews for each, and this results in 271K ratings. For each

user, 50 random reviews are selected for training, and the rest are put aside

for testing. The training set is further split into half ratings and half textual

reviews. Rating-based models are trained on the ratings only, where PR-based

models utilize textual reviews as well.

Different Scales EachMovie dataset contains ratings in 6-star scale that can be

easily converted into binary scale, i.e., ratings 1 − 3 and 4 − 6 are mapped to

0 and 1 respectively. We extract a subset by randomly selecting 3000 users

who have rated at least 70 items as a dense dataset is required for splitting.

The resultant dataset contains 120K ratings on 1495 items. For each user we

randomly select 60 ratings for training and leave the rest for testing, and half

of the ratings in the training set are mapped into binary scale. Rating-based

models are trained on the 6-star ratings while PR-based models will exploit the
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binary ratings as well.

Different Biases We study the impact of biases by adding biases into a stable

dataset with minimal existing biases. To prepare such dataset we extract a

stable subset from the latest MovieLens-20M released on April-2015. Specif-

ically, 258K ratings by 2020 users on 4408 movies released between 2010 and

2015 are extracted, where each user has rated at least 60 ratings. Biases are

then introduced by adding a different Laplace noise sampled from Laplace(0, b)

to each user and item.

For PR-based methods, the same conversion method as in [19] is used to converted

ratings into PR. For example, 1, 0 and 0.5 are assigned to the preference relation πuij

when pui > puj, pui < puj, and pui = puj, respectively.

Evaluation Metrics

Traditional recommender systems aim to optimize RMSE or MAE which emphasizes

on absolute ratings. However, the ultimate goal of recommender systems is usually

to obtain the ranking of items [42], where good performance on RMSE or MAE may

not be translated into good ranking results [42]. Therefore, we employ two evaluation

metrics Normalized Cumulative Discounted Gain@T (NDCG@T) [34] that is popular

in academia, and Mean Average Precision@T (MAP@T) [13] that is common in

contests. The NDCG@T metric is defined as

NDCG@T =
1

K(T )

T∑
t=1

2rt − 1

log2 (t+ 1)
(5.4.1)
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where rt is the relevance judgment of the item at position t, and K(T ) is the normal-

ization constant. The MAP@T metric is defined as

MAP@T =
1

|Utest|
∑

u∈Utest

T∑
t=1

Pu(t)

min(mu, t)
(5.4.2)

where mu is the number of relevant items to user u, and Pu(t) is user u’s precision

at position t. Both metrics are normalized to [0, 1] with higher value indicates better

performance.

These metrics, together with other ranking-based metrics, require a set of relevant

items to be defined in the test set such that the predicted rankings can be evaluated

against. In this paper, we follow the same heuristics as in the related work [12, 63]

and consider items with the highest ratings as relevant.

Parameter Setting

For a fair comparison, we fix the number of latent factors to 50 for all algorithms,

which is the same setting as used in [63].The number of neighbors for KNN algorithms

is set to 50. We vary the minimum correlation threshold for the PrefCRF to examine

the performance with different number of features. Different values of regularization

coefficient are also tested.

5.4.2 Results and Analysis

Algorithms are compared on four heterogeneous scenarios: side information, differ-

ent forms, different scales and different biases. The impact of sparsity levels and

parameters is studied on the MovieLens-1M dataset, while these settings for other

experiments are fixed. Each experiment is repeated ten times with different random
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seeds and we report the mean results with standard deviations. For each experiment,

we also performed a paired t-test (two-tailed) with a significance level of 95% on the

best and the second best results, and all p-values are less than 1× 10−5.

Fusing Side Information

Table 5.1 shows the NDCG and MAP metrics on Top-N recommendation tasks by

compared algorithms. It can be observed that the proposed PrefCRF, which captures

the side information, consistently outperforms others. To confirm the improvement,

we plot the results in Fig. 5.3(b) by varying the position T . The figure shows that

PrefCRF not only outperforms others but has a strong emphasize on top items, i.e.,

T < 5.

The impact of sparsity is investigated by plotting the results against sparsity levels

as in Fig. 5.3(a). We can observe that the performance of PrefCRF increases linearly

given more training data, while its underlying PrefNMF model is less extensible

to denser dataset. One possible reason is that incorporating side information has

extended the modeling capability of the model, resulting better utilization of more

data.

Fusing Preferences in Different Forms

In this experiment, we first converted textual reviews into negative (−1), neutral (0),

and positive (1) values using the NLTK library [10], and then converted them into

PR. We study how these additional information can assist PR-based methods, and

results over ten runs are shown in Table 5.2. Surprisingly, the performance of all

PR-based methods except PrefCRF have decreased by incorporating textual reviews.
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(a) NDCG VS. Sparsity (b) NDCG@T (Given 60)

Figure 5.3: Varying sparsity on MovieLens-1M dataset.

We suspect that this is due to the misclassification errors introduced by sentiment

classification on text. Indeed, converting preferences in different forms into PR can

be accomplished in different ways, and may require domain knowledge fall beyond

the scope of this paper. However, in the next subsection we will see that an accurate

conversion can actually improve the performance.

Table 5.2: Results over ten runs on Amazon dataset.

Ratings Ratings + Textual Reviews

Algorithm NDCG@10 MAP@10 NDCG@10 MAP@10

UserKNN 0.6244± 0.0040 0.4599± 0.0035 0.6244± 0.0037 0.4599± 0.0025

NMF 0.8073± 0.0040 0.6689± 0.0038 0.8073± 0.0041 0.6689± 0.0000

PrefKNN 0.6410± 0.0038 0.4690± 0.0029 0.5765± 0.0039 0.4083± 0.0029

PrefNMF 0.7495± 0.0040 0.5924± 0.0031 0.7377± 0.0030 0.5806± 0.0031

PrefCRF 0.8223± 0.0033 0.6813± 0.0027 0.8259± 0.0035 0.6890± 0.0026
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Fusing Preferences in Different Scales

In this experiment preferences in different scales are fused into PR to boost the

performance of PR-based methods. The binary scale ratings are similar to the pos-

itive/negative textual reviews, however without incorrect values introduced by text

classification.

Table 5.3: Results over ten runs on EachMovie dataset.

6-star Ratings 6-star Ratings + Binary Ratings

Algorithm NDCG@10 MAP@10 NDCG@10 MAP@10

UserKNN 0.4374± 0.0047 0.3418± 0.0029 0.4374± 0.0047 0.3418± 0.0029

NMF 0.5211± 0.0078 0.3710± 0.0034 0.5211± 0.0078 0.3710± 0.0034

PrefKNN 0.4908± 0.0070 0.3793± 0.0031 0.5074± 0.0061 0.3938± 0.0044

PrefNMF 0.5233± 0.0061 0.3820± 0.0033 0.5454± 0.0060 0.3881± 0.0032

PrefCRF 0.5439± 0.0056 0.4006± 0.0045 0.5506± 0.0053 0.4038± 0.0043

Table 5.3 shows the performance of each method and the impact of position T is

illustrated in Fig. 5.4. From the table, we can observe that the performance of all

PR-based methods has increased by incorporating additional binary ratings, while

the performance of rating-based methods remains the same.

Fusing Preferences with Different Biases

In this experiment we investigate the impact of different biases, particularly the user-

wise and item-wise biases, which are sampled from Laplace(0, b) for each user and

each item. Results for unbiased and biased datasets are reported in Table 5.4.

For user-wise biases, we can see that the performance of rating-based methods
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(a) NDCG@T (b) MAP@T

Figure 5.4: Varying position T on EachMovie dataset.

Table 5.4: NDCG@10 on MovieLens-20M dataset.

Algorithm Bias = None User-bias = Laplace(0, 2) Item-bias = Laplace(0, 2)

UserKNN 0.4465± 0.0033 0.3729± 0.0033 0.2914± 0.0017

NMF 0.4982± 0.0034 0.4566± 0.0032 0.3074± 0.0019

PrefKNN 0.4683± 0.0027 0.4683± 0.0027 0.3157± 0.0021

PrefNMF 0.4950± 0.0035 0.4950± 0.0035 0.3137± 0.0017

PrefCRF 0.5288± 0.0037 0.5288± 0.0037 0.3729± 0.0023
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has decreased while PR-based methods are unaffected by such biases. This is further

illustrated in Fig. 5.5(a). For item-wise biases, the performance of all methods has

decreased, however, to different extent. Fig. 5.5(b) further shows the better resistance

of PrefCRF to item-wise biases.

(a) NDCG@10 (b) NDCG@10

Figure 5.5: Varying biases on MovieLens-20M dataset.

Impact of Regularization and Correlation Threshold

The proposed PrefCRF method has two user specified parameters: the regularization

coefficient and a minimum correlation threshold that controls the number of corre-

lation features. We examine the impact of these parameters on the MovieLens-1M

dataset and the results are plotted in Fig. 5.6.

For the regularization, we can see from Fig. 5.6(a) that the performance gets better

when a small regularization penalty applies. In other words, PrefCRF can generalize

reasonable well without too much regularization. One reason is that the model has

already been regularized by its underlying PrefNMF model. Another reason is that
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the weights of item-item correlations are not user-specific but shared by all users,

thus they cannot over-fit every user perfectly.

For the correlation threshold, Fig. 5.6(b) shows that a smaller threshold results

better performance by including more correlation features, however, at the cost of

more training time and more training data.

(a) NDCG@10 (b) NDCG@10

Figure 5.6: Varying parameters on MovieLens-1M.

5.5 Summary

In this chapter we proposed the PrefCRF model, which takes advantages of both

the representational power of the CRF and the ease of modeling PR by the PrefNMF.

To the best of our knowledge, this is the first study on unifying heterogeneous user

preferences and heterogeneous side information. Experiment results on four public

datasets demonstrate that various heterogeneous data have been properly handled by
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PrefCRF, and significantly improved Top-N recommendation performance has been

achieved.

For future work, the computation efficiency of PR-based methods can be further

improved given that the number of PR is usually much larger than ratings. Paral-

lelization is feasible as as each user has a separated set of PR that can be processed

simultaneously.



Chapter 6

Conclusion and Future Work

The research presented in this thesis consists of two parts: the first part focuses on

the local and global structure and the side information issues and while the second

part focuses on the heterogeneous data source issue. Several new research problems

have been identified together with solutions. This chapter summarizes the research

results and the main contributions of this thesis.

6.1 Contributions

Theoretical and experimental results have led to the conclusion and main contribution

of this thesis:

• The Ordinal Random Fields (ORF) model is proposed to capture both the

local and global structures of ordinal user preferences. Through this novel

method, both structures are properly captured, resulting improved recommen-

dation quality. ORF is one of first attempts on modeling both structures for

ordinal user preferences.

127
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• The Preference Relation-based Markov Random Fields (PrefMRF) model is pro-

posed to capture both the local and global structures of Preference Relations.

Due to the flexibility of previous preference relation-based models, only one

type of structure can be modeled at a time. Through our novel method, both

structures can be modeled, resulting significantly improved recommendation

performance. PrefMRF is the first preference relation-based model that captures

both types of structures.

• The Preference Relation-based Conditional Random Fields (PrefCRF) model is

proposed to incorporate side information such as item content and user profiles.

PrefCRF is the first preference relation-based model that can incorporate side

information in a principled way.

• The preference relation-based models proposed in this thesis is applied to resolve

the heterogeneous data sources problem. This is the first time this problem is

spotted and we provide effective solutions to unify heterogeneous data. By

exploiting multiple heterogeneous data sources help to alleviate the cold-start

problem in which limited data is provided by each data source.

6.2 Future Work

Although the proposed methods have addressed the aforementioned three issues to

a certain extend, there remains several problems that need to be addressed in the

future. We summarize these follows:

• Parallelization of Preference Relation-based Models : The number of preference
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relations are usually much larger than the number of traditional ratings. As a re-

sult, the modeling process is often slower than rating-based methods. However,

we observe that the preference relations of each user are kind of independent

from other users’. Therefore, it it possible to parallelize the modeling process

for each user to achieve faster modeling process.

• Identifying Key Preference Relations : While there are so many possible prefer-

ence relations, not all of them are important in making recommendations. It

remains unknown how to measure the importance of each preference relation

to the recommendation quality. If this information can be obtained in future

work, then the number of preference relations to be used in modeling can be

significantly reduced while the recommendation quality is preserved.
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