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Abstract. Infhrence diagrams have been used effectively in applied decision analysis to model complex ~. 
systems, identify probabilistic dependence and characterize the flow of information. Their graphical 
representation and intuitive framework are particularly effective in representing knowledge from experts 
with diverse backgrounds and varying degrees of technical proficiency. They allow both a symbolic 
representation of the system interrelationships and a quantitative measure that can be of discrete or con- 
tinuous functional form. By exploiting this abstraction hierarchy. successive degrees of specification can 
be made by several individuals. each encoding his or her expert knowledge of the problem and bounds 
on critical parameters. It is proposed that an interactive computer program that automates this influence 
diagram technology would provide an excellent tool for building expert systems. This paper describes 
such a modeling tool: the IDES (Influence Diagram Based Expert System) developed at the University of 
California at Berkeley as a modeling tool for building expert systems requiring reasoning with uncertain 
or incomplete information. The Diagnostician’s Problem is presented as a tutorial for describing the 
IDES solution procedure. 
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INTRODUCTION WHAT ARE INFLUENCE DIAGRAMS? 

Human beings possess an unparalleled ability for processing 
complex types of information and for making inferences 
based on this knowledge. First generation expert systems 
try to capture human knowledge by means of logic predi- 
cates or If-Then statements that involve measurable and 
quantifiable parameters. Consider the following example 
from MYCIN, a well known rule-based medical diagnostic 
expert system (Buchanan et al.. 1984:82). 

MYCIN RULE NO. 37: 

IF: I) The idenrirv of’rhe organism is no! known 
nith ccrruintr und 

2) The stuln of rhc organtsm IS gamneg and 
3) The morphotqw ofrhr organism is rod, and 
4) The aerohiclrl, of rhr or,anism is aerobic 

THEN: There is .srrongI~~ .srcgg:‘.rrr ve evidence (0.8) that 
the class of /he orgun~sm IS mrerobacleriaceae. 

Following this rule. a conclusion about the class of organism 
present can be drawn (with a certain degree of confidence) 
from satisfaction of all of the antecedents. 

Influence diagrams were conceived of and developed by 
researchers in the Decision Analysis Group at SRI Interna- 
tional in order to automate the modeling of complex deci- 
sion problems involving several uncertain variables (Miller 
et a1.,1976). Knowledge of the interrelationships between 
variables is represented in a compact graphical and numeri- 
cal framework which identifies the critical variables and 
explicitly reveals any conditional independence between 
them. Although the original objective in the development of 
influence diagrams was for computer-aided modeling. they 
have been used effectively in improving communication 
among people. Use of influence diagrams in participative 
modeling of complex decision problems is described in 
Owen (1978) and Howard and Matheson (1984). A direct 
solution procedure to automate influence diagrams has been 
developed by Olmsted (1984) nd formalized in algorithmic 
form by Shachter (I 984a&b). The application of influence 
diagrams as a development tool for building expert systems 
has been proposed by Agogino (1985) and Holtzman ( 1985). 

In addition to explicit rules of Inference like those in 
MYCIN, human beings also have unique skills in holistic 
reasoning, in the use of intuition. in deciding what parame- 
ters or variables are important to a problem. and in know- 
ing what questions to ask when more information is needed, 
We are able to synthesize the interrelationshtps of complex 
problems and gam quahtative insights about them. If a 
computerized system is expected to capture any of this 
deeper human knowledge. it should at least be able to 
represent and process expert knowledge in both a symbolic 
and numeric fashion. As with the example from MYCIN. 
the inference mechanism and representation must be able to 
work with the uncertainties and imprecise data of both the 
material world and the human mind. The approach 
presented in this paper is based on the intuitive graphical 
framework of influence diagrams coupled with the powerful 
Bayesian inference engine and automation algorithms sup- 
porting them. In the next section. we review the theoretical 
framework for the IDES (Influence Diagram Based Expert 
System) 

An influence diagram can be interpreted at several levels: (I) 
relational, (2) functional, and (3) numerical. On the rela- 
tional or symbolic level the nodes in the influence diagram 
represent the important variables in the system being 
modeled and the directed arcs identify conditional 
influences between them. The nature of these influences is 
specified at the functional level and further quantified at the 
numerical level. 

Relational Level 

This is perhaps the most powerful level of the diagram. An 
influence diagram at the relational level is a graphical 
representation of the interrelationships between the vari- 
ables involved in the problem under examination. It reveals 
visually the flow of information. influences, and the overall 
structure of the problem. 

Three different kinds of nodes will be considered in building 
an influence diagram: 1) state (circular nodes), 2) decision or 
control (rectangular nodes). and 3) value nodes (diamond- 
shaped). Addition or deletion of nodes is analogous to simi- 
lar operations on rules in rule-based expert systems but the 
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effect of the same is much more apparent and intuitive with 
influence diagrams. 

State Variables 

Consider the following two-state variable influence diagram 
shown in Figure 1. The circular nodes represent two state 
variables, x and y, and the arc can be considered informally 
to signify that a conditional influence may exist. On the 
relational level, one interpretation of the influence diagram 
in Figure 1 is : “x may influence J’“. A variable x is said to 
influence a state variable )’ if given information about x 
tells you something about J’. However, this should non be 
interpreted to mean that x causes .r_ No sense of causality 
is implied. 

Conversely, if knowing x gives you no new information 
about state variable I’, then variables x and .r are said to be 
independenf and no influence exists between them. This 
strong information about the interrelationship (or rather 
lack of) between variables x and y is signified by the 
absence of an arc between the corresponding nodes as illus- 
trated in the influence diagram in Figure 2. 

It should be noted that the lack of an arc is in some ways a 
stronger statement of our knowledge than the existence of 
an arc. The presence of an arc indicates that a possible 
dependency exists, while the lack of an arc states that no 
dependency exists. In other words. an arc can be thought of 
as representing our state of ignorance rather than our state 
of knowledge. 

Decision Variables 

In addition to state variables, influence diagrams represent 
decision or control variables by square nodes, following the 
same symbolism used in decision trees. The nature of an 
influence arc going into a state node and that going into a 
control node is conceptually and mathematically distinct. 
Arcs leading into state nodes represent conditional 
injluences as discussed previously. Two examples of 
influence arcs are shown in Figure 3: probabilistic and 
fuzzy. Arcs going into decision or control nodes represent 
informational influences and show exactly which variables 
will be known by the decision maker or controller at the 
time that the decision is made. An arc from a decision 
node to a chance node indicates causality in the sense that 
the selection of one decision option over the other choices 
restricts, in general, the space or the universe of values the 
state variable can take on. Thus the meaning of an arc must 
be viewed relative to the types of nodes it connects. 

Control nodes are the only nodes where the directions of the 
arcs (to and from control nodes) are immutable aspects of 
the structure of an influence diagram and should not be 
reversed unless the intent is to reformulate the problem. 
Although not always shown explicitly. it is assumed that 
once a decision has been made. that decision is not forgot- 
ten. Hence the term no-jhgnring arcs is used to signify the 
invisible but implicit arcs between decision nodes which 
must always appear sequentially in time. 

Value Function 

The value jimction, signified by a diamond-shaped value 
node is a model of the objectives of the decision maker or 
computer system user. There can be at most only one value 
node in an influence diagram. However, as will be applied 
in the diagnostic expert system example. the location of the 
value node will vary depending on the question being asked 
of the expert system. 

Structural Matrix 

In a more rigorous sense, but still at the symbolic or rela- 
tional level, the influence diagram can be defined as an acy- 
clic directed graph consisting of N variables represented by 
N nodes and a set of directed arcs between them. This rela- 
tional information may be captured in a structural matrix 
that relates direct predecessors to each node in the diagram. 
A node j is called a direct predecessor of node i if and only 
if (itI) there is an influence arc directed from node j into 
node i. 

0 
FIG. 1. x influences J 

a 0 
FIG. 2. x is independent of y 

Probabilistic 

o-----: 0 Fuzzy 

Informational 

CallSal 

04 

‘No-Forgetting’ 

FIG. 3. Five Interpretations of Arcs 

The N xN structural matrix A for an influence diagram of N 
nodes (each representing a distinct state or control variable) 
is a Boolean matrix of elements n,, defined as follows: 

o’J = 1 

I if the ith node is a direct predecessor of the jth node 

0 if the ith node is not a direct predecessor of the jth node 

A node j is called a direct successor of node i iff there is an 
influence arc directed from node i into node j. The tran- 
spose of the structural matrix, A’, represents the Boolean 
matrix of direct successors in an influence diagram. 

Although this relational information may appear trivial, the 
existence or lack of influence and independence between 
variables is an important part of understanding any complex 
problem. Too often expert systems will assume indepen- 
dence at a certain level or between levels in hierarchical 
data structures, such as semantic nets, to simplify the data 
storage and computational complexity. Various forms of 
conditional independence were assumed in PROSPECTOR 
(Duda et al., 1978 and Pednault et al., 1981) and MYCIN 
(Buchanan et al., 1984). The philosophy behind modeling 
with influence diagrams, is that this structural information 
is important domain knowledge of the problem, and should 
be captured along with more in-depth rules and numerical 
measures. This structural information is represented in a 
graphical fashion that experience has shown to be intuitive 
to many experts regardless of their level of mathematical 
proficiency. A knowledge of the mathematical calculus 
behind influence diagrams is not needed to model at the 
relational level. 

Functional Level 

In what follows, we shall outline the Bayesian or probabilis- 
tic approach to manipulating influence diagrams. It should 
be pointed out that influence diagrams on the relational 
level do not need a probabilistic basis to justify themselves. 
Rather probabilistic analysis is one approach to the deeper 
level interpretation of an influence diagram. Although not 
discussed in this paper, it is possible to incorporate other 
logics or inference techniques into the framework of the 
influence diagram (e.g., fuzzy logic and first-order predicate 
calculus) when appropriate. 



IDES 229 

Mathematical Definition of Influence conditional independence between the variables involved. 

An influence between two random variables x and y is said 
to exist iff (y ) x,ff) # (y 1 H), where the inferential notation 
(y ( x, H) represents the probability distribution for y condi- 
tioned on x and the history or state of information H 
(Owen, 1978). 

Arc Reversals 

If the functional influence of y given x in Figure 1 is proba- 
bilistic, the influence diagram represents one expansion of 
the joint probabilities of state variables x and y: (x,y 1 H). 
Regardless of whether x and y are probabilistically indepen- 
dent, the probabilistic expansion represented by the 
influence diagram in Figure I can be written: 

The framework for arc reversals was established in previous 
sections. We shall now study a heuristic justification of the 
rules for the same. Arc reversals in an influence diagram 
should be performed such that they are consistent with the 
probabilistic information the diagram represents at the 
numerical and functional levels. Any rules for arc reversals 
must be therefore justified in terms of the calculus of condi- 
tional probabilities. As an example, consider the arc rever- 
sal between nodes x and z in the influence diagrams in Fig- 
ures 5a and 5b. 

(X,Y IN) = (Y lx,H)(x IH) (1) 

This implies that we know both the unconditional or margi- 
nal probability distribution on x and the probability of y 
conditioned on X. Suppose, however, that our human 
expert or statistical data base can not directly produce the 
marginal probability distribution on X, but does have the 
conditional distribution of x given y. Suppose also that we 
can obtain the marginal distribution on y. Using the laws 
of conditional probability , we can still obtain the joint dis- 
tribution on x and y using the following expansion: 

The expansion of the joint probability distribution 
represented in Figure 5a is: 

(x.Y.~ IH) = (x lff)(y IH)(z P,Y>H) (3) 

As explained before, if we know the terms on the right side 
of (3). we can construct the joint distribution on the left. 
Consider now the influence diagram in Figure Sb. The 
expansion in this case is: 

(X,V IH) = (x IY,H)(Y IH) (2) 

This expansion is represented by the influence diagram 
shown in Figure 4. Although both Figures 1 and 4 are 
equivalent in the joint system they represent, they differ in 
their suitability for probability assessment. 

Suppose now that x and y are independent in the sense that 
having information about x gives no additional information 
about y. Then the conditional probability of x given y, 
(X ly,H), is equal to the marginal distribution on x, 
(X ( H). The expansion of the joint probability distribution, 
(x,y 1 H), is then the product (x I H) (y (H) corresponding 
to the influence diagram shown previously in Figure 2. The 
lack of an arc between the state variables in Figure 2 graphi- 
cally illustrates their probabilistic independence at the func- 
tional level. 

(X,Y,Z IH) = (Y lH)(z ly,Hl(x l~.z.Hl (4) 

The problem facing us now is: Using only the terms on the 
right-hand side of (3), can we arrive at the terms in the 
right-hand side of (4)? Since (y I H) is known, our problem 
is now reduced to expressing (z 1y.H) and (x Iy,;,H) in 
terms of the quantities in (3). This can be done as follows 
(q, is the sample space for x): 

(2 IY,H) = /,,(c.r ly,H)~ 

= Jn,(z Ix,y.ff).(x IY.H)dx- 

= @ lx,~.H).(x IH)dx 

Using Bayes’ rule: 

Acyclicity 
= (z Ix,.v,H)‘(x IH) 

(2 1y.H) 

Cycles are not permitted in influence diagrams. This is 
because a cyclic diagram does not represent any expansion 
of the joint distribution of the variables involved. On the 
functional level it would lead to an infinite loop in which 
information on a particular variable (say X) is needed to get 
information on x itself. 

On the other hand, one might try to reverse the arc directly 
in Figure Sa to obtain the representation in Figure 5c. Here 
the expansion is: 

Numerical Level 

The numerical form of the probability distributions can be 
of either discrete or continuous form. The numerical data 
base for any node, however, must be conditioned on all of 
the nodes with arcs directed into it. 

(~,Y,=IH)=(~IH~~(~I~.H)~(~Is,H~ 

However, it would then not be possible to obtain the condi- 
tional probability (x 1 z.H) from the quantities in (3) 
without violating the conditional independence shown in 
Figure 5a. Thus we see heuristically the consequence of the 
arc reversal is the addition of an arc from node y to node x. 
This brings us to the following rules of arc reversal. 

RULE 1 for arc reversals: An arc from state node y to 
state node x can be reversed iff y is not a multi-path 
predecessor of x . 

TOPOLOGICAL TRANSFORMATIONS 

In the functional level description, we defined the proba- 
bilistic interpretation of the topology of influence diagrams, 
Now let us consider how Bayesian inference relates to topo- 
logical transformations on an influence diagram. 

RULE 2 for arc reversals: On reversal of an arc from y 
to x, node y inherits the direct predecessors of x and 
vice-versa. 

Arc Addition 

Recall that the existence of an arc signifies that an influence 
may exist. Therefore an arc can always be added between 
nodes as long as no cycles are introduced. A cycle implies 
that one can condition one’s knowledge of a variable on that 
variable itself, resulting in an endless loop; a sort of proba- 
bilistic Klein bottle. The addition of an arc, however, 
results in a loss of (possibly vital) information regarding the 

The purpose of Rule 1 is to disallow any arc reversal that 
may cause a cycle to be introduced in the diagram. A node 
y is called a mulfi-pafh predecessor of node x if it has more 
than one path to y, e.g. see Figure 5b. Clearly, the reversal 
of the arc from y to x without first reversing the arc from y 

n n n 

o---o (b) 

FIG. 4. y influences x FIG. 5. Examples of Arc Reversals 
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to z in Figure 5b will cause a cycle, which as explained 
before, invalidates the diagram. 

The example cited above for Rule 2 is of course not 
sufficient justification for the same. However, a little 
thought will show that the crux of obtaining the termgin the 
expansion represented by the new diagram is the joint distri- 
bution of the variables involved (x and z in our example), 
conditioned on the set of nodes formed by the union of the 
sets of their direct predecessors. In other words, this set of 
nodes will always precede the variables involved in the 
reversal in the hierarchy of the expansion. Hence they will 
always occur as conditioned on the aforementioned set of 
predecessors. A formal proof for the same can be found in 
Olmsted (I 984:Chapter 2) and Shachter (I 984b: 14- 16). 

Furthermore, it should be noted that arcs to and from deci- 
sion nodes cannot be reversed. This arises from the infor- 
mational nature of the arc to a decision node and the causal 
nature of the arcs from decision nodes to state nodes. 
Reversal of the former would violate chronological pre- 
cedence and that of the latter, causality. 

Barren Node Removal 

Although strictly speaking barren node removal need not 
form an integral part of the transformations to the influence 
diagram, we will refer to this operation since it is a con- 
venient technique to visualise the flow of information graph- 
ically. A node is said to be barren if it is not a member of 
the set of total predecessors of the node designated as the 
value node. In other words, the node is not concerned with 
the inference problem in hand. Furthermore, a node can 
become barren due to arc reversals. Such nodes (as a result 
of the topological transformations of the diagram) can be 
removed, and the diagram redrawn without changing the 
solution. Repeated application of this procedure leads to a 
shrinking infl.uence diagram concluding in a representation 
of the solution to the inference or decision problem under 
consideration. Details of the procedures for solving 
influence diagrams will be given in the following section. 

In expert system applications, barren node removal can be 
used as a mechanism to delete nodes and influences that are 
irrelevant to the specific question that is being asked of the 
system. The question and topological transformations 
needed to answer it. create what will be referred to as the 
currenl slruclure of the influence diagram. 

SOLVING INFLUENCE DIAGRAMS 

Two kinds of uses of influence diagrams will be described 
herein: I) probabilistic inference and 2) decision making 
under uncertainty. In either case there must be some ques- 
tion to be answered as represented by the diamond-shaped 
value node. 

Probabilistic Inference 

Probabilistic inference is equivalent to determining the pro- 
bability distribution (G(X)) Y.H) where X and Y are sets of 
nodes given in the diagram. The function G(X) is analogous 
to a value function and is called the goal-value function for 
probabilistic inference. This new goal-value node G(X) is 
added to the diagram with conditioning arcs from the set X. 
Because an influence diagram can contain at most one value 
node at a time, all previous goal-value nodes are converted 
to state nodes. The procedure involves manipulating the 
influence diagram to obtain a representation of the problem 
under consideration. The relevant arcs are reversed until 
the resulting diagram includes the goal: the desired represen- 
tation (G(X) 1 Y,H). 

Decision Analysis 

The transformations or operations involved in decision 
analysis are the same as that for probabilistic inference; that 
is arc reversals and barren node removal. However the 
difference is that here instead of determining a probability 
distribution. we are computing the expected value (or util- 
ity) of a sequence of decisions, comparing them and assess- 
ing the optimal sequence by maximizing the expected value 
of the utility function represented by the value node. The 

topological or symbolic solution procedure is equivalent to 
ordering the nodes in the correct sequence(s) of integration 
of state nodes or optimization over decision nodes. As 
pointed out by Shachter (1984a:l4) the steps involved at the 
numerical level are those used in evaluating a stochastic 
dynamic program. 

Note that the order so determined would correspond to one 
of the orderings that might be used in a decision tree based 
technique in which the variables in an expanded decision 
tree are either integrated or optimized over. The principle 
of dynamic programming allows pruning of suboptimal 
branches in this implicit decision tree. However. the 
influence diagram algorithm allows solution without the 
need of an intermediate tree representation. AI1 intermedi- 
ate calculations are performed directly from the influence 
diagram knowledge base and thus retain their original mean- 
ing. 

Node Removal Concept 

An equivalent way of looking at the above procedure is to 
consider node removal as a topological transformation that 
corresponds to manipulations of probabilistic functions. 
Nodes are removed in the order cf integration/optimization 
described above. Rules can be formulated that allow one to 
develop a topologicat solution to the problem, without expli- 
citly performing functional or numerical evaluations. If the 
topological transformations are to be useful, these rules need 
to have a basis in the probabilistic analysis of the problem. 

Given an acyclic influence diagram the optimal sequence of 
decisions can be found by ordering or removing nodes from 
the diagram according to the following rules: 

RULE 1 for State Node Removal: A state node i can be 
absorbed into the value node iff it directly precedes the 
value node and no other node. On its removal the value 
node inherits all the direct predecessors of i. Absorption 
of the node is equivalent to integration over the 
corresponding state variable, i.e., conditional expecta- 
tion. 

RULE 2 for Decision Node Removal: A decision node i 
can be removed from the influence diagram iff it directly 
precedes the value node and directly succeeds ail other 
direct predecessors of the value node. Removal of the 
node is then equivalent to maximization of the (condi- 
tioned) expected utility. 

Therefore, combining these rules with appropriate arc rever- 
sals, the topological solution procedure can be determined. 
The justification of the rules can be found in the literature 
on decision making under uncertainty (see Raiffa, 1970 or 
Bunn, 1984). 

COMPUTER ASSEMBLY DIAGNOSTICS TUTORIAL 

As an illustration of the use of influence diagrams, we 
present the Diagnostician’s Problem in the context of the 
automated assembly of microcomputers. In order to sim- 
plify the presentation, we will assume that during the final 
testing of a microcomputer, a system failure can be traced to 
failures in either of two components: (1) the logic board or 
(2) the I/O board. Let us further assume that a sensor is 
available that gives rudimentary information about the 
operating status of the assembled microcomputer and is a 
function of the operating status of the logic board and the 
I/O board. The associated influence diagram is shown in 
Figure 6a. This represents the Diagnostician’s Problem on 
the relational level. 

In the present structure of the influence diagram, the joint 
probability can be obtained from the conditional probablil- 
ity of the system status 3” and the marginal distributions 
on the state of the logic board “L” and the I/O Board “I/O” 
as given in the expansion below. 

(S,L,IIO IH) = (S I L,IIO,H)(L I H)(IIO 1 H) 
Note that L and I/O are conditionally independent (there is 
no arc between them) and thus their joint probability distri- 
bution is the product of each marginal distribution. 
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FIG. 6. Probabilistic Injluence Diagram FIG. 7. Solvejor (L 1 E.H) 

The nature of the influences is specified at the functional 
level. The influence diagram in Figure 6a implies that the 
conditional distribution on S is known along with the margi- 
nal distributions on L and I/O. Let us assume for illustra- 
tion that the test for system status gives a deferministic 
result based on the status of the I/O and logic boards: if any 
of these boards (or both) is in a failure state the system 
status will show a failed system state. Using a subscript of 
“0” for a failed state and “1” for the operational state, this 
implies on the numerical level that the conditional distrihu- 
tion of the system status, S is: 

I for S, given L, and I/O, 

I for So given L, and I/O0 

(S 1 L,IIO,H) = 1 for SO given Lo and I/O, (5) 
I for SO given Lo and I/O, 

0 elsewhere 

Let us further assume that the marginal probability of 
failure is 5% for the logic board and 1% for the I/O board, 
giving the marginal probability distributions: 

(I’OIH) = 1 

0.99 for I/O = I/O, 

0.01 forl/O=l/O~ 

I 

0.95 for L = L, 

(L 1 H) = 0.05 forL =LO (6) 

Probabilistic Reasoning 

The diagram m Figure 6a represents the diagnostician’s 
knowledge of the problem and system interrelationships. In 
diagnostic reasoning. however. we are more apt to want to 
know the cause of the failure given information about the 
system status. One question that might be asked is: What is 
the likelihood that the logic board has failed given a system 
failure has occurred? In this case, the evidence E = S = S,,. 
the event that there is a system failure. The joint probabil- 
ity distribution on L and f/O given the evidence can be 
obtained mathematically by use of conditional probability: 

(7) 

Equation (7) is summed (or integrated for continuous proba- 
bility distributions) over all possible states of the I/O board 
to find the conditional probability of the logic board status 
given a system failure, (L / E = So.H): 
I (L IE,H) = ~(L.llO 1E.H) 

w 0 

where R,,o is the sample space for the possible states of the 
II0 board. 

This is an example of probabilistic reasoning. On the rela- 
tional level of the associated influence diagram. equation (7) 
corresponds to a sequence of arc reversals leading to the 
influence diagrams shown in Figure 7a. The logic board 
node, L, is overlayed with a diamond to signify that this is 
the goal of our probabilistic reasoning. If the evidence E is 
known with certainty the probabilistic node S is now deter- 
ministic and updated with the new information on the sys- 
tem status. Because S is no longer probabilistic, we are only 
interested in events that are conditioned on this new infor- 
mation, i.e., we want to reverse all arcs leading into S. In 

Figure 7a the arc between L and S is reversed and node L 
inherits all of the direct predecessors of S, which in this case 
is the I/O node. Next the arc between I/O and S is 
reversed in Figure 7b without the addition of any new arcs. 
Finally the I/O node is absorbed in Figure 7c by summing 
over the states of the I/O board according to Rule 1 for state 
node removal. 

In numerical terms, the topological transformation shown in 
Figure 7a can be considered a combination of two steps as 
shown in Figure 6h & 6c: 

(1) Aggregation of the two nodes on each side of the arc 
to be reversed. Aggregation corresponds to calculating 
the joint probability distribution of the nodes condi- 
tioned on the union of the predecessors of both. In this 
case, aggregation means finding the joint probability dis- 
tribution of S and L conditioned on I/O (Fig. 6b). 

(2) Disaggregalion of the joint distribution by condition- 
ing it on the node that the new arc will be directed away 
from. In this case, the joint distribution should be con- 
ditioned on S given I/O (Fig. 6~). The denominator in 
the disaggregation step is obtained by summing (or 
integrating for continuous distributions) the joint distri- 
bution from the aggregation step over the outcome space 
of the node the new arc will be directed towards (in this 
case, L). Although shown graphically in Figure 6 as 
separate steps, all information in the original diagram 
must be stored until the arc reversal transformation is 
complete. 

At the numerical level, the aggregation step corresponds to 
the following expansion using equations (5) and (6): 

{L,SIIIO,H) = {SIL,IIO.H)~{L lll0.H) (8) 

= (S(L.IIO,H)‘(L \H) 

0.95 for S, and L I given I/O, 

0.95 for SO and L , given I /Oa 

= 0.05 for So and Lo given I/O, 

0.05 for SO and Lo given I/O0 

0 elsewhere 

The disaggregation step involves conditioning this joint dis- 
tribution on the conditional distribution on S. 

The numerator in equation (9) is the joint probability distri- 
bution in equation (8). The denominator (S (II0.H) is 
obtained by “integrating” the joint probability 
(L,S ) IIO,H) from equation (8) over the state space of L. 
Substituting in the numerical values from equations (6) and 
(8) into equation (9) gives the conditional distribution on L : 

I for L, given S, and I/O, 

0.95 for L, given So and I/O, 

(L ) IIO,S,H) = I for Lo given So and I/O, 

0.05 for L, given S0 and I/O,, 

0 elsewhere 

(10) 

The influence diagram in Figure 7b represents an arc rever- 
sal between S and I/O. The new conditional probability 
(II0 1S.H) is obtained from (S ll/O,H) and (I/O ( H) as 
represented in Figure 6c or 7a. This can also be thought of 
as aggregating nodes II0 and S and then disaggregating by 
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conditioning the joint distribution on S. 

= (S.IIO I H) 
(S(H) 

_- 

Figure 7c represents the conditional probability distribution 
(L 1.7, H) and the marginal distribution (S 1 H). 

(L IS,H) = z(L l.S,~IO,H)(~IO 1.S.H) 
Q,0 

On a topological level, summation or integration 
corresponds to absorption of nodes. In this example, after 
the arc reversals shown in Figure 7a & 7b are performed, 
the I/O node is absorbed leaving the influence diagram in 
Figure 7c. 

Suppose that we are given that a system failure has occurred 
i.e., S = St,. Let us define this as event E = S = So. Thus the 
likelihood that the logic board is the cause of the failure 
may be quantified by (L =LO ) E =S =S,,, H). From equa- 
tions (IO) and (I 1): 

(L=L,,JE-S=S,,H) = (LoIE,I/Oo,H).(lIOo(E,H) 

+(LoIE,IIOI.H)~(IIO, 1E.H) 

= (0.05)~(0.1681) + (1).(0.8319) 
= 0.8403 

Decision Problem 

Let us now look at a decision problem. The Diagnostician’s 
Problem is to decide which component should be tested for 
failure first and repaired if appropriate. In an automated 
assembly operation, this could mean deciding where the 
computer should be sent for “rework”. If the diagnostician 
is wrong in his or her decision for rework, valuable time 
would have been wasted by the rework technician and hence 
in producing the final product. For purposes of illustration, 
let us assume that the costs of rework, which involves open- 
ing the computer and pulling out the appropriate board, 
testing, and repairing it, is a constant for each board. The 
inguence diagram in Figure 8 has been modified to show 
these decision and value nodes. Recall that there is an 
implicit arc between all decision nodes and the value node. 
This “No-Forgetting Arc” has been added to the influence 
diagram in Figure 8. It has been assumed that a system 
failure has occurred and this information is known at the 
time that the rework decision is made. 

The diagnostician has two choices given that the system 
status shows a failure (E =S =.S,): (1) DL = Send the logic 
board to rework first and (2) D,,* = Send the l/O board to 
rework first 

Each of the two decisions has three possible outcomes 
corresponding to the possible states of the boards given that 
a system failure has occurred S = So: (1) LdlOo, (2) L ,1/O,, 
and (3) &J/O,. If the wrong board is sent to rework, then 
debug time has been wasted on that board and the other 
board must be sent to be debugged and reworked. It is also 
possible that the board sent to rework has failed but the 
other board has failed also and must be repaired. The two 
decisions, possible outcomes, and cost consequences are 
shown in the decision tree in Figure 9. 

From the influence diagram in Figure 8 and the decision 
tree in Figure 9, we see that the rework decision influences 
the value node. If this were not the case the decision would 
be irrelevant (a “worry” over which the decision maker has 
no control). Furthermore, the outcome of the rework deci- 
sion also influences the cost. This is due to the fact that 
though we pick one of the two boards (say I/O) for rework, 
it could well turn out that the other board (L in this case) 
has really failed. In such a case, the cost of debugging and 
reworking the second board would have to be added to the 
original expenditure. Given that a system failure has 
occurred. which board should be tested first? 

Diagnostician’s Problem Solved 

Applying the rules for influence diagram manipulation, dis- 
cussed previously, we get the topological or symbolic solu- 

FIG. 8. Diagnostician S Problem 

peckzion_ Results “R” CostValue 

l&O1 $Lkbw(L) + WepaW) 

$Debug(L+I/O) + $Repair(VO) 

$Debug(L+VO) + $Repak(L+VO) 

$Debug(l/O+L) + $Aepair(L) 

$Debug(VO)+ $Repair(llO) 

$Debug(l/O+L) + $Repair(l/O+L) 

FIG. 9. Decision Tree 
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FIG. 10. Topological Solution of the Diagnostician S Problem. 

tion as the following sequence of node removals: R , L, I/O, 
S, and D. The modified intluence diagram in the above 

. stages of node removal is shown in Figure 10. A numerical 
example of the solved diagnostician’s problem can be found 
in Agogino and Rege (1985:30-37). 

Value of Imperfect Information (Value of Testing) 

A generalization of the Diagnostician’s Problem is the addi- 
tion of another test or sensor that gives more information 
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FIG. 1 I. IDES Structure 

about the state of the boards without having to go through 
expensive debugging procedures. Unfortunately the test is 
imperfect and the diagnostician must still make a decision 
under uncertainty after viewing the results of this imperfect 
test. To make matters worse, this test is not free and thus 
the costs of the additional test must be weighed against its 
benefits in reducing the uncertainty in the decision. The 
decrease in expected value due to the additional sensor is 
called the expected value of additional testing. The 
influence diagram solution procedure remains !he same, 
except the optimal result will now include two decisions: (I) 
Dr = testing decision and (2) DR = rework decision. 

AUTOMATION OF INFLUENCE DIAGRAMS 

The IDES (Influence Diagram Based Expert System) is an 
expert system development tool based on the automation of 
influence diagram technology described previously. Because 
the underlying interpreter is written entirely in the compiled 
language C, IDES is transportable to a large number of 
mainframe and microcomputer systems. The IDES system 
provides several levels of automation and inference from the 
graphical influence diagram representation: (1) Bayesian 
inference, (2) optimization, and (3) sensitivity analysis. 
Principles of dynamic programming and influence diagram 
logic allow efficient numerical optimization of the decision 
or control problem without ever having to consider inter- 
mediate representations such as fault trees, simulation 
models, or decision trees. An upper bound on the value of 
additional information or testing can be evaluated through 
use of IDES’s unique features for simulation and sensitivity 
analysis. Figure 11 shows a schematic_outline of the various 
modules of IDES and their interaction with each other. 

SUMMARY 

As illustrated in the Diagnostician’s Problem, influence 
diagrams can be applied to expert systems requiring both 
reasoning under uncertainty (probabilistic inference) and 
advising (or controlling at the machine level). The lnterro- 
gator module or the IDES (Influence Diagram Based Expert 
System) elicits information from the expert/user on the 
topological structure of the influence diagram which 
represents a model of the problem under consideration as 
well as the functional relationships and numerical probabili- 
ties associated with it. The topological solution module in 
IDES finds a symbolic solution without any numerical com- 

putauons. The topological solution is equivalent to ordering 
the state and decision variables in a sequence same as that 
of the corresponding decision tree. Once the order in which 
to integrate chance nodes and optimize over decision nodes 
is known, the actual computations are relatively straightfor- 
ward and calculated in the numerical computational module 
of the IDES program. Because the control structure is 
independent of the knowledge base, new knowledge can be 
added or subtracted from the data base without adjusting 
the basic Bayesian control structure. The sensitivity 
analysis module can be used to add new evidence and test 
failure hypotheses in real-time diagnostic applications in 
process control and automated manufacturing environ- 
ments. 
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