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Abstract

As wafer sizes increase, the clustering phenomenon of defects increases. Clustered defects cause the conventional Poisson yield model
underestimate actual wafer yield, as defects are no longer uniformly distributed over a wafer. Although some yield models, such as neg-
ative binomial or compound Poisson models, consider the effects of defect clustering on yield prediction, these models have some draw-
backs. This study presents a novel yield model that employs General Regression Neural Network (GRNN) to predict wafer yield for
integrated circuits (IC) with clustered defects. The proposed method utilizes five relevant variables as input for the GRNN yield model.
A simulated case is applied to demonstrate the effectiveness of the proposed model.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Wafer yield is an important index of success used in inte-
grated circuits (IC) manufacturing. Wafer yield is defined
as the probability that a chip on a wafer has no defect.
Defects are physical anomalies which result in circuit
faults; dirt particles are the primary source of defects in
IC manufacturing (Ferris-Prabhu, 1992).

Numerous mathematical models have been developed
for predicting wafer yield in the last 40 years (Cunningham,
1990; Stapper, 1991; Stapper & Rosner, 1995; Tyagi &
Bayoumi, 1992). Most of these models treat wafer yield
as a function of chip size, mean number of defects per chip
and the average number of defects per unit area; the
Poisson model, compound Poisson models and negative
binomial model are examples such models (Cunningham,
1990). The Poisson model is the simplest model to use;
however, to successfully predict wafer yield, defect must
occur independently with constant probability of occurring
in any small area on a wafer (Albin & Friedman, 1991). If
these assumptions hold, defects are uniformly scattered
over a wafer. However, Stapper (1985) reported that
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defects are typically clustered rather than dispersed ran-
domly over a wafer, and this distribution becomes more
evident as wafer size increases. Clustered defects usually
violate the independence assumption of the Poisson model.
The Poisson model, therefore, underestimates actual yield
when defects cluster.

Under this scenario, numerous yield models obtain
more accurate yield predictions than the Poisson model.
Compound Poisson yield models are complicated and only
evaluate the relationship between chip size and yield
(Cunningham, 1990). The cluster parameter a of the nega-
tive binomial model can be very scattered and negative
when the model is applied to predict yield (Cunningham,
1990). Consequently, these mathematical yield models have
particular problems in predicting wafer yield. Dupret and
Kielbasa (2004) use the partial least square (PLS) regres-
sion methods to model the yield from measurements
obtained during the production. However, an advanced
statistics is needed to use the PLS regression methods.
Neural networks can handle problems such as recognizing
complicated patterns and fitting nonlinear functions. Back-
Propagation Neural Network (BPNN), known for its
general pattern-mapping capability, can be applied to
numerous prediction problems and always performs well
(Bishop, 1994; Fausett, 1994). However, obtaining good
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prediction network requires substantial effort to identify
BPNN’s parameters, such as the number of hidden layers,
number of hidden units, learning rate and momentum.
Furthermore, the BPNN model has certain problems such
as local optimal solution, overtraining and undertraining.
Compared with BPNN, the General Regression Neural
Network (GRNN) model has numerous advantages: learn-
ing is fast; only one parameter is required; there are no
overtraining or undertraining problems; and, the likelihood
of obtaining a global optimal solution is higher than with
BPNN.

This study presents a novel yield model which employs
GRNN to predict wafer yield with clustered defects. The
proposed GRNN yield model utilizes five relevant variables
as input variables to predict the wafer yield: number of
defects; chip size; mean number of defects per chip; mean
number of defects per unit area; and, clustering index.
The prediction accuracy of the proposed approach is com-
pared with those of the negative binominal yield model and
the BPNN yield model. A simulated case is presented to
demonstrate the effectiveness of the proposed approach.

2. Yield models

The Poisson yield model (Ferris-Prabhu, 1992), which is
based on the Poisson distribution, is

Y 1 ¼ P ðk ¼ 0Þ ¼ e�k0 ; ð1Þ
where k represents the number of defects in a chip and k0

represents the mean number of defects per chip. The Pois-
son yield model was sufficiently effective for small chip sizes
and tended to underestimate yields for larger chip sizes
(Cunningham, 1990). To identify the clustering properties
of defects in the yield model, some spatial distributions,
including compound Poisson distributions, have been con-
sidered (Raghavachari, Srinivasan, & Sullo, 1997). The
compound Poisson yield model replaces defect density,
which is assumed to be a constant in the Poisson yield mod-
el, with a probability density function. The compound
Poisson yield model can be described as

Y ¼
Z 1

0

e�DAf ðDÞdD; ð2Þ

where D represents the defect density, A represents the chip
size and f(D) represents the probability density function of
defects. The compound Poisson yield model is complex and
only considers relations between chip size and yield.

The negative binomial yield model, which is a widely
applied yield model, employs a gamma function for the dis-
tribution of defect density (Okabe, Nagata, & Shimada,
1972; Stapper, 1973). The negative binomial distribution
can be described as

P ðkÞ ¼ Cðk þ aÞð�k=aÞk

k!CðaÞð1þ �k=aÞkþa ; k ¼ 0; 1; 2; . . . ; ð3Þ

where �k and a are parameters of the negative binomial dis-
tribution. The negative binomial yield model is
Y 2 ¼
1

ð1þ �k=aÞa
: ð4Þ

Parameter a, called the cluster parameter, can be calculated
as

a ¼
�k2

ðr2 � �kÞ
; ð5Þ

where �k is the mean number of defects per chip and r2 is
the variance. The negative binomial model has been shown
to be a powerful prediction model in IC manufacturing
(Cunningham, 1990). However, reports also show that
the cluster parameter a in the negative binomial model
can be very scattered and negative when the model is used
to predict yield (Cunningham, 1990).

Langford, Liou, and Raghavan (2001) presents a simple
robust windowing method for the Poisson yield model to
extract the systematic and random components of yield
from wafer probe bin map data. Liou et al. (2002) presents
a statistical modeling of MOS devices for parametric yield
prediction. Skinner et al. (2002) discuss two classes of tradi-
tional multivariate statistical methods and a classification
and regression tree (CART) method for modeling and anal-
ysis of wafer probe test data to determine the cause of low
yield wafers. Meyer and Park (2003) present a center-satel-
lite model to Predicting defect-tolerant yield in the embed-
ded core context. Dupret and Kielbasa (2004) presents
partial least square (PLS) regression methods to model
the yield from measurements obtained during the produc-
tion. Hong, Milor, Choi, and Lin (2005) utilize two models
which are derived from the Poisson yield model and the neg-
ative binomial yield model for the effect of area scaling on
IC reliability. Kim and Baldwin (2005) present a theoretical
yield model for assembly process of area array solder inter-
connect process. Other yield models used in various compa-
nies are summarized in Stapper and Rosner (1995).

In summary, existing wafer yield models have significant
limitations: clustered defects cause the conventional Pois-
son yield model to underestimate wafer yield; the com-
pound Poisson yield model is too complex; the cluster
parameter a of the negative binomial model can be sub-
stantially scattered and sometimes negative; and, many
parameters must be set when applying the BPNN model.
Such drawbacks affect performance when these models
are employed to predict yield. The most accurate models
are the negative binomial (Cunningham, 1990; Stapper,
1973) and BPNN network (Bishop, 1994; Fausett, 1994)
yield models. Only these two models, therefore, were
selected for comparison in this study.

3. General regression neural network implementation

The major difference between GRNN and other super-
vised neural networks is that GRNN can treat continuous
valued outputs and categorize data, and there are fewer
training parameters are required, such as the number of
hidden layers, number of hidden units, learning rate and
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momentum, than in BPNN. Moreover, GRNN can be used
for any regression problem in which a linearity assumption
is violated, and it converges fast on the optimal regression
surface as the number of samples becomes substantially
large. The GRNN model, then, is used in this study to pre-
dict wafer yield.

Fig. 1 shows the three-layer network of the GRNN
model (Specht, 1991). Input units are merely distribution
units which forward measurement variables to the pattern
units in the second (hidden) layer. This hidden layer con-
sists of one neuron for each pattern in the training pattern.
The GRNN is essentially trained after one pass of the
training patterns and its activation function normally uses
an exponential function. The unique parameter of GRNN
is the smoothing factor r which influences the output value;
that is, high smoothing factors produce increased relaxed
surface fits throughout the data.

Unlike the conventional regression model, GRNN can
be defined through its joint continuous probability density
function, rather than utilizing a specified function that
must be determined in advance. Assume that f(x,y) repre-
sents the known joint continuous probability density func-
tion of a vector variable, x, and a scalar random variable,
y; the regression of y on X, then, is

E½yjx ¼ X� ¼
R1
�1 yf ðX; yÞdyR1
�1 f ðX; yÞdy

: ð6Þ

When the density f(x,y) is unknown, it must be estimated
by observations of x and y. The GRNN model utilizes a
Parzen (1962) window, which is a nonparameter approach
to estimating the joint continuous probability density func-
tion f(x,y). The estimator can be represented as

f̂ ðX; Y Þ ¼ 1

ð2pÞðpþ1Þ=2rðpþ1Þ
� 1

n

Xn

i¼1
exp �ðX� XiÞTðX� XiÞ

2r2

" #

� exp �ðY � Y iÞ2

2r2

" #
; ð7Þ
Fig. 1. GRNN block dia
where p is the dimension of x, r is the smoothing parame-
ter, Xi and Yi are sample values of observations x and y;
and n is the number of sample observations. Combining
Eq. (6) and (7), Eq. (8) can be obtained as

bEðyjXÞ ¼ Y
_

ðXÞ

¼
Pn

i¼1 exp � ðX�XiÞTðX�XiÞ
2r2

h i R1
�1 y exp � ðy�Y iÞ2

2r2

h i
dyPn

i¼1 exp � ðX�XiÞTðX�XiÞ
2r2

h i R1
�1 exp � ðy�Y iÞ2

2r2

h i
dy

:

ð8Þ

Eq. (8) can be further simplified as Eq. (9), which is given
by

bY ðXÞ ¼Pn
i¼1Y i exp � D2

i
2r2

h i
Pn

i¼1 exp � D2
i

2r2

h i ; ð9Þ

where D2
i ¼ ðX� XiÞTðX� XiÞ.

The GRNN model utilizes Eq. (9) to estimate y.
Typically, the activation function of GRNN network is

exponential, as shown in Eq. (10):

f ðD2
i Þ ¼ exp � D2

i

2r2

� �
: ð10Þ

A new vector X is subtracted from the stored pattern vector
when it enters the network. The squares of the difference
are summed and input into the activation function in Eq.
(10). Those values which pass through the activation func-
tion are the pattern unit outputs and are forwarded to the
summation units. The summation units proceed to sum the
dot product between a weight vector and the pattern unit
outputs to generate an estimate as shown in Eq. (11).Xn

i¼1

exp � D2
i

2r2

� �
: ð11Þ
gram (Specht, 1991).
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Conversely, the summation units sum the dot product
between the samples Yi and the pattern unit outputs to
generate an estimator as shown in Eq. (12).Xn

i¼1

yi exp � D2
i

2r2

� �
: ð12Þ

Finally, the output unit divides Eq. (12) by Eq. (11) to ob-
tain the desired estimate of y, which is the same as Eq. (9).

GRNN measures how far a given sample pattern is from
patterns in the training set. When a new pattern is pre-
sented to the network, the input pattern is compared to
all of the patterns in the training set to determine how
far it is from those patterns. The output that is predicted
by the network is a proportional amount of all of the out-
puts in the training set. The proportion is based upon how
far the new pattern is from the given patterns in the train-
ing set. GRNN uses an algorithm to find appropriate indi-
vidual smoothing factors for each input as well as an
overall smoothing factor. The algorithm proceeds in two
parts. The first part trains the network with the data in
the training set. The second part tests a whole range of
smoothing factors. The method will produce networks
which work much better on the test set.

The performance of neural networks can be measured
by a root-mean squared error (RMSE), which can be calcu-
lated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðAi � OiÞ2

n

s
; ð13Þ

where n represents the number of patterns, Ai represents
the actual value of output and Oi represents the predicted
value. Another indicator for measuring the strength of
the relationship between the actual and predicted outputs
Fig. 2. A simple representation of
is the Pearson’s linear correlation coefficient r. In this
study, RMSE and r are applied to evaluate the perfor-
mance of the negative binomial, BPNN and the proposed
GRNN yield model.

4. Proposed approach

4.1. Defect clustering patterns

A major cause affecting yield is the degree to which
defects are clustered (Friedman, Hansen, Nair, & James,
1997; Stapper, Armstrong, & Saji, 1983). Hence, the defects
clustering phenomenon must be integrated when construct-
ing a yield model. In this study, Borland Delphi program-
ming language is employed to simulate a variety of defect
clustering patterns for 8-in. wafers. Fig. 2 presents a simple
representation of defect clustering patterns. Three design
factors are employed in this study to simulate defect clus-
tering patterns: the cluster pattern; percentage of defects
located on grey regions; and, chip size. The following is a
brief description of these three design factors.

(1) Cluster pattern: Fig. 2 presents one random pattern
and four clustering patterns (Friedman et al., 1997).
The defects in a random pattern are distributed ran-
domly over the entire wafer. Distribution of defects
in the four clustering patterns depends on the per-
centage of defects located in grey region. Grey region
represents the defect-dense areas.

(2) Percentage of defects located on grey regions: In the
four clustering patterns, four percentages, 60%,
70%, 80% and 90%, of the total number of defects
are located in grey regions, and the remaining defects
are distributed randomly.
the defect clustering patterns.
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(3) Chip size: Six chip sizes are considered: 1(1 · 1),
1.44(1.2 · 1.2), 1.96(1.4 · 1.4), 2.56(1.6 · 1.6),
3.24(1.8 · 1.8), and 4(2 · 2) cm2.

From these three design factors, a total of 102 simula-
tion trials can be obtained. For each simulation trial, up
to 292 defects are obtained randomly. The number of
defects obtained randomly creates simulations that are sig-
nificantly close to real IC manufacturing conditions. The
maximum number of chip that can be cut in an 8-in. wafer
is 292. Therefore, the number of defects are simulated up to
292 defects to reduce the possible influence of outliers.
Each simulation trial represents one defect clustering
pattern.
4.2. Procedure of the proposed approach

Models of predicting yield can be classified into macro
yield modeling and micro yield modeling. Macro yield
modeling uses die size, device density, and other large-scale
factors to predict yields for new designs. Micro yield mod-
eling uses critical device area, parametric sensitivity, redun-
dancy effect, and other factors to predict yields (Mullenix,
Zalnoski, & Kasten, 1997). Gruber’s general yield model
(Gruber, 1994) is the most recognized model in Macro
yield modeling, and can be described as

Y ¼ Y 0ðD;A; hÞLðY Þ; ð14Þ

whereY0 represents the asymptotic yield, which is a real-
valued function of D, A, h, and; D represents point defect
density per unit area, A represents chip area, h represents
a set of parameters unique to the specific yield model,
L(Y) represents a real-valued function describing learning
effects. In this study, there are numerous attributes that
can be obtained from each defect clustering pattern by sim-
ple calculation: number of defects; chip size; mean number
of defects per chip; mean number of defects per unit area;
and, clustering index CI (Jun, Hong, Kim, Park, & Park,
1999). The clustering index CI can be calculated as

CI ¼ min
s2

v

�v2
;

s2
w

�w2

� �
; ð15Þ

where vi and wi are a sequence of defect intervals on the x
axis and y axis defined as

vi ¼ xðiÞ � xði�1Þ; i ¼ 1; 2; . . . ; n;

wi ¼ yðiÞ � yði�1Þ; i ¼ 1; 2; . . . ; n;

where x(i) and y(i) denote the ith smallest defect coordinates
on the x axis and y axis, respectively; �v and s2

v represent the
sample mean and the sample variance of vi, respectively; �w
and s2

w denote the sample mean and the sample variance of
wi, respectively. The value of CI is close to 1 if the defects
are randomly scattered, and the value of CI is expected to
be greater than 1 if defects are clustered. These attributed
values are input into the GRNN yield model, whereas
the only output of GRNN yield model is the actual wafer
yield. The number of replications for each simulation is
10; hence, a total of 1020 pairs of input–output data are
obtained to train and test the GRNN yield model.

The Poisson yield model is easy to apply; however, the
effect of defect clustering is not considered by the conven-
tional model. This study, proposes a GRNN yield model
to predict wafer yield. The proposed approach assumes
that wafer yield is affected by each wafer defect. Under this
assumption, the proposed approach for the wafer yield pre-
diction in IC manufacturing can be described as follows:

Step 1: Determine the defect clustering pattern. Obtain the
simulated defect wafer map. Utilize Borland Del-
phi programming language to simulate all possible
defect clustering patterns for 8-in. wafers.

Step 2: Calculate all attributed values for each pattern.
For each defect clustering pattern on a wafer, cal-
culate the following attributed values of patterns:
number of defects; chip size; mean number of
defects per chip; mean number of defects per unit
area; and, clustering index CI.

Step 3: Build a GRNN yield model. Input the attributed
values in Step 2 into the GRNN yield model.
The actual yield of the wafer is the only output
of the GRNN yield model. The percentage of the
chip without defects on a wafer is used as the
actual yield value of the wafer. In this study, the
neural networks package NeuroShell 2 is
employed to train and test the GRNN network.
A trained GRNN network can be obtained after
a few training patterns have been input. Finally,
the trained GRNN network produces the net-
work’s prediction for each pattern in the test set.

Step 4: Calculate predicted yields. Input the attributed
values in Step 2 into the negative binomial yield
model to derive the predicted yields of the model.
Then build the BPNN yield model as in Step 3
to obtain the predicted yields for the BPNN yield
model.

Step 5: Predict and analyze the wafer yield. Utilize the pre-
dicted yields obtained by the negative binomial
yield model, BPNN yield model and the proposed
GRNN yield model to predict the actual yields for
the wafer and compare these three yields.

5. Implementation

5.1. A simulation study

This section presents a simulation study to demonstrate
the effectiveness of the proposed approach. The data
required in this simulation study are obtained by employ-
ing the Borland Delphi programming language to simulate
a variety of defect clustering patterns for 8-in. wafers. A
total of 102 combinations for simulation trials are obtained
by combining the three design factors outlined in Section 4.



Fig. 3. The relationships between the predicted and actual yields for the
negative binomial, BPNN and proposed yield models.

Table 1
The comparisons of RMSE and correlation coefficients between predicted
and actual yields

Yield model RMSE Correlation coefficient

Negative binomial yield model 0.1203 0.8838
BPNN yield model 0.0960 0.9030
Proposed yield model 0.0914 0.9127
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The number of replications is 10 in each simulation; hence,
a total of 1020 pairs of input–output wafer attributed
values are obtained and used to train and test the GRNN
network. These wafers are divided into two parts: one
part contains 816 wafers which are used to train the
GRNN network; and, the second part contains 204 wafers
which are employed to test the accuracy of the GRNN
network.

These attributed values and the actual yields of 1020
wafers are, respectively, utilized as the inputs and output
for the proposed GRNN network. The percentage of the
chip without defects on a wafer is used as the actual yield
value of the wafer. NeuroShell 2 is utilized to train and test
the GRNN network. Trained GRNN network are
obtained after inputting the 1020 training patterns. Finally,
the trained GRNN network is utilized to produce the net-
work’s prediction of yields for these 204 test patterns. In
this study, the unique parameter of GRNN network, that
is, the smoothing factor r, is set at 0.076, and training is
terminated when the error with no improvement of 1%.

Substitute the attributed values of these identical 204
simulated wafers, respectively, into the negative binomial
yield model to calculate the predicted yields of the model.
Then build a BPNN yield model to obtain the predicted
yields for the same wafers. The BPNN network in this
study are constructed as three layers (Hornick, Stinch-
combe, & White, 1990), with input and output units the
same as those in the proposed GRNN network and 17 hid-
den units (Widrow, Winter, & Baxter, 1987). The learning
rate and momentum are 0.6 and 0.9, respective, which are
the defaults in NeuroShell 2. The learning epochs are
10,000. To evaluate the performance of these yield models,
the relationships between the predicted and actual yield are
evaluated. The proposed GRNN yield model (Fig. 3) effec-
tively estimates the actual yield. Table 1 presents the com-
parisons of RMSE and correlation coefficients r for these
three predicted yields and the actual yields. A low RMSE
value and high r value indicates that the yield model per-
forms better than the other models. The RMSE of the pro-
posed approach is 0.0914, which is the smallest value of
these three RMSEs, and the correlation coefficient is
0.9127, which is the largest value of these three correlation
coefficients. These findings reveal that the proposed
approach precisely estimates wafer yield, and more accu-
rately predicts yield than the other models.

The influences of each of the following three designed
factors on the wafer yield are analyzed: cluster pattern; per-
centage of defects located on grey regions; and, chip size.
The RMSE and correlation coefficients r are applied to
analyze the performance of the negative binomial, BPNN
and the proposed GRNN yield model. Table 2 shows the
RMSE and correlation coefficients of these three yield
models for three designed factors. Table 2 reveals that
the proposed approach produces the best prediction for
wafer yield of the three yield models.

This study varies the simulated wafer sizes from 6 to
12 in., and compares the prediction results for wafer yield
from the three yield models. The simulation procedure is
the same as that in the previous simulation. Table 3 sum-
marizes the prediction results for three wafer sizes. Table
3 reveals that the proposed approach performs best of these
three yield models regardless of wafer size. This simulation
obtains the same result as obtained in the 8-in. wafer sim-
ulation; that is, the proposed model performs best, and is
followed by the BPNN yield model and the negative bino-
mial yield model. The performance of the proposed
approach and the BPNN yield model are very close
and are better than that of the negative binomial yield
model.

Although the performance of the proposed GRNN yield
model is slightly better than the BPNN yield model, the
proposed GRNN yield model has numerous advanta-
ges over the BPNN yield model. The GRNN yield
model learns quickly and requires only one parameter.



Table 2
The RMSE and correlation coefficients of these three yield models for three design factors

Design factor Level Negative binomial BPNN Proposed GRNN

RMSE Correlation coefficient RMSE Correlation coefficient RMSE Correlation coefficient

Cluster pattern Random 0.0989 0.9465 0.0506 0.9716 0.0214 0.9947
Bull’s eye 0.1225 0.7785 0.0622 0.927 0.0386 0.9732
Crescent Moon 0.1315 0.8221 0.0884 0.847 0.0848 0.8599
Bottom 0.1218 0.7833 0.0977 0.7951 0.0977 0.8066
Edge 0.1463 0.831 0.0722 0.9371 0.0691 0.9466

Percentage 60% 0.1136 0.9239 0.0433 0.9801 0.0464 0.9807
70% 0.1312 0.8686 0.0511 0.9687 0.0496 0.9701
80% 0.1287 0.8332 0.0481 0.9511 0.0462 0.9558
90% 0.1359 0.9009 0.0622 0.9256 0.0577 0.9324

Chip size 1 0.1626 0.9529 0.0671 0.9191 0.0626 0.9255
1.44 0.098 0.9018 0.1191 0.7168 0.084 0.8766
1.96 0.0628 0.9503 0.1075 0.8212 0.0839 0.9002
2.56 0.0819 0.9197 0.1381 0.7185 0.0939 0.8824
3.24 0.1526 0.8155 0.1118 0.8047 0.0848 0.9039
4 0.153 0.9078 0.1476 0.7409 0.1128 0.8616

Table 3
The prediction results for three wafer sizes

Wafer size The actual yield Yield model The predicted yield RMSE Correlation coefficient

Average Std. dev. Average Std. dev.

6-in. 0.6610 0.2070 Negative binomial 0.6350 0.2348 0.1225 0.8597
BPNN 0.6538 0.1939 0.0854 0.9114
Proposed GRNN 0.6593 0.1906 0.0836 0.9145

8-in. 0.5662 0.2207 Negative binomial 0.5784 0.2561 0.1203 0.8838
BPNN 0.5599 0.2142 0.0960 0.9030
Proposed GRNN 0.5666 0.1852 0.0914 0.9127

12-in. 0.7007 0.1584 Negative binomial 0.7517 0.1772 0.0902 0.9073
BPNN 0.6955 0.1365 0.0667 0.9085
Proposed GRNN 0.7045 0.1393 0.0529 0.9448
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Furthermore, the proposed GRNN yield model has no
overtraining or undertraining problems and the likelihood
of obtaining a global optimal solution is higher than that of
a BPNN yield model.
6. Conclusion

As wafer size increases, the clustering of defects
increases. Under this scenario, the conventional Poisson
yield model cannot predict wafer yield. In this study, a pro-
posed neural network-based approach is presented for
defect clustering patterns to predict the wafer yield in IC
manufacturing. The GRNN network is used to construct
the yield model that can accurately predict wafer yield.

The merits of the proposed approach are as follows:

1. The proposed approach utilizes five relevant variables as
input variables to predict the wafer yield, rather than
utilizing only some of those variables as do the Poisson
yield model, compound Poisson yield models and the
negative binomial yield model. Therefore, the proposed
model is more accurate than both the negative binomial
and BPNN yield model.
2. The influences of each of the three designed factors on
the wafer yield are analyzed. The RMSE and correlation
coefficients of these three yield models for three designed
factors reveals that the proposed approach produces
the best prediction for wafer yield of the three yield
models.

3. This study varies the simulated wafer sizes from 6 to
12 in., and compares the prediction results for wafer
yield from the three yield models. This simulation
obtains the same result as obtained in the 8-in. wafer
simulation regardless of wafer size.

4. The proposed GRNN yield model is fast learning
and requires only one parameter to identify for the
learning.

5. The proposed approach does not need to construct a
complex mathematical yield model and more advanced
statistics skill – it only requires a neural network pack-
age to predict wafer yield.
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