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Abstract: Hotspot detection aims at identifying sub-groups in the observations that are unexpected, with respect to some baseline information.
For instance, in disease surveillance, the purpose is to detect sub-regions in spatiotemporal space, where the count of reported diseases (e.g. cancer)
is higher than expected, with respect to the population. The state-of-the-art method for this kind of problem is the space–time scan statistics, which
exhaustively search the whole space through a sliding window looking for significant spatiotemporal clusters. Space–time scan statistics makes
some restrictive assumptions about the distribution of data, the shape of the hotspots and the quality of data, which can be unrealistic for some
non-traditional data sources. A novel methodology called EigenSpot is proposed where instead of an exhaustive search over the space, it tracks
the changes in a space–time occurrences structure. The new approach does not only present much more computational efficiency but also makes
no assumption about the data distribution, hotspot shape or the data quality. The principal idea is that with the joint combination of abnormal
elements in the principal spatial and the temporal singular vectors, the location of hotspots in the spatiotemporal space can be approximated.
The experimental evaluation, both on simulated and real data sets, reveals the effectiveness of the proposed method.
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1. Introduction

Eigenspace techniques are very popular ones, which encompass
many applications in data mining, signal processing, infor-
mation retrieval and other domains. A famous instance of such
an application relates to the current success of Google search
engine. As described in an article entitled $25000000000
Eigenvector (Bryan & Leise, 2006), Google search engine is
largely attributed to the eigenspace techniques. Another success
story is related to the application of the singular value decom-
position (SVD) (Klema & Laub, 1980) in collaborative
filtering. In the year 2008, the BellKor team won the
$1000000 prize for the improvement of the systemof theNetflix
movie recommendation. The report later (Bell et al., 2007)
stated that SVD was the key data analysis tools that they used.
However, the application of the eigenspace techniques is not
restricted to the aforementioned instances. There are several
different examples in other areas and sciences. For instance,
in face recognition (Turk & Pentland, 1991), the specific set of
the largest eigenvectors can be used to approximate the images
of the human face. In structural engineering, both the
eigenvalue and eigenvectors are used to estimate the vibration
of structures. In control engineering, the eigenvalues of the
linear system are used to assess the stability and response of
the system (wikibooks, 2012).

Nevertheless, despite the merits of the eigenspace tech-
niques, they have not been applied yet to some potential
problems, such as hotspot detection. Hotspot detection that
may come with different terminologies, such as outbreak
detection, cluster detection or event detection, is somehow
related to the clustering and anomaly detection; however,

it is distinct from these two. In clustering, the entire data
set is partitioned into some groups, but in the anomaly
detection, the anomalous points are searched for and sought
after. Hotspot detection addresses the same problem but
with this difference that anomalous instances are recognized
given some baseline information. In other words, looking
into the data set, everything might seem normal; however,
when the cases along the baseline are considered, some
points might be considered unexpected. A realistic scenario
of the hotspot detection is in disease surveillance. Suppose
that we have the population of different postal codes, during
a range of years, as the baseline information and the count
of the reported diseases in a range of postal codes, through-
out different years as the cases data set. The goal is to detect
those spatiotemporal regions that contain unexpected
counts. For instance, the output such as zones S1, S2 and
S3 during the years T1 to T5 might be considered a
spatiotemporal hotspot. The detection of such hotspots
enables the officials to better understand their target of
interest for essential medical care and preventive measures.

The current methods for hotspot detection are twofold:
clustering-based techniques and the scan statistics-based ones.
Clustering-based techniques, such as (Levine, 2006), infer
some thresholds from the population data and then apply
the thresholds for clustering of data points in the cases set.
Their prominent benefit, as opposed to the other methods, is
that they provide the exact shape of the clusters. However,
handling complex data, such as spatiotemporal data, is not
straightforward for these techniques. Besides, the clustering
methods do not consider chance and randomness issues,
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which are very important in sensitive applications, such as
security and public health. Moreover, there is not a standard
clustering method for hotspot detection, which is widely
accepted by the community. The methods are mostly
outspread and diverse, in terms of the technical details. The
clustering methods also require restrictive input parameters,
which make their usage limited in automatic settings.

The second group of techniques that relies on scan statistics
are widely used and accepted by the epidemiological com-
munity. These groups of techniques exhaustively scan the
whole space to find interesting spatial and spatiotemporal
clusters. A specific statistic is computed for each possible
window, and then, potential clusters are sorted, on the basis
of the obtained statistics. Thereafter, the statistical signi-
ficance of the top-k clusters is simulated via a Monte Carlo
technique. Because these methods scan an entire space, they
are extremely computationally expensive. Spatial scan sta-
tistics (Kulldorff, 1997) requires computation time of O(N3)
and space–time scan statistics (STScan) (Kulldorff &
Nagarwalla, 1995; Kulldorff, 1997, 1999; Kulldorff et al.,
1998) requires O(N4). Some recent efforts are made to
reduce this complexity. For instance, (Agarwal et al.,
2006) propose a method that requires O 1

εN
2Log2N

� �
for

spatial scan, which is more efficient than O(N3). However,
the minimum complexity for STScan in the best condition
has not reached less than O(N3). This high computational
cost practically has restricted their use in real-time appli-
cations or large-scale data sets. Besides, scan statistics-based
techniques are highly associated with the strong parametric
model assumptions (e.g. Poisson or Gaussian counts) (Neill,
2006). These assumptions mitigate the performance when the
models are incorrect for non-traditional data sources.
Additionally, scan statistics-based methods are not efficient
for detection of irregular shape clusters (Duczmal &
Assunção, 2004; Tango & Takahashi, 2005) apart from the
circles (spatial scan) and cylinders (space–time scan). They
also assume that data is presented in a high quality format,
hence are vulnerable against the noise and outliers (Neill &
Sabhnani, 2007).

Our proposed method is a solution to some of the afore-
mentioned issues, in scan statistics-based methods. An effi-
cient method is proposed (linear with both space and time
dimensions) for approximation of hotspots in the spatio-
temporal space, without the need for exhaustive search.
Instead of looking for deviations in the assumed parametric
model, we track changes in the space–time occurrences
structure, using the eigenspace techniques. This approach
enables us to detect irregular shape hotspots from even noisy
data sets, without any prior knowledge about the data nature
or hotspot characteristics. To the best of our knowledge, this
problem has not already been addressed by other researchers.
Our approach also differs from those of ones that focus on the
improvement of scan statistics-based methods efficiency
(e.g. Neill & Moore, 2004; Agarwal et al., 2006; Neill &
Cooper, 2010). We do not improve the efficiency of scan
statistics-based methods; rather, we propose and examine a
new methodology, which follows a different aim. Hence, this

is not an ‘apples to apples’ comparison, as both groups of
approaches have inherent differences and subsequently
their own applications. STScan can be more helpful for
retrospective and sensitive applications, when some prior
knowledge exists about the nature of hotspot and data.
On the other hand, our presented approach focuses more
on real-time applications, where neither the nature of data
nor the hotspot characteristics is known in advance. In such
circumstances, a computationally feasible approximation
method that rapidly identifies the alarming areas without
any prior knowledge might be very useful.

The rest of the paper is organized as follows. Section 2
describes the problem, the proposed solution and algorithm,
as well as an illustrative example. Section 3 includes an
experimental evaluation and results of the simulation study
and the real case study. The last section concludes the
exposition presenting the final remarks.

2. The proposed approach

2.1. The problem

Given a spatiotemporal count matrix for the cases, needed for
the detection of those spatiotemporal regions (hotspots) that
seem unexpected, given the baseline spatiotemporal matrix.
Each cell in each matrix represents a count corresponding to
a specific region and time. In particular, for disease outbreak
detection, each cell in the baseline matrix represents the
population corresponding to a region in a specific period. Each
cell in the matrix cases also represents the count of reported
disease in a specific region, within a given time period, as well.
The purpose is to determine those sub-groups of the spatio-
temporal space whose reported cases are unexpected.

A baseline method that can be applied to the problem is to
compute the ratio of the cases to the population for all possible
spatiotemporal regions (each cell in the spatiotemporal matrix)
and then compute the z-score of the ratios. Then, the null
hypothesis Ho: There is no hotspot is rejected, in case some
spatiotemporal regions with z-score greater than a threshold
are found. This approach theoretically and practically, as will
be illustrated later, imposes too many false alarms, because
for a n×m matrix, it’s required to perform n×m comparison
tasks. In this paper, an approach that performs only n+m
comparisons is clearly proposed. An unsupervised method
may be needed to use with the clustering on the ratios.
However, it suffers from the same problem of the baseline
method (it requires n×m comparisons and not n+m). Besides,
the requirement for determination of appropriate cut-point or
number of clusters addsmore complexity and user involvement
to the system. We are interested in developing a system, which
has the following characteristics: (1) does not require any input
parameter; and (2) weighs all the possible hotspots, on the basis
of a standard metric such as statistical significance (p-value).
The benefit is this that the output can be compared with
relevant systems or methods. The alpha threshold is also easy
to estimate (usually alpha=0.01 or 0.05).
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2.2. The method

In this section, the logic used in the method deployment is
thoroughly described. Assume that we have two identical n×m
matrices B (baseline) andC (cases) such that n be the number of
components in the spatial dimension and m be the number of
components in the temporal dimension. The SVD of the n×m
matrix is a factorization of the formM=UΣV*. The n columns
ofU and them columns ofV are called the left-singular vectors
and right-singular vectors of thematrices, respectively. The left-
singular vectors correspond to spatial dimension, whilst the
right-singular ones correspond to the temporal dimension. In
order to clarify and elaborate, a new terminology spatial
singular vector is used along with temporal singular vector that,
respectively, refers to the principal left-singular vector and the
principal right-singular one.Note that we take only the singular
vector corresponding to the largest eigenvalue for the com-
parison, because the first principal singular vector accounts
for major directions of data. Hence, it explains or extracts the
largest part of the inertia of the data (Abdi & Williams, 2010).

Now, let us denote the spatial singular vector of baseline

(B) and cases (C), respectively, with
→
sb = (sb1, sb2,…, sbn)

and
→
sc= (sc1, sc2,…, scn). Then, lets denote temporal singular

vector of B and C, respectively, with
→
tb = (tb1, tb2,…, tbm)

and
→
tc = (tc1, tc2…, tcm). If we hypothetically assume that

B=C, then
→
sb ¼ →

sc and
→
tb ¼ →

tc. In this condition, the angles

between
→
sb and

→
sc and between

→
tb and

→
tc would be equal to

zero. Now assume that some change occurs in C, and this
change corresponds to a specific region and period. Therefore,
the matrices are no longer identical, and subsequently, the
angles between their singular vectors rise up in value. From this
angle change, we can only infer that some changes occur, but
we do not know what sub-group of data is affected by this
change. If we could identify those vector elements from

→
sc

and
→
tc that caused this change, we would be able to identify

the spatial and temporal components of the affected area. For

instance, assume that through a hypothetical method we could
identify that sc1 from the

→
sc and tc1 from

→
tc correspond to the

affected area. If we remove the region corresponding to sc1
and time related to tc1 from both baseline and cases data sets,
the matrices should again become identical. Hence, we would
have the angles between the pair singular vectors equal to
almost zero. Here, (sc1, tc1) is called hotspot, and sc1 and tc1
are, respectively, called the spatial and temporal components
of the hotspot. The process of finding these components is also
called hotspot detection. Note that in this work, the angle
between the singular vectors is not computed. In the previous
texts, the angle concept is only used to explain the rationale
behind the proposed method.

Some assumptions were made earlier in the text, which were
only for simplification of explanation. In practice, we rarely
find two identical baseline and cases matrix. However, we are
able to assume that in a normal condition, where no hotspot
exists, both baseline and cases set should have a same space–
time occurrences structure. In this case, the pair singular vectors
of baseline and cases sets, regardless of the data distribution
should stay in a constant distance. Now, if a hotspot starts to
grow in the cases set, this change can be directly observed from
the changes in the singular vectors elements. In such cases,
some distances between the singular vector elements become
abnormal for elements corresponding to the affected areas in
both the spatial and temporal dimension. We exploit this idea
to develop our algorithm for hotspot detection.

According to the aforementioned explanation, two
kinds of tools are required, a tool for obtaining the singu-
lar vectors of a non-square matrix and a process control tool
for monitoring distances between singular vector elements.
SVD and statistical process control are two powerful
techniques, which for several years have been successfully
applied to many problems in different domains and are
state-of-the-art methods to these requirements. In the next
section, we explain how these techniques are exploited in
the deployment of the solution.
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2.3. The EigenSpot algorithm

In this section, our proposed algorithm EigenSpot is
explained in detail. The inputs of the algorithm 3 are
n×m matrices for the baseline and cases where n
represents the number of regions and m represents the
number of temporal instants. We start by decomposing both
matrices, using one-rank SVD. The one-rank SVD gives us
the principal singular vector corresponding to the spatial
and temporal dimensions (lines 1–2). The reason why the
low-rank SVD is applied versus the full-rank SVD is that
our approach requires only the principal singular vector for
each matrix. The full-rank SVD is a more expensive method,
because of the fact that aN×Nmatrix requiresO(N3), whilst
the low-rank SVD requires O(kN2) where in our case k=1,
and therefore, we require only O(N2) for each one-rank
SVD. The principal singular value accounts for the major
directions of data in both cases and baseline; therefore, it is
appropriate for matching purposes.

In the next step, we subtract each element of the pair
singular vectors together (lines 3–8). If we denote the spatial
singular vector for baseline with (sb1, sb2,…, sbn) and spatial
singular vector for cases with (sc1, sc2,…, scn), the subtract
vector would be →ds = (ds1 = sc1� sb1, ds2 = sc2� sb2,…,
dsn= scn� sbn). Similarly for the temporal dimension, we
have →dt = (dt1 = tc1� tb1, dt2 = tc2� tb2,…, dtm= tcm� tbm).
Subsequently, in order to identify the spatial and temporal
components of the hotspot, a z-score control chart is
applied on vectors →ds and →dt with significant level α. To
do so, the standardized vector of z-scores is first computed
for ds and dt. Thereafter, we obtain the equivalent two-
tailed p-value for each z-score. Finally, those components
of →ds and →dt that obtain p-value lower than α are
considered abnormal. Finally, a joint combination of all
spatial and temporal components to the original space
gives us the approximation of hotspots.

For instance, assume that
→
sb ¼ 0:25; 0:10; 0:75; 0:20ð Þ be

the spatial singular vector of baseline and →sc ¼ 0:30; 0:90;ð
0:80; 0:15Þbe the spatial singular vector of cases. Each element
in the spatial singular vector corresponds to a specific region.
For instance, 0.30 and 0.25 in the first element corresponds
to region 1. Similarly, the second, third and the fourth element
corresponds to the region 2, 3 and 4, respectively. The angle
between the two singular vectors →sb and →sc is equal to 68°
in this example. This angle does not tell us what elements of
singular vector have contributed to this difference. However, if
in the aforementioned example, we remove region 2 from the

system, we have two vectors
→
sb ¼ 0:25; 0:75; 0:20ð Þ and →sc ¼

0:30; 0:80; 0:15ð Þ where the angle between them is equal
to 0.09, which is almost equal to zero. Region 2 in this example
is equivalent to the spatial component of the hotspot. In order
to identify the region 2 in this example, a z-score control chart is

applied on the subtract vector
→
ds ¼ 0:25� 0:30; 0:10�ð

0:90; 0:75� 0:80; 0:20� 0:15Þ ¼ �0:05;�0:80;�0:05; 0:05ð Þ.
Afterwards, we compute the standardized z-scores of
the subtract vector, which in this case is zds= (0.4119,

� 1.4893, 0.4119, 0.6654). As shown, z-score of �1.4893
is equivalent to the left-tailed p-value of 0.06. If we
define α= 0.10, region 2 would be identified as hotspot
spatial component. This is because its p-value is lower
than 0.10. However, if we define α= 0.05, region 2 is
not detected as hotspot spatial component.

2.3.1. The algorithm complexity If we assume that we have
N regions andN time instants, EigenSpot requires twoO(N2)
for two one-rank SVD for cases and baseline matrices, and
two O(N) for elements matching corresponding spatial and
temporal dimensions. This makes the EigenSpot require only
O(2N2) +O(2N) =O(N2), which is much more efficient than
the STScan. Because, the STScan requires O(NlogN) and O
(N2logN) for finding the relevant time and space cylinders
and O(N4) for finding the space–time cylinders as
intersections of space and time cylinders (Assunção et al.,
2004). Therefore, a single execution of the STScan procedure
takes O(NlogN) +O(N2logN) +O(N4) =O(N4).

2.4. Illustrative example

Figure 1 demonstrates an illustrative example of how a
hotspot can be identified by the EigenSpot algorithm.
We are given two sets of baseline and cases that
encompass three regions within four time windows. Each
region can be a postal code or a city. In addition, each
temporal window can be a period, such as a year (e.g.
T1= 2010). If we represent these two sets as a matrix,
we have two sets of 3 × 4 matrices such that each cell
represents the count. For instance, b11 represents the
population of region 1 at time window T1, and c32
represents the count of reported disease in region 3
within the temporal window T2. The shaded area in the
cases matrix (conjunction of third row with first–second
columns) is the hotspot of interest that is required to be
detected by the method. As demonstrated, the principal
singular vector corresponding to the spatial and temporal
dimensions is obtained via one-rank SVD. As a result,
we have two singular vectors corresponding to the spatial
and temporal dimensions for each set. In the next step,
we subtract elements of each singular vectors pairs
together. Therefore, we would have two vectors →dt and
→ds that represent subtract vectors for the temporal and
spatial dimensions, respectively. As demonstrated, dt has
four elements, and ds has three elements, each of which
corresponds to the original regions and temporal windows
(e.g. dt1 corresponds to T1, and ds1 corresponds to
region 1). In the next step, we apply a z-score control chart
with significance level α (e.g. α=0.05) on both of these
vectors to identify their abnormal elements. As it is
hypothetically shown in the example, T1 and T2 are
identified as temporal hotspot components, and region 3 is
identified as the spatial hotspot component. We only need
to combine spatial components with temporal components
to approximate the hotspots in the spatiotemporal space.
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As shown, the identified hotspot of region 3, T1, T2 is
equivalent to the shaded area in cases matrix (the target).

3. Experimental evaluation

In this section, the effectiveness of our proposed approach is
assessed, through an experimental study. The data sets used
in evaluation of hotspot detection techniques are usually
threefold (Buckeridge et al., 2005): (1) wholly simulated:
both baseline and cases and hotspots are simulated; (2)
semi-realistic: baseline is taken from a real population, but
cases and hotspots are simulated; and (3) real data: both
baseline and cases are real and hotspots are verified by a
domain specialist. In this paper, we evaluate the proposal,
using the latter two strategies. We evaluate the algorithm
performance, via the simulation study (Section 3.1) and a
real-world data (Section 3.2). All experiments are conducted
on a PC with Intel Core 2 Duo CPU and 3GB Ram. We use
MATLAB 7 for the algorithm implementation and
experiments and SatSan 9.2 (Kulldorff, 2012b) for expe-
rimenting with STScan.

Our method is compared with two other techniques,
including the STScan and a baseline method. STScan
(Kulldorff & Nagarwalla, 1995; Kulldorff, 1997, 1999;
Kulldorff et al., 1998) exhaustively moves a varying radius
and height cylinder over the whole spatiotemporal space.
The height of the cylinder represents the time dimension,
and the surface corresponds to the space dimension.
Furthermore, it scores each possible cylinder, on the basis
of likelihood ratio statistics. Next, it sorts cylinders on the
basis of an order of the highest to the lowest score. Finally,
a randomization test is performed for obtaining the
cylinders statistical significance. The cylinder whose p-value
is lower than α (e.g. 0.05) is returned as hotspots. In the
baseline method, we compute the ratio of the count of cases
to the corresponding population for each matrix cell; then,
we compute the z-score of the obtained ratios and obtain

the p-value from z-score. Afterwards, we signal an alarm,
when p-value for a cell goes lower than α.

3.1. Simulation study

Here, we describe how the simulated data is generated and
subsequently present the obtained result.

3.1.1. Data generation We generate 1500 sets of semi-real
data, on the basis of the extracted baseline data set from
(Kulldorff et al., 1998). The baseline set includes the
spatiotemporal distribution of population in New Mexico,
USA, during 1973–1991. In order to simulate the cases
count, we initially obtain the maximum likelihood of the
parameter of the Poisson distribution, λ from the first year
of the baseline set. Let the vector of counts for the first year
be (c1, c2,.., ci) where 1 ≤ i ≤ n (n: number of spatial items). λ
simply can be obtained by computing the means of the
vector. Then, we multiply λ by a fixed constant of 1.2% for
subsequent years (1.2% is the average population growth
rate). Next, we generate random numbers from the Poisson
distribution with corresponding estimated parameters for
each year. In order to inject the hotspot into the cases, we
select a matrix window with size H×H (hotspot size) and
multiply the counts inside the window by a fixed value of I
(hotspot impact). We then vary H from 1 to 5 and select I
from 1.5, 2 to 2.5. Because we generate data sets on the basis
of the random numbers, we generate 100 data sets for each
setting to reduce the effect of randomness. The next section
explores the evaluation results.

3.1.2. Performance evaluation Hotspot detection can be
considered a binary classification problem, because the
detection approach marks each spatiotemporal window
with hotspot or non-hotspot. However, in any approach,
we determine a decision threshold to distinct hotspots from
non-hotspots. Determination of this threshold becomesmore
important in sensitive applications, such as security and

Figure 1: EigenSpot algorithm, an illustrative example. The goal of the approach is the identification of the shaded area in
the cases matrix. The values c and b in the baseline and cases matrix are counts corresponding to a spatiotemporal window.
The process is composed of the following four steps: (1) matrix decomposition; (2) subtraction of pair singular vectors
elements; (3) applying the z-score control chart on the subtract vector; and (4) combining the spatial and temporal
hotspots components.
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public health. For such applications, the evaluation of
methods has to be evaluated within different ranges of
decision thresholds. The receiver operating characteristic
(ROC) curve (Zweig & Campbell, 1993) is a widely accepted
method for such evaluation tasks. However, because of two
reasons, ROC curve cannot be used as an appropriate
strategy for the evaluation in this simulation study. On one
hand, we want to evaluate the method performance on 100
random data sets for each 15 setting. Therefore, we have
1500 data sets, which require the analysis of 1500 ROC
curves, which is infeasible. We also cannot reduce the number
of data sets to one, because we are generating random sets, and
if we rely only on one data set, then our results would be highly
dependent on the chance and randomness. At the first glance,
the area under the ROC curve (AUC) seems to be an
appropriate choice, as the AUC does not have user-defined
parameters. Besides, it is a summarized scalar and seems to
be appropriate for mass comparison of the methods. However,
the main criticism about use of AUC in applications, such as
hotspot detection and outbreak detection is that AUC
considers all thresholds equal, which is not true in many
applications. In practice, in sensitive applications, such as
epidemiology where we deal with the human lives, we are not
interested in knowing how a method performs in high alpha
values. The operational and practical p-value used is always
low values. In other words, the alpha of interest is not between
0 and 1, rather is limited to lower values. Besides, AUC as a
summarized scalar hides the real ROC curve behind the
evaluation. In fact, AUC can give potentially misleading
results if ROC curves cross (Hand, 2009). Some detailed
criticisms against AUC can be found in (Lobo et al., 2008;
Hand, 2009; Hand & Anagnostopoulos, 2013). For this
reason, instead of AUC, we opt to use an averaging strategy
for operation thresholds (Wong et al., 2005). We compute
the average accuracy for a range of operational significance
levels, such as alpha from 0.20 to 0.01 for each data set and
then the average obtained values for all 100 data sets for each
setting. The range of alpha is obtained as follows: We vary
z-score from 1.28 to 3 (equivalent to two-tailed p-value of
0.2005–0.0027) and then increase z-score 0.1 in each loop.

We compare our method performance against both the
STScan and the baseline approach, via control chart on

ratios, described in Section 2.1. The accuracy of methods
in the identification of simulated hotspots is used as the
criterion for the performance evaluation. The results are
presented in Table 1. As seen, EigenSpot presents a better
performance in almost all settings, except low-impact
hotspots. The baseline method also as expected, because of
the high rate of false positives, presents the lowest accuracy.
The superiority of EigenSpot over STScan possibly relies on
two reasons. One reason is related to the inherent
methodological difference between the EigenSpot and
STScan. STScan search the whole space to find some
spatiotemporal windows that the data distribution inside
them has some deviation to the standard distribution models
(e.g. Poisson). This strict assumption makes this approach
less effective, when the data in each of sets does not exactly
follow the standard distribution model or some deviation
occurs by the chance. EigenSpot instead of putting this strict
restriction search for changes in the occurrence patterns and
therefore is less sensitive to the deviations in data distri-
bution. The second reason could be that the EigenSpot is a
shape-free method and does not search for a particular
shape hotspot, whilst STScan looks for specific shape
hotspots. Some accuracy loss in STScan relates to different
shapes of the simulated hotspot. STScan looks for
cylinder-shape hotspots, whilst the simulated hotspots are
in fact cubic.

The results also show the performance of each method
against noise. We intentionally design some low-impact
and size settings for evaluating the ability of the methods
in handling noise and outliers. A low-size and low-impact
region such as impact of 1.5 and size 1× 1 more seem to
be an outlier or anomaly, rather than a realistic hotspot.
Therefore, we expect that the methods do not detect that
region as hotspot and ignore that. In other words, the
detection of such hotspot shows how a method wrongly
identifies the outliers and noise as hotspots. Hence, the
lower accuracy in this setting reveals the better performance
of the method in dealing with noise and outliers. Because the
EigenSpot is a spectral method, it definitely ignores such
outliers and does not report them as hotspots, whilst STScan
is vulnerable against such circumstances. For this reason, it
presents a higher performance for low-size and impact

Table 1: The mean accuracy for 173 α in the range of 0.20–0.01 averaged for 100 data sets

Size

Method Impact 1× 1 2× 2 3× 3 4× 4 5× 5

EigenSpot 1.5 0.7011 0.7670 0.8124 0.8574 0.8263
Baseline 1.5 0.7270 0.7417 0.7523 0.7663 0.7669
STScan 1.5 0.7966 0.7984 0.8008 0.8030 0.8005
EigenSpot 2.0 0.8751 0.9588 0.9588 0.9492 0.9498
Baseline 2.0 0.7259 0.7453 0.7510 0.7662 0.7741
STScan 2.0 0.8034 0.8130 0.8171 0.8273 0.8267
EigenSpot 2.5 0.9393 0.9718 0.9725 0.9675 0.9555
Baseline 2.5 0.7321 0.7511 0.7588 0.7783 0.7879
STScan 2.5 0.8069 0.8314 0.8578 0.8629 0.8723

Bold items implies the outperforming method in the corresponding impact and size.
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regions. In the experiment, we presumed that a hotspot with
small size of 1× 1 or 2× 2 and low impact of 1.5 is more a
noise and not a real hotspot. However, because the hotspots
are simulated, this is only an assumption. We may interpret
the result in other way. If we assume that impact 1.5 is not
noise and reveals a real hotspot, then we can infer that
STScan outperforms EigenSpot for hotspots with low
impacts and sizes.

3.1.3. Effect of hotspot size and impact on the performance
In the previous section, we evaluated the methods per-
formance for some limited important settings. In this
section, with the same method of data generation and
evaluation criterion, we study the stability of two algorithms
STScan and EigenSpot for a wider range of hotspot sizes
and impacts. We do not study the baseline method at this
stage, because it is defeated in all previous cases. Hence, this
time the hotspot size (H) varies from 1 to 10, and we test 16
different hotspot impacts (I) from 1.25 to 5 by step of 0.25.

As formerly used, for each setting, we generate 100 random
data sets. Therefore, we generate 16000= 10×16× 100 data
sets. We then apply STScan and EigenSpot on all data sets
and measure their average accuracy on 100 data sets for
each setting in the operational significance levels (p-values)
from 0.20 to 0.01. Figure 2 shows the result of this
comparison. In order to see that whether this improvement
is obtained by chance or is statistically significant, we per-
form a paired student’s t-test between two sets of obtained
performances for STScan and EigenSpot. The t-test con-
firms that the obtained improvement is statistically sig-
nificant with p� value=3.3591× 10� 89≈ 0.

Figure 3 shows the performance of methods against
different hotspot sizes and impact. The lowest performance
for EigenSpot is obtained for impacts of 1.25 and 1.5, which
is more related to the noise (as was already discussed).
However, we can observe that both methods relatively are
robust for a hotspot impact greater than a threshold. For
instance, EigenSpot is robust for impacts over 1.75, and
STScan is robust for impacts over 2.5. Regarding the hot-
spot size, EigenSpot has a descending trend by increasing
the hotspot size. This implies that by increasing the hotspot
size, we should expect lower performance from EigenSpot.
It makes sense, as by increasing the size of hotspot, the
affected areas gradually start to seem normal and are left
undetected, via a spectral method such as EigenSpot. Eigen-
Spot, however, exhibits more regular behaviour comparing
STScan in this matter. The variance of performance is
almost zero for EigenSpot during different size of hotspots,
whilst it can vary up to 0.20 for STScan. STScan, also
opposed to EigenSpot, experiences both ascending and

Figure 2: Mean accuracy for 16000 data sets averaged for
173 α from 0.20 to 0.01.

Figure 3: Mean accuracy of STScan and EigenSpot corresponding to different settings for 173 α from 0.20 to 0.01 averaged for
100 data sets.
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descending trend. For hotspot sizes 1× 1 to 6× 6 have an
ascending trend and then tend to decrease for bigger sizes.
For hotspot 9× 9, it has relatively the same performance
as 1× 1.

To understand whether the hotspot size and impact affect
the performance of the methods, we perform an analysis of
variance (ANOVA) test (Montgomery et al., 1984) on the
obtained performance for different hotspot sizes and
impacts. The null hypothesis H0 is that that the mean
accuracy does not change for different sizes and impacts.
The test result (Table 2) confirms our initial guess that both
STScan and EigenSpot become independent of hotspot
impact when impact goes upper than a specific threshold.
However, very low p-values for hotspot size indicate that
the performance of both EigenSpot and STScan is
dependent on the hotspot size. However, as observed, both
methods do not differ in their dependence on hotspot impact
and size.

3.1.4. The effect of singular value decomposition
implementation The central technique used in EigenSpot
is the SVD. Two kinds of SVD can be used for this purpose:
a full-rank SVD and a low-rank SVD. Here, four of SVD
implementations are chosen, two from each category, and
their effect is studied on the EigenSpot performance. Table 3
demonstrates the average accuracy for 1500 data sets for the
range of p-values from 0.20 to 0.01. As it is seen, the
ARPACK implementation (Sorensen, 1997) (the default
SVD implementation we use in the experiments) outperforms
other methods. However, because both ARPACK and
IncPACK (Brand, 2006) have the same computational cost,
we perform an ANOVA test (Montgomery et al., 1984) to
see whether using IncPACK affects the performance or not.
The ANOVA test shows that two sets of accuracy obtained
from these two implementations are not statistically different
(p-value=0.26). Therefore, we can conclude that low-rank

SVD implementation used does not affect the EigenSpot
performance. Concerning full-rank SVD, we observe that
LAPACK (Anderson, 1999) outperforms PROPACK
(Larsen, 1998); however, full-rank SVD, because of its
computational cost, is not of our interest.

3.2. Experiment with real data

In this section, we study the performance of EigenSpot on a
real data set. The data set that is publicly available
(Kulldorff, 2012a) is provided by surveillance, epidemiology
and end results programme of the National Cancer Institute
and collected by the New Mexico Tumor Registry between
the years of 1973 and 1991 for 32 sub-regions of the New
Mexico State, USA. There are 1175 reported cases of
malignant neoplasm of the brain and the nervous system.
The goal of the initial study was a response to a serious
concern in 1991 in the New Mexico resident community
about the correlation of wartime nuclear activities in Los
Alamos with the recent brain tumour deaths in the
neighbourhood. The concern rapidly emerged at the local
and national level and therefore became a centre of attention
by the local health departments. The data set was gathered,
via a comprehensive review of the reported brain cancer
incidence rates for the year 1973 through 1991 in order to
identify the statistically significant spatiotemporal affected
areas. STScan is already applied to this data (Kulldorff
et al., 1998). The conclusion made from the previous study
shows that excess of brain cancer in Los Alamos falls within
the realm of chance, which confirms the final conclusion of
the New Mexico Health Department.

In order to compare the EigenSpot with STScan, the
EigenSpot is applied on the same data set. In addition to
the initial study (Kulldorff et al., 1998), we use the adjusted
incidences for temporal trends, age, race and sex. The results
obtained via STScan and EigenSpot are shown in Table 4.
STScan reports only Santa Fe and Los Alamos in the years
1986–1989 with a relative high p-value = 0.45, which
indicates that there is no significant hotspot. Applying
EigenSpot with α=0.05, we could find a significant hotspot,
including areas of Santa Fe, Bernalillo and Valencia as
spatial components and the years 1981 and 1987 as the
temporal components. However, for α=0.01, EigenSpot
does not find any hotspot. If we look the hotspot spatial
positions in Figure 4, we can find a meaningful relationship
between STScan and EigenSpot results. Both candidate
areas are found close the Los Alamos, the region of nuclear

Table 2: The effect of hotspot size and impact on the per-
formance (one-way analysis of variance test)

Factor STScan EigenSpot

Hotspot size p=1.6826× 10� 10 p=5.9713× 10� 13

Hotspot impact p=0.1834
(for impacts ≥ 2.5)

p=0.9337
(for impacts ≥ 1.75)

Table 3: Average accuracy for 1500 data sets averaged for
173 α from 0.20 to 0.01

Method Cost Implementation Average accuracy

One-rank SVD O(N2) ARPACK 0.8975
IncPACK 0.8387

Full SVD O(N3) LAPACK 0.8429
PROPACK 0.8177

SVD, singular value decomposition.
Bold items implies the outperforming method in terms of accuracy.

Table 4: Comparison of STScan versus EigenSpot in
detection of hotspots

Method Affected Regions Temporal period p-value

STScan Santa Fe and
Los Alamos

1986–1989 0.45

EigenSpot Santa Fe, Bernalillo
and Valencia

1981, 1987 0.05

Incidence rates were adjusted for temporal trends, age, race and sex.
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activities. The temporal component of 1987 also appeared in
the EigenSpot, which is located in the period detected by
STScan. On the basis of EigenSpot result, it seems that in
addition to the area close to Los Alamos and Santa Fe,
more areas were affected by the nuclear activities. These
areas are Bernalillo and Valencia where the neighbours of
Santa Fe and Los Alamos are. The very interesting point
about EigenSpot is that EigenSpot opposed to STScan was
not aware about the geographic relationship of the regions.
STScan knows in advance that for instance whether Santa
Fe and Bernalillo are neighbours or not, whilst EigenSpot
does not have this prior knowledge. On the basis of the
EigenSpot result, we can infer that the effect of nuclear
activities in the neighbourhood has experienced two peaks
during the years 1981 and 1987. It makes sense, because
the initial concerns about the effect of the nuclear activities
started in 1991, four years right after 1987 (second detected
temporal component). Indeed, EigenSpot has truly
approximated the hotspot spatially and temporally very
close the nuclear activity area. Most interestingly, no
other meaningless hotspots are detected by EigenSpot.
However, lack of strong p-value for the recognized area
reveals that the neighbourhood has been under a low
effect of nuclear activities in Los Alamos but has not
had an enough support to be considered alarming. If we
do not consider α=0.05 as significant, we can confirm
initial conclusion about the random incidence of brain
cancers in Los Alamos.

4. Conclusion and future works

A new methodology for hotspot detection is proposed,
which is based on two robust techniques, including matrix
factorization and process control. We evaluate and compare
the performance of the algorithm for detection of a single
hotspot against the state-of-the-art and the baseline methods
through a comprehensive simulation study. The obtained
results indicate a statistically significant improvement over

the state-of-the-art method STScan. This improvement
comes from the inherent methodological differences of the
two approaches. The STScan uses the deviation in pro-
bability model as the criteria for identification of hotspots,
whilst our approach tracks the changes the correlation
patterns in spatial and temporal dimension to approximate
the hotspot location. Besides, our approach is a shape-free
method, and contrary to STScan, it is robust to the noise
and outliers.

Our approach is also much more efficient than the scan
statistics-based approaches. The main benefit of our ap-
proach is that it has linear complexity, in terms of both
space and time. The comprehensive comparison of scan
statistics-based methods in (Agarwal et al., 2006) reveals
that any algorithms that even provide approximately
optimal answers to the problem must use space linear in
the input. EigenSpot provides an approximate optimal
answer and is linear with space and time dimensions, and
it therefore meets this requirement.

We also study the effect of hotspot size and impact in the
methods performance. On the basis of this result, both the
STScan and EigenSpot are independent of the hotspot
impact in some specific ranges. However, both methods
are dependent on the hotspot size. Nevertheless, EigenSpot
exhibits a more regular trend against changes in hotspot size
and impact. We also study the effect of SVD implemen-
tation on the EigenSpot performance. The study shows that
there is no statistical difference between two low-rank SVD
implementations ARPACK and IncPACK. Therefore, SVD
implementation does not affect the performance of Eigen-
Spot. Finally, we apply EigenSpot to a real data set and
compare its performance to STScan. EigenSpot, as well as
the STScan, recognizes the affected area close to the nuclear
activity area, both in space and time, however, as well as
STScan, cannot provide the strong statistical evidence to
identify this area as hotspot.

EigenSpot can be used as an important component in
surveillance systems in particular biosurveillance systems.
Some estimations (Kaufmann et al., 1997) show that the

Figure 4: Detected hotspot via STScan (left) and EigenSpot (right).
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timely detection of hotspots can save the live of thirty
thousands of people per day during a bio-agent release. It
also prevents the economic cost of $250m per hour during
a disease outbreak. Therefore, any early knowledge of
hotspots plays an important role in improving response
effectiveness. It is estimated (Morrison et al., 2010) that
diagnosing and controlling abnormal situations has an
economic impact of at least $10bn annually in the United
States.

Although EigenSpot is an ideal solution in terms of both
accuracy and computational cost for single hotspot de-
tection, there is a doubt that this result is valid when
multiple hotspots exist. In this work, we did not evaluate
the performance of EigenSpot for multiple hotspot de-
tection. However, theoretically, we expect that STScan
performs better for that purpose. Because, combining the
spatial and temporal components of different hotspots
together raise many false positives, which reduce the method
performance, even though this may not be considered a
serious issue in disease surveillance, where in practice the
most likely cluster is desired.

There are two directions for future works. In the first
direction, we intend to find a solution for adapting
EigenSpot for multiple hotspot detection, and in the
second direction, we are going to apply EigenSpot along
with visualization tools for online and real-time moni-
toring purposes.
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