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Abstract

The problem of grouping basic units into larger geographic territories subject to dispersion, connec-

tivity, and balance requirements is addressed. The problem is motivated by a real-world application

from the bottled beverage distribution industry. For addressing dispersion minimization, a more

robust measure based on the diameter of the formed territories is used. For solving this particular

territory design problem, a greedy randomized adaptive search procedure (GRASP) that incorpo-

rates a novel construction procedure where territories are formed simultaneously in two main stages

using different criteria is proposed. The GRASP is further enhanced with two variants of forward-

backward path relinking, namely static and dynamic. The proposed algorithm and its components

have been extensively evaluated over a wide set of data instances. Experimental results reveal that

the construction mechanism produces feasible solutions of acceptable quality, which are improved

by an effective local search procedure. In addition, empirical evidence indicate that the two path

relinking strategies have a significant impact on solution quality when incorporated within the

GRASP framework. The ideas and components of the developed method can be further extended

to other districting problems under balancing and connectivity constraints.

Keywords: Service industry; Districting; Metaheuristics; GRASP; Path relinking.



1 Introduction

The territory design problem (TDP) may be viewed as the problem of grouping small geographic

basic units (BUs) into larger geographic clusters, called territories, in a way that the territories are

acceptable (or optimal) according to relevant planning criteria. Territory design or districting has

a broad range of applications such as political districting, sales territory design, school districting,

power districting, and public services, to name a few. The reader can find in the works of Kalcsics,

Nickel, and Schröder [17] and Duque, Ramos, and Suriñach [11] state of the art surveys on models,

algorithms, and applications to districting problems.

The problem addressed in this paper is a commercial territory design problem (CTDP) moti-

vated by a real-world application from the bottled beverage distribution industry. The problem,

introduced by Ŕıos-Mercado and Fernández [28], considers finding a design of p territories with

minimum dispersion subject to planning requirements such as exclusive BU-to-territory assign-

ment, territory connectivity, and territory balancing with respect to three BU attributes: number

of customers, product demand, and workload.

An important criterion in territory design problems is compactness. Typically this is achieved by

minimizing a dispersion function. In commercial territory design, several models based on dispersion

functions from the well-known p-center and p-median location problems have been studied in the

past. These are center-based dispersion functions, that is, the dispersion is measured with respect

to a centroid of a territory. However, there are other non-center-based measures of dispersion that

can be used. Center-based functions rely heavily on the location of the centers; if the centers are

“badly” located, the resulting design may cause a serious deterioration in objective function. In

addition, in location problems, the centers represent a physical entity or facility that provides some

service; however, in CTDPs the centers are artificially located as no facility is actually placed there,

it is just a reference for the dispersion measure. These limitations motivate the study on other ways

of measuring dispersion. For instance, a measure such as the diameter, which measures the longest

distance between any two basic units in a territory, is a more robust function since it does not

depend on a center location, providing more flexibility. Even from the algorithmic perspective,

heuristic methods for tackling TDPs under center-based dispersion functions need to constantly
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update and recompute as centers keep moving along every time the territory suffers a change. This

time-consuming task can be avoided if other measures such as the diameter are used.

In this work, we focus our study in a commercial territory design problem that seeks to minimize

territory dispersion based on a diameter dispersion measure. To the best of our knowledge, this

type of problem has not been addressed before in the territory design literature. Since the aim is

to target large instances, we present a Greedy Randomized Adaptive Search Procedure (GRASP)

with Path Relinking for this NP-hard CTDP. The algorithm is denoted as GPR CTDP. In our

proposed GRASP we develop a procedure that builds exactly p territories at once simultaneously,

that is, we start with p node seeds and start associating nodes to the seeds until all of them are

assigned. By growing the territories simultaneously rather than one at a time one expects that

the violation of the balancing constraints be considerably lower. In addition, we develop two path

relinking (PR) strategies, one dynamic and one static, motivated by the work of Resende et al. [21],

who successfully applied it to the max-min diversity problem. In our work, these PR strategies rely

on finding a “path” between two different territory designs. To this end, an associated assignment

subproblem for finding the best match between territory centers is solved. The solution to this

problem provides a very nice way of generating the trajectory between two given designs. This idea

is novel in any districting of territory design application to the best of our knowledge.

To assess its efficiency, the proposed GPR CTDP with many of its components and strategies,

has been extensively evaluated over a wide set of data instances. We have found, for instance, that

building territories simultaneously results in feasible solutions of acceptable quality. The two PR

variants implemented in GPR CTDP allowed us to obtain better solutions than those obtained

when using straight local search; although, the static strategy resulted more helpful. The main

algorithmic ideas incorporated in the developed algorithm can be extended so as to handle other

districting problems with similar structure.

The paper is organized as follows. In Section 2 we describe the problem in detail and present a

combinatorial optimization model. Section 3 gives an overview of relevant previous related work.

Section 4 describes in detail the components of the proposed heuristic, and Section 5 presents the

empirical evaluation of the method. We end the paper in Section 6, with some conclusions and
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final remarks.

2 Problem Description

Let G = (V,E) denote a graph where V is the set of city blocks or basic units (BUs), and E is the

set of edges representing adjacency between blocks, that is, (i, j) ∈ E if and only if BUs i and j

are adjacent blocks. Let dij denote the Euclidean distance between BUs i and j, with i, j ∈ V . For

each BU i ∈ V there are three associated parameters. Let wa
i be the value of activity a at node i,

where a = 1 (number of customers), a = 2 (product demand), and a = 3 (workload). The number

of territories is given by the parameter p. A p-partition of V is denoted by X = (X1, . . . , Xp), where

Xk ⊂ V is called a territory of V . Let wa(Xk) =
∑

i∈Xk
wa
i denote the size of territory Xk with

respect to activity a ∈ A = {1, 2, 3} and k ∈ K = {1, . . . , p}. The balancing planning requirements

are modeled by introducing a user-specified tolerance parameter τa that measure the allowable

relative deviation from the target average size µa, given by µa = wa(V )/p, for each activity a ∈ A.

Another planning requirement is that all of the nodes assigned to each territory are connected by a

path contained totally within the territory. In other words, each of the territories Xk must induce

a connected subgraph of G. Finally, we seek to maximize territory compactness or, equivalently,

minimize territory dispersion, where dispersion is given by the largest diameter over all territories,

that is maxk=1,...,pmaxi,j∈Xk
{dij}.

Let Π be the collection of all p-partitions of V . The combinatorial optimization model is given

as follows.

Model (CTDP)

min
X∈Π

f(X) = max
k∈K

max
i,j∈Xk

{dij} (1)

subject to
wa(Xk)

µa
∈ [1− τa, 1 + τa] k ∈ K, a ∈ A (2)

Gk = G(Vk, E(Vk)) is connected k ∈ K (3)

Objective (1) measures territory dispersion. Constraints (2) represent the territory balance with
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respect to each activity measure as it establishes that the size of each territory must lie within a

range (measured by tolerance parameter τa) around its average size. Constraints (3) guarantee the

connectivity of the territories, where Gk is the graph induced in G by the set of nodes Xk. Note

that there is an exponential number of such constraints.

The model can be viewed as partitioning G (the contiguity graph representing the BUs) into

p connected components (contiguous districts) under the additional side constraints on balancing

product demand, number of customers, and workload of each territory, and minimizing a dispersion

measure of the BUs in a territory. The basic contiguity graph model for the representation of a

territory divided into elementary units has been adopted in political districting [26].

3 Related Work

Territory design or districting has a broad range of applications such as political districting [4,

15, 3, 18, 27, 20], sales territory design [10, 32], school districting [6], power districting [1, 8], and

public services [2, 7, 19], to name a few. The reader can find in the works of Kalcsics, Nickel, and

Schröder [17] and Duque, Ramos, and Suriñach [11] state of the art surveys on models, algorithms,

and applications to districting problems. Zoltners and Sinha [33] present a survey focusing on sales

districting and Ricca et al. [26] present a survey on political districting.

Here we discuss the related work on commercial territory design. Ŕıos-Mercado and Fernández [28]

introduced the commercial TDP by incorporating a territory compactness criterion and a fixed

number of territories p. They seek to maximize this compactness criterion subject to planning

requirements such as exclusive BU-to-territory assignment, territory connectivity, and territory

balancing with respect to three BU attributes: number of customers, product demand, and work-

load. In their work, the authors consider as a minimization function a dispersion function based on

the objective function of the well-known p-Center Problem. After establishing the NP-completeness

of the problem, the authors propose a Reactive GRASP for obtaining high-quality solutions to this

problem. The core of their GRASP is a three-phase iterative procedure composed by a construction

phase, an adjustment phase, and a local search phase. In the construction phase a solution with q

territories, where q is usually larger than p, satisfying the connectivity constraints is built. Then
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an adjustment phase based on a pairwise merging mechanism is applied to obtain a solution with

p territories. Afterwards, a local search phase attempting both to eliminate the infeasibility with

respect to the balancing requirements and to improve the dispersion objective function is applied.

One interesting observation is that the construction and adjustment phases produce solutions with

very high degree of infeasibility. This is very nicely repaired by the local search, at a very high

computational cost though. The reason for this is that attempting to merge two territories into

one in the adjustment phase may result in a high violation of the upper bound of the balancing

constraints.

Aguilar-Salazar et al. [30] present an exact optimization framework for tackling relatively small

instances of several CDTP models. They studied two linear models that differ in the way they

measure dispersion, one model uses a dispersion function based on the objective of the p-Median

Problem (MPTDP) and the other is based on the p-Center Problem (CPTDP). They can success-

fully solve instances of up to 100 BUs for the CPTDP and up to 150 BUs for the MPTDP. This

concludes that p-center-based dispersion measures yield more difficult models as they have weaker

LP relaxations than the median-based models.

Salazar-Acosta and Ŕıos-Mercado [29] present a heuristic based on GRASP and adaptive mem-

ory programming for a CTDP that considers the minimization of a p-Center Problem function

subject to additional budget routing constraints.

One of the most popular methods for addressing districting problems is the location-allocation

technique [17]. However, this technique is not applicable to our problem mainly because the nature

of the dispersion objective function is different. As it has been show, the location-allocation method

seems to work well when a p-Median Problem-based objective function is used.

As stated previously, CTDPs with diameter-based dispersion functions have not been studied

in the past. One of the reasons is that center-based functions yield well-structured mixed-integer

programming problems which in turn can lead to relatively good optimization algorithms. However,

this structure is somewhat lost when addressing a problem from the heuristic perspective. In fact,

using non-center-based functions such as the diameter may be more convenient since no time

consuming center updating operations are needed.
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4 Proposed Heuristic

This section introduces the proposed GRASP heuristic with path relinking for the commercial terri-

tory design problem (GPR CTDP). GRASP is a well known meta-heuristic based on greedy search

and random construction mechanisms [14] that has been successfully used for many combinatorial

optimization problems, including CTDP [28]. We propose a GRASP improved with path relinking

(PR). The heuristic comprises a new construction procedure and a very effective PR mechanism.

The construction procedure intelligently handles a strategy for building terriories simultaneously,

while the PR formulation allows us to obtain better solutions than those obtained when using

straight local search, see Section 5. The rest of this section describes in detail the components of

the GPR CTDP approach, which receives as input an instance of the CTDP and a set of parameters

as described below.

4.1 GRASP

A GRASP is an iterative process in which each major iteration consists of two phases: construction

and local search [14]. The construction phase attempts to build a feasible solution and the local

search phase attempts to improve it. This process is repeated for a fixed number of iterations

and the best overall solution is returned as the result. GRASP incorporates greedy search and

randomization mechanisms that allow it to obtain high quality solutions to combinatorial problems

in acceptable times. Despite the simplicity of this multi-start heuristic it has proved to be very

effective in a wide range of problems and applications [22]. Previous work on GRASP for the CTDP

is presented in Section 3. In this paper we propose procedure GPR CTDP, which is in essence a

GRASP augmented with PR mechanisms, accordingly, in this section we describe the particular

construction and local search procedures of the GRASP and the next subsection presents the PR

strategies.

Construction phase

At a given iteration, the construction phase consists of building p territories, X1, . . . , Xp, simulta-

neously in such a way that connectivity is always satisfied while infeasibility in terms of dispersion
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and balance is allowed to some extent. Each territory Xk is formed by a subset of BUs or nodes such

that ∪k=1,...,pXk = V and Xk ∩Xl = ∅, for all k 6= l. Under the proposed procedure each territory

Xk is associated to a center, c(k). This is not a requirement of the problem but a feature of the

proposed formulation that was adopted for convenience when measuring dispersion of territories.

Procedure 1 grasp construction( δ, L, α )
Input: δ: fraction of nodes assigned by the distance criteria;
L: interval for updating centers;
α: RCL quality parameter;

Output: X: A p-partition of V ;
(c(1), . . . , c(p))← max disp( p ); {Compute p initial centers}
i← 0; V̄ ← V ;
while ( n− |V̄ | ≤ δn ) do

for all ( k ∈ {1, . . . , p} ) do
Nq(Xk) ← q nearest (unassigned) neighbors of Xk;
Xk ← Xk ∪Nq(Xk); V̄ ← V̄ \Nq(Xk);

end for
i← i+ 1;
if ( i module L = 0 ) then

c(k)← min(max dv,w), ∀v, w ∈ Xk, k = 1, . . . , p; {Update centers}
end if

end while
open(k)← TRUE, k = 1, . . . , p;
while ( |V̄ | > 0 and ∃k such that open(k) == TRUE ) do

for all ( k = 1, . . . , p ) do
if ( open(k) = TRUE ) then

Compute φk(v) in Eq. (4), ∀ v ∈ N(Xk);
Φmin ← min{φk(v)}; Φmax ← max{φk(v)};
RCL ← {h ∈ N(Xk) : φk(h) ≤ Φmin + α(Φmax − Φmin)};
Choose v ∈ RCL randomly; Xk ← Xk ∪ {v}; V̄ ← V̄ \ {v};
if ( N(Xk) = ∅ or w

a(Xk) > (1 + τa) for any a ) then
open(k)← FALSE; {Close this territory}

end if
end if

end for
end while
if (|V̄ | > 0) then

for all ( v ∈ V̄ ) do
Xv ← Nearest territory to node v;
Xv ← Xv ∪ {v}; V̄ ← V̄ \ {v};

end for
end if
return X = {X1, . . . , Xp};

Procedure 1 presents the construction phase of the proposed GPR CTDP. V̄ denotes the set of

nodes that have not been assigned to any territory and n = |V | the number of BUs. The process

starts by selecting p seeds or centers, {c(1), . . . , c(p)}, which are the first nodes assigned to each

territory; that is, c(k) ∈ Xk, k ∈ {1, . . . , p}. Territories are then built iteratively in two main stages

followed by a postprocessing stage. In the first stage q BUs are iteratively assigned to each territory
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Xk. For each territory Xk, we iteratively assign the q (unassigned) nearest neighboring nodes of

that territory, v ∈ Nq(Xk). The BUs in Nq(Xk) that are assigned to Xk must be connected by an

edge to a BU already assigned to Xk. The latter process is iterated until a fraction δ of the total

of BUs have been assigned to one of the p territories (i.e. ⌊δn⌋ BUs have been assigned), where the

centers c(1), . . . , c(p) are updated every L iterations. One should note that the notion of centers is

only used for this very-first phase of the construction procedure and it is not used elsewhere.

Figure 1 shows the BUs assigned after stage one of the construction phase for an instance of the

CTDP considered for experimentation. From this stage the p territories have been simultaneously

built by using a neighborhood criteria completely ignoring the balance constraints. The rationale

behind this is that nodes that belong to the same territory must be close to each other, hence

a portion of nodes can be assigned with a closeness criterion. The remaining nodes will lie at

boundaries among territories, therefore, balance and dispersion information is taken into account

for assigning those nodes.
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Figure 1: First stage of the proposed construction procedure for an instance of the CTDP.

An important aspect of stage one is that of selecting seed centers. Clearly, randomness must

be considered for this process as we want to generate fairly different centers at each iteration of

the GPR CTDP approach. To this end, we view the problem of choosing an appropriate set of p

initials seeds as a p-Dispersion Problem [12], which is a combinatorial optimization problem that

places p points in the plane as far way of each other as possible by using an appropriate measure
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for maximizing dispersion. In our procedure, we used an approach that selects centers randomly

with a maximum dispersion criteria. The particular strategy starts with a randomly selected node

as the center for the first territory and the rest of centers are obtained by using a greedy heuristic

for the p-dispersion problem [12].

The second stage of the construction phase consists of assigning the remaining n− ⌊δn⌋ nodes

that were not assigned in stage one. For this stage BUs are assigned to territories using a greedy

randomized adaptive procedure that takes into account both balance and dispersion constraints.

For each territory Xk, the cost of assigning every neighboring node v ∈ N(Xk) to Xk is evaluated

according to Equation (4). Then a restricted candidate list (RCL) is formed, from which a single BU

is randomly selected and assigned to the current territory Xk. This RCL is restricted by a quality

parameter α, that is, RCL is formed by those BUs whose greedy function evaluation falls within α

percent from the best evaluation. Equation (4) determines the cost incurred when assigning node

v to a territory Xk. This cost is determined by a linear combination of the weights assigned to

nodes in territory Xk∪{v}, as determined by the term Gk(v), and the dispersion of those nodes, as

estimated by the term Fk(v), with Gk(v) and Fk(v) defined in Equations (5) and (6), respectively

φk(v) = λFk(v) + (1− λ)Gk(v), (4)

Gk(v) =
∑

a∈A

gak(v), (5)

Fk(v) =

(

1

dmax

)

f(Xk ∪ {v}) =

(

1

dmax

)

max

{

f(Xk), max
i∈Xk,v

{div})

}

, (6)

where f(Xk) = maxk∈K maxi,j∈Xk
{dij} is the dispersion measure (as dictated by the objective

function) and gak(v) = 1
µa max{wa(Xk ∪ {v}) − (1 + τa)µa, 0} accounts for the sum of relative

infeasibilities for the balancing constraints. Here dmax = maxi,j∈V {dij}, the maximum distance

between any pair of nodes, is used for normalizing the objective function. One should note that

gak(v) represents the infeasibility with respect to the upper bound of the balance constraint for

activity a. Both factors dispersion and balancing are weighted by a parameter λ in expression (4).

The process is repeated for every territory k. If a territory exceeds the expected average weight

for a territory it is considered closed (i.e., open(j) = false) and no further node can be assigned
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Figure 2: Second and third stages of the proposed construction procedure for an instance of the
CTDP.

to it. The latter process iterates until either every node has been assigned to a territory or every

territory is considered closed. Since stage two of this construction phase does not guarantee that

all nodes will be assigned to a territory, a third stage is applied in which each unassigned node

gets assigned to its nearest territory. Figure 2 shows the distribution of BUs for an instance of the

CTDP after stages two and three of the construction procedure.

Local search

After a solution is build a postprocessing phase consisting of local search is performed. The goal in

this phase is to improve the objective function value and recovering feasibility (if violated) in the

constructed solution, X. In this local search, a merit function that weights both the infeasibility

with respect to balancing constraints and the objective function value is used. This function is

indeed similar to the greedy function used in the construction phase with the exception that now

the sum of relative infeasibilities take into consideration lower and upper bound violation of the

balancing constraints. Specifically, the merit function for a given territory designX = {X1, . . . , Xp}

is given by

ψ(X) = λF (X) + (1− λ)G(X) (7)
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where

F (X) =

(

1

dmax

)

max
k∈K

max
i,j∈Xk

{dij} (8)

and

G(X) =

p
∑

k=1

∑

a∈A

ga(Xk), (9)

with ga(Xk) =
1
µa max{wa(Xk)− (1 + τa)µa, (1− τa)µa −wa(Xk), 0} being the sum of the relative

infeasibilities of the balancing constraints. The quality of solutions is then determined by Expression

(7), we now describe the mechanism for exploring solutions around the constructed territory design.

Let t(i) denote the territory node i belongs to, i = 1, . . . , n. A move move(i, j) is defined as

moving a node i from its current territory to a territory t(j), where t(j) 6= t(i). Only moves

move(i, j) where (i, j) ∈ E and t(i) 6= t(j) are allowed. Thus, move(i, j) transforms a solution

X = (X1, . . . , Xt(i), . . . , Xt(j), . . . , Xp) into XT = (X1, . . . , Xt(i) \ {i}, . . . , Xt(j) ∪ {i}, . . . , Xp). If

connectivity must be kept, only moves where Xt(i) \ {i} remains connected are allowed. Note that

in general move(i, j) is asymmetric.

Procedure 2 local search( X )
Input: X: A solution to the CTDP;
Output: X: Improved solution to the CTDP;
nmoves← 0; local optima ← FALSE;
k ← 1; {starting territory}
while ( nmoves ≤ limit evals AND ¬local optima ) do

improvement ← FALSE;
while ( |N(Xk)| > 0 and ¬improvement) do

move(i, j)← Choose valid move from N(Xk);
N(Xk)← N(Xk) \ {(i, j)};
Evaluate ψ(XT ) using Expression (7);
if ( ψ(XT ) < ψ(X) ) then

X ← XT ; {perform move}
nmoves← nmoves+ 1;
improvement ← TRUE;
kend← k;
k ← (k + 1) mod p;

end if
end while
if ( ¬improvement ) then

k ← (k + 1) mod p;
end if
if ( k = kend ) then

local optima ← TRUE;
end if

end while
return X

11



0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

X − coordinates

Y
 −

 c
oo

rd
in

at
es

Figure 3: Solution found after applying the local search procedure for an instance of the CTDP.

The basic idea of the local search is to start the search with a given territory, say territory k,

and then consider first the moves emanating from territory k, that is, if we let N(Xk) denote the

feasible moves move(i, j) with t(i) = k evaluate first all the moves in N(Xk), and take the best

that improves the current solution, if any. If none found, proceed with territory (k+ 1) mod p. As

soon as a better move is found, perform the move, and restart the search from this new solution

XT but setting k + 1 as the starting territory, where k was the last territory examined, that is, in

a new move the starting territory is k + 1 and the final territory to be examined is k. By using

this cyclic strategy for starting territory we avoid performing many unnecessary move evaluations.

A move is performed using a different territory each time until no improvements can be found.

In practice an additional stopping criterion: the maximum number of allowed evaluations of the

fitness function (limit evals), is added to avoid performing an extensive search for long periods of

time. Therefore, the postprocessing step stops when either a local optima is found or the number

of moves exceeds limit evals. The postprocessing phase is described in Procedure 2. Figure 3 shows

a solution obtained after applying the local search procedure.

4.2 Path relinking

Path Relinking (PR) was originally proposed by Glover and colleagues as a way of incorporating

intensification and diversification strategies in tabu search [16]. PR consists of exploring the path
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of intermediate solutions between two selected solutions called starting (XS) and target (XT ) with

the hypothesis that some of the intermediate solutions can be either better than XS and XT (in-

tensification) or comparable but different enough from XS and XT (diversification). Intermediate

solutions are generated by performing moves from the starting solution in such a way that these

moves introduce attributes that are present in the target solution. Successful applications of PR

in the context of Tabu and Scatter Search are reported in Resende et al. [23].

Despite the fact that PR was originally proposed for Tabu and Scatter search, it has been

successfully used with GRASP as well [22, 21]. In the context of GRASP, PR can be considered

as a way of introducing memory into the search process. To the best of our knowledge PR has not

been used in the context of territory design, although it has been recently applied to the related

problem of capacitated clustering by Deng and Bard [9]. Whereas both problems are related, the

proposed formulations differ significantly. For example, Deng and Bard did not consider centers in

their PR approach and they proposed a single PR variant (at a cluster-level basis). Deng and Bard

report experiments with less than 90 nodes and 5 clusters, while in Section 5 we report instances

of up to 500 nodes and 10 territories.

Different PR variants have been proposed so far each having benefits and limitations in terms

of efficiency and efficacy. In this work we consider two variants of forward-backward PR, namely

static and dynamic, that have proven very effective in related problems [21]. For excellent surveys

on applications of GRASP with PR we refer the reader to the work of Resende and Ribeiro [22].

The so called, forward-backward PR strategies explore the paths between XS and XT in two

different ways (i.e., from XS to XT and viceversa) [22]. The main benefit of these strategies is

that more and different solutions can be generated, although it has been found that there is little

gain over one-way strategies [25]. This can be due to the greediness of usual PR methods, which

evaluate every possible solution that can be generated by making a move from a initial solution

and choose the move that results in the best intermediate solution [25, 21]. Thus, these methods

explore a large number of solutions and, therefore, forward-backward PR does not help to improve

the quality of final solutions. In this work we select moves in such a way that a single move is

evaluated for generating intermediate solutions. This form of PR is more efficient at the expense of
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sacrifying the benefit of greedy strategies. Nevertheless, we believe that in the considered setting

the use of a forward-backward PR strategy is advantageous.

Besides the direction of the search, there are other aspects that make PR strategies different

[22, 21]. For example, greedy randomized PR methods form a RCL with candidate moves and

select a move randomly as in GRASP [13]. Truncated PR techniques explore partially the tra-

jectory between XS and XT . Evolutionary PR consists of evolving a reference set of solutions

in a similar way as the reference set is evolved in scatter search [24]. In this work we developed

static and dynamic PR strategies that resulted very effective for the CTDP. Both strategies have

been successfully used in other combinatorial optimization problems [21]. The rest of this section

describes the PR strategies incorporated in GPR CTDP.

Recall each solution of the CTDP is an assignment of every node i ∈ V to one of p territories

X1, . . . , Xp. Let t(X, i) ∈ {1, . . . , p} denote the index of the territory to which node i is assigned

according to solution X. Given two particular solutions XS and XT , PR aims at generating inter-

mediate solutions or p-partitions in the path starting at XS and finishing at XT . In GPR CTDP

intermediate solutions are created by changing t(XS , i), the territory to which node i is assigned

in solution XS into the corresponding territory t(XT , i). Because both XS and XT solutions are

created independently, and the territory ordering may be arbitrary, it is not clear what territory

in XS corresponds to what territory in XT . Hence, a correspondence between territories must be

obtained before starting the search process. The problem of finding the best match between territo-

ries can be set as an Assignment Problem (AP) by considering the territory centers only. Let C(X)

the set of p node centers corresponding to solution X. Then a complete bipartite graph is formed

with sets C(XS) and C(XT ), where the cost between node i ∈ C(XS) and j ∈ C(XT ) is given by

dij . The AP can be solved in polynomial time. We use one of the most recent implementations of

the Hungarian algorithm [5]. A solution to the AP represents a minimum cost assignment between

territory centers, and therefore a match between territories. Let M be the solution to AP given

by M = {(i1, j1), . . . , (ip, jp)}. The idea of the PR is then to “transform” each territory Xt(ik) to

territory Xt(jk) for each (ik, jk) ∈M . The rationale for this matching stems from the fact that it is

expected that relatively close territories (from different designs) will have many BUs in common.
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This scheme is illustrated in Figure 4. One should note that the notion of centers is adopted at

this stage for convenience, as centers allows us to establish a correspondence between territories in

an efficient way.

AP subproblem

S

AP solution

Design X TDesign X

Figure 4: Illustration of how to set up a search trajectory from two given designs (top) by solving
an associated Assignment Problem (bottom).

Once that correspondence between territories has been established it is possible to perform

moves from one solution XS to another XT . As a consequence, in order to arrive at solution XT

starting from XS , every node in XS such that t(XS , i)) 6= t(XT , i) must be moved to its associated

territory in XT . We define a PR move, movePR(X
S , XT , i), as a function that moves or reassigns a

node i from territory t(XS , i) to territory t(XT , i). The move is valid as long as t(XS , i) 6= t(XT , i)

and the resulting p-partition remains connected, that is, if and only if Xt(XT ,i)∪{i} is connected and

Xt(XS ,i)\{i} remains connected. One should note that moves are always made between boundary

nodes as it is not possible to exchange a non-boundary node from one territory to another territory

in a single move because loss of connectivity.

Intermediate solutions between XS and XT are generated by making moves from XS to XT

and updating the solution XS accordingly. Clearly, the order in which nodes i are selected may

give rise to different trajectories between XS and XT . In this work we chose nodes i in lexicograph-

ical order, we also tried a random node selection approach although no difference in performance

was obtained. After an intermediate solution is created it is evaluated using Formula (8). The

generation-evaluating process is repeated for every node with t(XS , i) 6= t(XT , i) and the process
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stops when t(XS , i) = t(XT , i) for all i ∈ V . Thus, the PR procedure receives as input a pair of

solutions XS and XT , generates and evaluates all of the intermediate solutions from XS to XT

and the best intermediate solution XR is returned as output. In the following we denote with

PR(XS , XT ) the application of PR starting at solution XS and finishing at solution XT .

Procedures 3 and 4 present the static and dynamic variants of PR implemented in GPR CTDP,

respectively. Both static and dynamic variants maintain a set of b elite solutions B = {B1, . . . , Bb}.

B is initialized by running the construction and local search procedures for b times. Solutions in B

are always kept sorted in ascending order of their objective function value estimated with Equation

(8).

Procedure 3 grasp pr static( imax )
Input: imax: number of global iterations;
Output: Xbest: A p-partition of V ;

for all ( i ∈ {1, . . . , b} ) do
X ← grasp construction();
Bi ← local search( X );

end for
Sort B from best to worst;
for all ( iter = 1, . . . , imax ) do

XS ← grasp construction();
XS ← local search( XS );
if ( (ψ(XS) < ψ(B1)) or (ψ(X

S) < ψ(Bb) and d
sol
µ (XS , B) > θ) ) then

Ej ← closest solution to XS in B with ψ(XS) < ψ(Bj);
Ej ← XS ;
Update B;

end if
end for
Xbest ← B1;
for all ( i ∈ {1, . . . , b− 1} ) do

for all ( j ∈ {i+ 1, . . . , b} ) do
Apply PR(Bi, Bj) and PR(Bj , Bi) and let XS ← best solution found;
XS ← local search( XS );
if ( ψ(XS) < ψ(Xbest) ) then

Xbest ← XS ;
end if

end for
end for
return Xbest;

4.2.1 Static GPR CTDP

In the static variant, PR is performed at the end of imax iterations of a typical GRASP. In each

iteration of the GRASP a solution is constructed and improved with local search, XS . This solution

is compared with the solutions in B. If XS is better than the best solution in B (i.e., B1) or if X
S is
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better than the worst solution in B (i.e., Bb) and is at a distance larger than a given threshold θ from

solutions in B, then the most similar solution to XS in B is replaced by XS . Solutions in B are then

sorted from best to worst. After imax iterations the static PR starts. Every path between solutions

in B is evaluated and the best solution is returned. The distance between XS and solutions in B

is estimated as dsolµ (XS , B) = 1
b

∑b
i=1 g(X

S , Bi), where g(X
S , Bi) is the fraction of nodes in XS

and Bi that are assigned to different territories; that is, dsolµ (XS , B) is the average number of nodes

assigned to different territories in XS and Bi. Alternative measures of similarity/distance between

territory designs have been described before, see for example the work by Tavares Pereira and Rui

Figueira [31]. However, such measures do not take advantage of the information we have available

when solving the AP. That is, those measures do not know the correspondence between territories

beforehand. Besides, distance measures described in [31] are defined in terms of a single attribute

and it is not clear how to extend the similarity measure to incorporate information of more than

one attribute (e.g., the three activities considered in this work). For that reasons we adopted a

simple, yet very informative, measure for computing the distance between territory designs. The

pseudocode of the static variant of PR is shown in Procedure 3. θ ∈ [0, 1] is a scalar that is set

empirically.

4.2.2 Dynamic GPR CTDP

The dynamic PR variant differs from the static one in that in each iteration of the GRASP the

solutionXS is compared to a randomly selected solution from B, say B′. The intermediate solutions

between XS and B′ are evaluated, and the best solution found in the path is denoted XR. Then

if XR is better than B1 or if XR is better than Bb and it is at a distance of at most θ from the

solutions in B, then the closest solution in B to XR is replaced with XR. Then solutions in B are

sorted from best to worst. After imax iterations the best solution, namely B1, is returned. The

pseudocode is shown in Procedure 4.

A number of parameters are associated with GPR CTDP in both variants, namely δ the fraction

of nodes assigned with a distance criterion, k the number of neighbors that are considered for

building a territory, λ the tradeoff parameter of the objective function, α the GRASP quality
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Procedure 4 grasp pr dynamic( imax )
Input: imax : number of global iterations;
Output: Xbest; A p-partition of V ;

for all ( i = {1, . . . , b} ) do
XS ← grasp construction();
Bi ← local search( XS );

end for
Sort B in ascending order;
for all ( iter = 1, . . . , imax ) do

XS ← grasp construction();
XS ← local search( XS );
Randomly select B′ from B;
Apply PR(XS , B′) and PR(B′, XS) and let XR ← best solution found;
if ( (ψ(XR) < ψ(B1)) or (ψ(X

R) < ψ(Bb) and d
sol
µ (XR, B) > θ) ) then

Bj ← closest solution to XR in B with ψ(XR) < ψ(Bj);
Bj ← XR;
Update B;

end if
end for
return Xbest ← B1;

parameter for the RCL, limit evals the maximum number of evaluations for the local search, b

the number of solutions in the elite set B and θ the distance threshold in PR. In this work we

have fixed all of these parameters based on preliminary experimentation. The next section reports

experimental results with the proposed GPR CTDP.

5 Computational experiments

This section reports experimental results obtained with GPR CTDP. The proposed method was

implemented in MatlabR. The code and data sets are publicly available for research purposes from

the authors upon request. All of the experiments were run in a 64-bit workstation with a Corei7

processor at 3.4GHz and 8 GB in RAM.

5.1 Experimental setting

For the experiments we used the data base from [28]. These are randomly generated instances

based on real-world data. Data sets DS and DT are considered for experimentation. The former

generate the BU weights from a uniform distribution and the latter uses a triangular distribution.

Data set DT more closely resembles real-world instances. These data sets are fully described in [28].

For each of DS and DT data sets there are 20 different instances of size n = 500 and p = 10.
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For all of the instances in both DS and DT data sets we use a tolerance level τa = 0.05, a ∈ A.

Recall that τa measures the allowable relative deviation from the target average size µa for activity

a. Hence, a value of τa = 0.05 implies that instances are tightly constrained in all activities and

therefore the problem is more difficult to solve than instances that use a larger value of τa. In

previous work [28], experiments have been reported with other values for τa ∈ [0.05, 0.30]. Here we

focus on the most difficult instances.

Throughout the evaluation, the GRASP is run with imax = 500. Based on preliminary ex-

perimentation for fine-tuning the algorithmic parameters for GPR CTDP, we will use the values

reported in Table 1. Showing the fine-tuning of these parameters is out of the scope of this paper.

Table 1: Summary of values used for the algorithmic parameters of GPR CTDP.

Parameter Value Description

δ 0.5 Fraction of nodes assigned with a distance criterion.
k 3 Number of neighbors that are considered for growing a territory.
λ 0.7 Weight parameter in the meritfunction.
α 0.3 RCL quality parameter.
limit evals 1, 000 The maximum number of fitness function evaluations in the local search.
b 20 The number of solutions in the elite set E.
θ 0.6 The distance threshold in PR.
imax 500 Number of global iterations for GPR CTDP.

In the following sections we report the obtained experimental results. We have divided experi-

mental results in three sections that aim at assessing different aspects of the GPR CTDP.

5.2 Assessing the construction and local search procedures within a GRASP

framework

This section describes results of experiments designed to evaluate the effect of the proposed con-

struction and local search procedures. To this end we apply the new construction phase within a

GRASP framework, that is, no PR phase is applied in this experiment. First, we apply the GRASP

with construction phase only and then we apply the complete GRASP with both construction and

local search phases. For each of these, we tested the two different data sets. Figures 5 and 6

show the performance of the construction and local search procedures for DT and DS data sets,

respectively. In each figure we plot the values of the objective, F (S), and infeasibility, G(S), for

each instance and for each mechanism. As expected, from these figures we can see that local search
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improves significantly the construction procedure, in terms of both infeasibility and dispersion. For

both data sets, local search (triangle marker) obtains feasible solutions (i.e., G(S) = 0) for most of

the instances starting from the highly infeasible solutions generated by the construction mechanism

(diamond marker). Besides, there are considerable improvements in terms of F (S) for all of the

instances in the DT data set, see Figure 5. Lower improvements in terms of dispersion are observed

for the DS data set, see Figure 6; although local search always obtained returned better solutions.

It is expected that the PR mechanisms further improve the dispersion of solutions obtained with

plain local search.
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Figure 5: Performance of the construction and local search mechanisms for instances in the DT
data set. We show the values of F (S) (left y−axis) and G(S) (right y−axis).

Table 2 summarizes the performance of the construction and local search procedures across

all instances of both DT and DS data sets. For the dispersion term F (S), we show the relative

deviation between the solution obtained with each procedure and the best known solution for each

instance RDB = (F (S)−F (Sbest)/F (Sbest). The column labeled “local search” indicates that both

construction and local search phases are applied. From this table we can see that the average of the

sum of relative infeasibilities is maintained low in the construction procedure for both data sets.

This result shows that the proposed procedure is able to obtain acceptable solutions in terms of the

degree of satisfaction of the balance constraints despite the fact part of the construction procedure

is based on a purely distance-based criterion.
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Figure 6: Performance of the construction and local search mechanisms for instances in the DS
data set. We show the values of F (S) (left y−axis) and G(S) (right y−axis).

Table 2: Evaluation of the construction and local search procedures of GPR CTDP.

Data set DT DS

Measure / Mechanism Construction Local search Construction Local search

RDB Best 5.81% 0.00% 0.00% 0.00%
Average 34.12% 1.51% 20.91% 14.51%
Worst 81.45% 6.04% 58.28 56.76%

G(S) Best 0.00E + 00 0.00E + 00 2.60E − 01 0.00E + 00
Average 2.37E − 02 0.00E + 00 3.61E − 01 3.01E − 04
Worst 7.06E − 02 0.00E + 00 5.24E − 01 3.55E − 03

After applying local search to the constructed solutions, the dispersion measure F (S) is im-

proved as it shows a reduction in the relative deviation with respect to the best dispersion value.

In the case of the DT data set the solutions obtained with local search are very close to the best

ones in terms of dispersion (average deviation of 1.51%), while for DU there is much more room

for improvement (average deviation of 14.51%). For the DT data set the objective function is

improved in average by 32.61%, while for the DS data set the improvement is of 6.4%. These are

rather important differences that evidence the effectiveness of the proposed local search mechanism.

It is very important to emphasize that dispersion is improved by also considerably reducing G(S).

5.3 GRASP vs. GPR CTDP

This section reports experimental results on the improvements of the PR strategies over the straight

GRASP implementation described in Section 4.1. Table 3 shows the performance of GPR CTDP
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under both static (GPR-ST column) and dynamic (GPR-DY column) PR strategies for DT and

DS data sets. In the table, we compare the performance of GPR CTDP when using PR and when

only GRASP without PR is adopted. We show the relative deviation between the best solution

obtained with each method and the best known solution for each instance.

Table 3: Evaluation of GPR CTDP with static and dynamic PR.

Data set DT DS

Measure GRASP GPR-ST GPR-DY GRASP GPR-ST GPR-DY

RDB Best 0% 0% 0% 0% 0% 0%
Average 1.51% 0.51% 1.27% 14.51% 0.76% 13.92%
Worst 6.04% 3.09% 3.91% 56.76% 11.44% 56.76%

G(S) Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Average 0.00E + 00 0.00E + 00 0.00E + 00 3.01E − 04 2.53E − 04 2.84E − 04
Worst 0.00E + 00 0.00E + 00 0.00E + 00 3.55E − 03 5.07E − 04 3.55E − 03

As we can see, for the DT data set, the improvements obtained with PR over local search are

small yet non-negligible. We believe this result can be due to the fact that we are approaching to

the global optimum for this data set and since the local search procedure provides very competitive

solutions by itself the improvements due to PR are rather small. However, it is important to

emphasize that all of the solutions found with GRASP and GPR CTDP are feasible for this data

set. For this data set the static PR strategy outperformed the dynamic one by less than 1% in

terms of the objective function. For the DS data set the improvements due to PR are larger.

GPR CTDP with static PR outperforms the results of local search by an average of ≈ 13% in

terms of the objective function, whereas the dynamic strategy outperforms local search by less

than 1%. The static variant of PR achieve important improvements in terms of the dispersion

objective (F (S)), while also reducing the infeasibility term.

Finally, it is important to point out that even in the case when GRASP is allowed to run by

itself for an amount of time equal to the total amount of time employed by GPR CTDP, the results

reported by the later are still better. This is due to the fact that the GRASP seems to converge

within the first iterations, thus a better solution is hardly found by GRASP afterwards.

Figures 7 and 8 show the territories obtained with the construction, local search, and PR

GPR CTDP procedures for a particular instance of the DT data set. Figure 7 shows the solution

from a run of the static PR GPR CTDP and Figure 7 shows the corresponding solution for the
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Figure 7: Solutions obtained by the construction, local search and static PR procedures for a
particular instance of the DT data set.
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Figure 8: Solutions obtained by the construction, local search and dynamic PR procedures for a
particular instance of the DT data set.

dynamic PR GPR CTDP. These figures illustrate the advantages of GPR CTDP over the construc-

tion and local search mechanisms. Territories generated after the construction procedure present

infeasibilities. The local search process eliminates infeasibilities and reduces the dispersion objec-

tive. However, the dispersion is further minimized with both PR variants. Visually, it can be seen

that territories generated with local search (center plots) are more disperse than those generated

with GPR CTDP (rightmost plots). For this particular instance, a better solution was obtained

with the static version of PR, which agrees with results presented in this section.

5.4 Static vs. dynamic path relinking

This section elaborates on the difference in performance between the static and dynamic PR variants

of GPR CTDP. From Table 3 we can see that the improvements of static and dynamic GPR CTDP

over local search are of 1% and 0.24% for the DT data set and of 13.75% and 0.59% for the DS data

set (in terms of the objective function). Thus, despite the fact both strategies resulted effective, the

use of the static one is advantageous. We think this can be due to the fact that static GPR CTDP
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explores all of the paths between elite solutions at the end of the search process. Hence a global

picture of the search process is considered during the execution of static GPR CTDP. Dynamic

GPR CTDP on the other hand, explores the paths between every solution processed by local

search and a random solution from the elite set. Since it is not guaranteed that PR is performed

over two competitive solutions, it is less likely that an effective solution can be found after exploring

the paths.

Figure 9 shows the relative deviation of the solutions found with each tested method and the

best known solution for each instance for DT data set. This figure give us more insight into

the performance of the different methods across the instances, it is rather clear that the static PR

strategy obtained the best solutions for most of the instances (those instances for which the relative

deviation is zero), followed by the dynamic PR approach.
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Figure 9: A comparison among the methods in terms of relative deviation from best objective
function value for the DT data set on each individual instance.

Table 4 reports the processing time for each variant of GPR CTDP and for each data set. In

general terms a new territory design can be obtained with either variant of GPR CTDP in a few

hours. This processing times are acceptable, since from the practical standpoint, this decision is

taken every 3-4 months.

One final comment, it was observed that, in the GPR CTDP method, around 80% of the time is

spend in the GRASP and 20% doing the Path Relinking. Therefore, we have empirically observed
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Table 4: CPU time (min) comparison for static and dynamic GPR CTDP.
DT DS

GPR-ST GPR-DY GPR-ST GPR-DY
Best 124.84 119.93 179.74 179.37
Average 136.25 133.70 204.42 200.24
Worst 152.96 150.34 240.30 227.46

that this additional amount of effort pays off significantly.

6 Conclusions

We have introduced a new model in commercial territory design. The new model makes use of a

diameter-based dispersion function instead of the traditional center-based functions.

We have described a GRASP with path relinking (GPR CTDP) for this CTDP. The problem,

motivated by a real-world application, consists of grouping commercial units into geographic terri-

tories subject to dispersion, connectivity and balance constraints. A novel construction procedure

was developed and two variants of PR were explored in GPR CTDP, namely, static and dynamic

PR. The components of GPR CTDP were evaluated and compared extensively in instances that

are known to be very challenging from previous work.

Experimental results show that the proposed construction procedure is able to construct very

competitive solutions, mainly in terms of the dispersion criterion. The local search of the GPR CTDP

improves solutions in terms of both dispersion and balance requirements. Both versions of PR

improve the performance of the application of the construction and local search mechanisms, con-

firming previous work on the combination of GRASP and PR. In particular we found that with

the static PR variant better solutions can be obtained for the TDP. This can be due to the fact

that the PR process is applied over elite instances, which increases the chances of finding a better

solution. In general terms the processing time of both PR variants lies in reasonable ranges for the

application.

We have identified several future work directions in the context of GPR CTDP. In particular

we would like to explore other variants of PR that are known to be very effective, for example,

evolutionary PR. Further, we are interested in the development of an adaptive filtering step that
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allows us to identify pairs of solutions that can be potentially improved by applying PR. This is

in addition to the rules used for updating the set of elite solutions. We think that such a filtering

strategy will have a very positive impact in the efficiency of GPR CTDP. Since we found evidence

that maintaining a set of elite solutions can be beneficial for TDP, we would like to explore the use

of other “population-based” metaheuristics such as scatter search.

It is important to note that the method developed in this work can also be extended and

applied to other districting problems under balancing and connectivity constraints. The presence

of the connectivity constraints make the path relinking process more challenging. For instance,

path relinking has been applied in a different manner in related partitioning problems such as

capacitated clustering [9]. In this particular work, we have successfully exploited the problem

structure by solving an associated Assignment Problem whose solution will guide the relinking

process in a more intelligent fashion. To the best of our knowledge this PR idea is novel and

worthwhile for further exploration in other districting or clustering problems under connectivity

constraints.
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[28] R. Z. Ŕıos-Mercado and E. A. Fernández. A reactive GRASP for a commercial territory design

problem with multiple balancing requirements. Computers & Operations Research, 36(3):755–

776, 2009.

[29] R. Z. Ŕıos-Mercado and J. C. Salazar-Acosta. A GRASP with strategic oscillation for a

commercial territory design problem with a routing budget constraint. In I. Batyrshin and

G. Sidorov, editors, Advances in Soft Computing, volume 7095 of Lecture Notes in Artificial

Intelligence, pages 307–318. Springer, Heidelberg, Germany, 2011.

[30] M. A. Salazar-Aguilar, R. Z. Ŕıos-Mercado, and M. Cabrera-Ŕıos. New models for commercial

territory design. Networks & Spatial Economics, 11(3):487–507, 2011.

[31] F. Tavares Pereira, J. Rui Figueira, V. Mousseau, and B. Roy. Comparing two territory

partitions in districting problems: Indices and practical issues. Socio-Economic Planning

Sciences, 43(1):72–88, 2009.

[32] A. A. Zoltners and P. Sinha. Sales territory alignment: A review and model. Management

Science, 29(11):1237–1256, 1983.

[33] A. A. Zoltners and P. Sinha. Sales territory design: Thirty years of modeling and implemen-

tation. Marketing Science, 24(3):313–331, 2005.

29


