
Socrates: a flexible toolkit
for building logic-based

expert systems
R Corlett*, N Davies*, R Khan*, H Reichgeltt

and F van Harmelent

This paper describes the architecture of the Socrates tool-
kit ./'or building expert systems. The authors analyse the
problems associated with existing expert system tools and
propose a solution based on the use of logic and meta-level
inference. The abstract architecture for the toolkit is
described which embodies this combination of logic and
meta-level inference. This architecture can be instantiated
to create a system that is specialized for a particular
application. This specialization process can be seen as
a methodology for building expert systems. The three
stages of this methodology are discussed in detail, along
with descriptions of how the Socrates toolkit supports it.
The current implementation of Socrates, plus a number
of applications of the toolkit are described, and the open
problems are discussed.

Keywords: expert systems, toolkit, architecture, building
methodology

Most of the tools that are currently available for
constructing expert systems fall into two categories,
namely expert system shells and high level programming
language environments. Both of these types of tool suffer
from a number of shortcomings which limit their useful-
ness.

The first type of available tools, 'shells', are usually
constructed by abstraction from an existing expert
system. Thus, a shell normally consists of an inference
engine and an empty knowledge base, and some de-
bugging and explanation facilities. Buyers of a shell often
believe, and manufacturers often claim, that the shell
is appropriate for a number of different applications.
However, a large number of people have expressed dis-
satisfaction with expert system shells. The two most
frequently heard complaints (e.g. Alvey') are first, that
the view that the inference engine which was successful

*GEC Research, Marconi Research Centre, Chelmsford, UK
tDepartment of Artificial Intelligence, University of Edinburgh,
Edinburgh EH8 9YL, UK

0950-7051/88/030132-11 $03.00 © 1988
132

in one application will also be successful in other
applications is unwarranted, and second, that the
knowledge representation scheme often makes the
expression of knowledge in another domain awkward,
if not impossible. For example, a production rule
language that was designed for solving a classification
problem using backward chaining would probably not
be very suitable for solving a design or planning
problem.

On the other hand, proponents of high level program-
ming language environments (sometimes known as
'hybrid systems'), such as LOOPS 2, KEE 3 or ART 4,
can be seen as taking a more pluralistic position: instead
of providing knowledge engineers with a single pre-
fabricated inference engine, one provides them with a
large set of tools, each of which has proven useful in
other applications. LOOPS, for example, provides
object-oriented programming with inheritance, a pro-
duction rule interpreter and active values, as well as
Lisp.

While we accept that hybrid systems are useful as
tools for program development, we would claim that
they are less useful as tools for building expert systems.
Their main problem is that they provide the knowledge
engineer with a bewildering array of possibilities, and
little, if any, guidance as to the circumstances in which
any of these possibilities should be used. Unless used
by experienced programmers, high level programming
environments encourage an ad hoc programming style
in which no attention is paid to a principled analysis
of the problem at hand to see which strategy is best
suited for its solution.

The conclusion that is drawn from the problems
associated with shells and high level programming
language environments is that a number of different
"models of rationality' are needed, and that different
applications require different models of rationality.
When constructing an expert system, the knowledge
engineer then has to decide which model of rationality
is appropriate to the application at hand. A model of
rationality has both a 'static' and a 'dynamic' aspect.
These two aspects correspond to the knowledge about

Butterworth & Co (Publishers) Ltd
Knowledge-Based Systems

the application area plus a strategy that describes how
to use this knowledge when solving a problem. The
'interpretation models' from Breuker and Wielinga s
correspond closely to our models of rationality.

The distinction between the static and the dynamic
aspects of a model of rationality corresponds to a dis-
tinction one can make between two different aspects
of an expert system. First, there is the 'domain' in which
the expert system is to solve problems. For example,
the domain of an expert system may be electronics, or
internal medicine. Secondly, there is the 'task' which
the knowledge engineer wants the expert system to
perform. For example, the task of a system can be
diagnosing a faulty electronic circuit or designing a new
circuit. It is interesting to note that the problems with
shells reflect these two aspects of an expert system. The
first complaint about shells concerning the expressive-
ness of the knowledge representation language is related
to the structure of the domain. The second complaint
concerning the rigidity of the inference engine is related
to the task of the expert system. As pointed out by
Chandrasekaran ~, typical expert system tasks such as
diagnosis, planning, monitoring, etc. seem to require
particular control regimes.

Socrates allows the use of a variety of logical
languages and a variety of control regimes to solve the
problem of the lack of flexibility associated with shells.
By using logic as its unifying framework, and by provid-
ing guidelines for the choice of both the representation
language and the control regime, Socrates avoids the
unstructured richness of the hybrid systems. These points
are discussed in detail below.

USING L O G I C FOR K N O W L E D G E
REPRESENTATION

Socrates uses a 'logical language' as the main formalism
to implement the static aspects of the required models
of rationality for different domains. On the one hand,
logical formalisms are rich enough to provide different
models of rationality, while on the other hand the use
of logic provides a unifying framework for the system
which saves it from the unstructured richness of the
hybrid systems. This choice of logic as the main
formalism implies that logical languages will serve as
the representational scheme, while logical deduction will
be the paradigm for the inference engine.

Many advantages come with the use of logic as the
main knowledge representation formalism. Logic comes
with a formal semantics, it has well understood proper-
ties regarding completeness, soundness, decidability,
etc., and it has great expressive power. For a further
elaboration on these arguments, see Corlett, Davies,
Khan, Reichgelt and van Harmelen 7.

USING META-LEVEL INFERENCE FOR
C O N T R O L

The correspondence between the two aspects of a model
of rationality and the problems with shells suggests that
a model of rationality should be computationally
realized as a knowledge representation formalism plus
a control regime for using this formalism. A number
of arguments can be given for the explicit and separate
representation of control knowledge. First, a system with

I - U ~ r - f ' r o n ' t end "I L - I

/ A

- , ,

[2 - _- - - - 2 - - _- ;_]

Figure 1. Socrates architecture

an explicit representation of its control strategies is easier
to develop, debug and modify, as argued by Davis s,
Bundy and Welham 9, Clancey ~° and Aiello and Levi 11.
Second, the separation of control knowledge from
domain knowledge (or 'object-level knowledge')
increases the reusability of the system: the same object-
level knowledge can be used for different purposes, and
the same control knowledge can be used in different
domains s. ~ o. 12 Finally Clancey ~ 3 stresses the
importance of explicit control knowledge for the purpose
of explanation.

The separation of control knowledge from domain
knowledge allows domain knowledge to be purely
declarative in nature. While formulating domain
knowledge we do not have to worry about efficiency,
only about the 'representational adequacy' (in the words
of McCarthy). In the control knowledge, on the other
hand, the efficiency of the problem solving process is
the most prominent aspect ('computational adequacy').

ABSTRACT ARCHITECTURE OF SOCRATES

As argued in many other places in the literature (see
~0.~2.~4-20 among others), an architecture with a separate
object-level and meta-level interpreter can be used
to implement the required separation of domain
and control knowledge. This architecture is shown
in Figure 1. The two-layer architecture of object-level
and recta-level interpreter is extended in Socrates
with a third level, the scheduler, discussed below.
Each of the three interpreters communicates with the
knowledge base in order to store and retrieve logical
propositions. As described below, the knowledge
base can be organized into a number of partitions,
each of which can be hierarchically organized into
subpartitions.

The Socrates architecture distinguishes between front-
ends to be used by the 'end-user' and the 'knowledge
engineer'*. Knowledge engineers and end-users will need
different tools for communication with the system. For
example, an end-user, when asking for an explanation,
will not want to see the entire proof tree, but rather
'edited highlights'. A knowledge engineer, on the other
hand, may want to be able to monitor the reasoning

*The end-user is the person who uses the expert system application
built with the Socrates toolkit, whereas the knowledge engineer is
the person building such an application system.

Vol 1 No 3 June 1988 133

process much more closely and may require the full proof
tree. Similarly, a knowledge engineer will need tools for
adjusting the behaviour of the interpreters and for edit-
ing the knowledge base, whereas an end-user only needs
to browse in a read-only manner through the knowledge
base. Furthermore, the levels of abstraction at which
the system communicates will differ between end-user
and knowledge engineer.

This general, application independent architecture
needs to be "configured' for a particular expert systems
application, given the characteristics of the domain and
the task of that application. The use of logic as the
underlying framework for the system gives a very specific
meaning to the process of configuring the system for
a particular application. Rather than having to choose
between arbitrary representational schemes and
inference methods (as is the case in the hybrid systems),
the configuration process now consists of three well
defined stages; i.e. the declaration of a 'logical language',
the declaration of a 'proof theory" for that logical
language, and the declaration of a 'proof strategy'.

L O G I C A L R E P R E S E N T A T I O N L A N G U A G E
D E C L A R A T I O N

As the first step in the process of configuring a system
for a particular application, the knowledge engineer
defines the logical language that will be used for
representing the domain knowledge. In the context of
a knowledge-based system, where the logical language
is to be used for representational purposes, the 'syntactic"
declaration of the language has to be augmented with
a mechanism for 'storage and retrieval'. Each of these
aspects will be discussed in this section.

R e p r e s e n t a t i o n l a n g u a g e

As the first part of the declaration of the logical represen-
tation language, the knowledge engineer has to declare
the "vocabulary' of the language. The predicate symbols,
function symbols and constants that are going to be
part of the representation language have to be defined.

Socrates uses 'many-sorted logics' of the kind pro-
posed by Waither 2~, making use of typed quantification,
where the sorts are organized in a hierarchy. Each sort
is used to represent a non-empty set of individuals
belonging to that sort. In such logics the sort hierarchy
is defined by a partial ordering on the set of sorts, corres-
ponding to a lattice structure with the universal sort
as the maximal, and the empty sort* as the minimal
element in the set. This lattice is more general than a
tree structure, since it allows sorts to have more than
one supersort, thereby increasing the expressiveness of
the sort of system. The use of many-sorted logics over
unsorted logics brings a number of advantages. First,
complicated unsorted expressions can be reformulated
in a much simpler many-sorted form. For example, the
unsorted expression:

V x 3 y [human(x) ~ human(y) & mother(y, x)]

*The empty sort, notat ion ~,~, is the only sort representing an empty
set of individuals, and as such does not fulfill any representational
role. The reason why sorts must correspond to non-empty sets is
discussed below.
tThe notat ion x.t is used to indicate that variable x is of sort t.

can be rewritten, after the declaration of human as a
sort, as

V x: human 3 y: human [mother(y, x)]'t

This reduction in complexity of axioms not only
improves the readability of the knowledge base, but it
also causes a significant decrease in the size of the search
space for proofs. Cohn 2-" (in the context of a resolution
based theorem prover), and Davies 23 (in the context
of a natural deduction system) show that this reduction
can amount to as much as an order of magnitude.

Second, the sort hierarchy allows the knowledge
engineer to represent what Clancey 13 calls "structural
knowledge', representing the taxonomical hierarchy of
the application domain. In sorted logics, the unification
algorithm has to take the sort hierarchy into account.
The rules for unification in a sorted logic are:

a constant c,:t~ unifies with a constant C2:/2 if c~
= c2 and ti = I 2

a variable x.'t~ unifies with a constant c.'t 2 if t 2 = tt
a variable x.'q unifies with a variable y:t2 if tj

The third rule results in restricting the sorts of both
variables to t3 = t~ c~ t2. In order to guarantee that
t 3 can be computed and is itself a legal sort, it is necessary
that the system knows the values of all pairwise intersec-
tions of all sorts, and that sort-intersection is closed
over sorts. In other words, if T is the set of all sorts
(including ~) , then

V t~. t=:tt • T & l 2 • T - , t~ c~ t2 • T

Furthermore, in order to guarantee that 13 is uniquely
defined, we require that no two sorts are used to repre-
sent the same set of individuals. If this were allowed,
the unification algorithm would no longer be able to
return a unique most general unifier.

The knowledge engineer declares the sorts of the logic
by declaration first the set of sorts, and then the
hierarchy of sorts using set-theoretic primitives, such
as equality, subset, superset, intersection, union, set-
difference, complementation and disjointness. After this
has been done, the system automatically checks whether
the sort hierarchy satisfies the following criteria:

• No two sorts are equal.
• No sort except .~,, is empty.
• Intersection is closed over sorts.

If any of these constraints is violated, or if the constraints
are not satisfied by the current declarations (because
the knowledge engineer has underspecified the sort
hierarchy), the system asks the knowledge engineer for
different or additional declarations.

The sorts of the constants of the logical language
can be declared in two ways. The simplest way is by
simply enumerating the constants of a particular sort
('extensional' definition of types). However, for some
sorts enumeration is not feasible, either because the set
of constants of that sort is not known in advance, or
because this set is too large, or indeed infinite. For these
cases it is possible to define constants by declaring a
"recognition procedure" for the sort. Every object for
which the recognition procedure succeeds will be
assumed to be a constant of that particular sort ('inten-
sionai' definition of types). The definitions of the

134 Knowledge-Based Systems

recognition procedures must be supplied in the imple-
mentation language of the system. This allows an inter-
face between the logical representation language and
the computational data types supplied by the implemen-
tation language of the system. An example of a sort
that can be declared via this mechanism is the sort of
all integers, or as a second example, for any given
sort T, the sort T Lis t consisting of all lists of elements
of sort T.

As part of declaring the vocabulary of the logical
representation language, it is possible to exploit what
Weyhrauch 24 calls 'semantic attachment'. This is done
by declaring a special class of predicates called 'evaluable
predicates'. When one of these predicates is encountered
in a proof, it is possible (depending on the control
decisions made by the meta-level interpreter, discussed
below) to execute a procedure defined for this predicate
to determine its truth value, and possibly provide
bindings for any variables. These predicates provide an
interface between the logical representation language
and the computational environment of the system,
enabling external systems interaction, input/output for
interacting with the end-user, and the access of the facili-
ties provided by the implementation language of the
system.

At this stage the representation language consists only
of a sort hierarchy and a set of predicates, constants
and functions. We still need to extend our language
with 'logical connectives', such as implication, dis-
junction, etc., and possibly non-standard operators*,
such as modal and temporal operators. As part of the
declaration of these logical connectives the knowledge
engineer can declare their properties with respect to
commutativity and associativity. These declarations will
be used to configure a unifier for the defined logical
language (see the section below on the declaration of
the proof theory for a more detailed discussion of this
subject). Socrates distinguishes between different kinds
of logical connectives: 'Unary' connectives take one
argument; binary connectives take two arguments, and
can be divided on the basis of their commutativity.
Implication (~) is an example of a 'non-commutative
binary' connective, whereas equivalence (4--,) is an
example of a 'commutative binary' connective. If con-
nectives are both commutative and associative (such as,
for instance, conjunction), they are treated as so-called
'set-connectives'. This amounts to them taking any
number of arguments in any order. Furthermore, set
connectives are assumed to be idempotent: all multiple
occurrences of an argument can be reduced to only one
occurrence. Other possible connectives are not currently
implemented in Socrates: 'bag' operators, which are
associative and commutative but not idempotent (i.e.
the order of arguments does not matter, but multiple
occurrences of an argument cannot be reduced), and
'sequence' operators, where the order of the arguments
is significant, and multiple occurrences cannot be
reduced.

Storage and retrieval mechanism

Now that the vocabulary of the logical language is
complete we need to declare a storage and retrieval

*The terms logical connective and logical operator are used
synonymously

mechanism for expressions in the language. This is what
is typically called the 'knowledge base' of the system.
The knowledge base of Socrates is not a flat space of
assertions in the declared logical language, but can be
divided into a number of 'partitions'. Each of these
partitions can have a separate logical language asso-
ciated with it (but see below for a restriction on this).
This facility serves a number of different purposes.

First, it allows the knowledge engineer to use mixed
language representations of the domain. Different types
of knowledge or different aspects of the domain can
be represented in separate languages. A particular
example of this is described below, where we discuss
the control knowledge of the system. This meta-level
knowledge is expressed in a different language from the
object-level knowledge. Nevertheless, it can be stored
in the same knowledge base, using the partitioning
mechanism to separate the two.

Second, the partition hierarchy can be used to reduce
the search that needs to be done both by the retrieval
mechanism and by the inference machinery. In many
problem solving situations, only a subset of all the avail-
able knowledge is applicable at any one time to a given
problem. Partitioning allows useful subsets to be applied
while others are ignored. In this way, Socrates can be
used to model a blackboard architecture, with each of
the partitions simulating the contents of a knowledge
sou rce .

An important aspect of the partitions in the knowledge
base is that they can be recursively divided into sub-
partitions, and that these subpartitions are organized
hierarchically. Partitions lower down in this hierarchy
inherit all the propositions from partitions higher up
in the hierarchy, but not vice versa. A particular example
of this could be the use of a single working memory
for a number of different subsets of domain knowledge,
where the working memory would be represented in the
top node, and the subsets of domain knowledge repre-
sented in subpartitions. The results of reasoning done
within one subpartition can in this way be communicated
to the other partitions via the working memory. Again,
this feature can also be used in the modelling of a black-
board system in Socrates, since the blackboard needs
to be visible from all knowledge sources, but not vice
versa. Since partitions can be created dynamically at
runtime, another application for the partition hierarchy
in the knowledge base is hypothetical reasoning, some-
times known as 'what-if' reasoning. Each time a new
hypothesis is generated, a new subpartition can be
created containing this hypothesis, and inheriting all
existing propositions from higher partitions.

The inheritance mechanism puts restraints on the
logical languages that can be used within subpartitions.
Because subpartitions inherit propositions from super-
partitions, all the partitions in a partition hierarchy must
be associated with the same logical representation
language. (Strictly speaking, it is only necessary that
the language of a subpartition is an extension of the
language of its superpartition, but Socrates does not
support this type of language inheritance.) Thus, the
knowledge base can be seen as a set of trees of partitions.
Within each tree, all partitions must have the same
language, but each separate tree can be associated with
a different language.

A final facility supported by the knowledge base is

Voi 1 No 3 June 1988 135

the annotation of propositions. Each proposition can
be annotated with arbitrary information using a slot-
value mechanism. This allows us to associate extra-
logical information with propositions. This information
can be used for a wide range of purposes, of which
a few examples are: natural language descriptions to
be used in explanations, control information to be used
by the meta-level interpreter, certainty values, etc. This
slot-value mechanism could be used to model a truth-
maintenance system in Socrates, by storing each derived
proposition in the knowledge base together with annota-
tions that contain the premises that were used in its
derivation.

Socrates uses a discrimination net technique for
retrieval of propositions. The optimal criteria that the
net should use for discrimination depend on the parti-
cular application, and Socrates therefore allows the
knowledge engineer to adjust these discrimination
criteria to suit the particular ways in which the know-
ledge base retrieval mechanism will be used. For
example, if the main control regime for a particular
application is some form of backward chaining, then
propositions of the form "left-hand-side ~ right-hand-
side' will be retrieved from the knowledge base on the
basis of the patterns in the 'right-hand-side' argument.
This implies that the discrimination net should first dis-
criminate implications on the basis of their consequent,
rather than their antecedent. As a second example, we
note that many predicates use a certain number of their
arguments as ' inputs' , while others are used as "output"
arguments. A predicate such as 'suffers-from (patient,
disease)' will typically be used to associate a given patient
with a disease, rather than to try and find all patients
suffering from a given disease. This particular use of
arguments indicates that the discrimination net should
use the first argument as the main discrimination
criterion, rather than the second argument. Because
these properties are specific to a particular application,
they can only be adjusted by the knowledge engineer
who configures the system, rather than being hardwired
into the retrieval mechanism of the knowledge base.

PROOF THEORY DECLARATION

The declaration of a logical language together with a
storage and retrieval mechanism allows us to represent
knowledge, but in order to manipulate this knowledge
to derive new conclusions we need rules that tell us
what the legal derivations will be. Since we have chosen
logic as the representation language for the system, we
are committed to logical deduction as the inference
process. We therefore need to define a proof theory,
i.e. a set of inference rules* that tell us how logical
propositions can be manipulated in order to perform
a proof. In Socrates we follow Biedsoe 2s in using the
natural deduction style of performing proofs rather than,
for instance, resolution. Although natural deduction
systems use a relatively large number of inference rules
(as opposed to the single inference rule of resolution
based systems), and thereby create a potential control

*We use the term "inference rule' in the logician's sense: an inference
rule is a rule that describes how true formulas can be inferred from
other true formulas, and is of the form . f t . • • f , ~- g , where g is inferred
from J ~ . . . f , . The term 'inference rule' is often incorrectly used to
denote formulas of the form .f--, g (i.e. logical implications).

problem, a number of reasons can bc given in favour
of natural deduction. The inference rules of a natural
deduction system are more intuitively meaningful than,
for instance, the resolution rule. Furthermore, no normal
forms are required for the formulas used in a proof.
As a result, the proofs performed by a natural deduction
system are easier to follow for a human reader, thereby
improving the possibilities for explanation facilities. The
naturalness of the proof development also makes it easier
to identify heuristics to control the problem solving pro-
cess, in the manner discussed below.

When expressing inference rules, the knowledge
engineer can make use of extra-logical variables that
range over well formed formulas from the object-level
representation language. For instance, the rules

P , P ~ Q ~ Q
P ~ - P V Q

represents the rules for Modus Ponens and Disjunction
Introduction. It is important to stress that these inference
rules can be used in both a forward and a backward
direction. For instance, Modus Ponens can be used to
determine that P and P -~ Q have to be proved in
order to prove Q (backward use), or the rule can be
used to infer that Q is true when we know that both
P and P --* Q are true. Furthermore, because of the
associativity and commutativity of some of the logical
connectives, a single inference rule can often be applied
in more than one way. For instance, if disjunction (V)
has been declared as a 'set-operator ' , Disjunction Intro-
duction can be applied backward to (/'V g) in two differ-
ent ways, binding P to either.f or g, thereby generating
either f o r g as a sub-goal for proving 0"V g). However,
which of these possible applications of an inference rule
should be used is a control decision, and is therefore
a meta-level issue, which is not decided as part of the
proof theory.

Not all the inference rules that the system uses are
declared as part of the proof strategy. First of all, there
is a set of inference rules that tell the system how to
deal with typed quantification. These rules:

V x:t~ P[x] ~ P[c:t2] for an arbitrary constant c, and
all sorts t~ and t2 with t~ _~ t2 ~ ~'
P[c:t~] ~ 3 X:tz P[x] for an arbitrary constant c, and
all sorts t~ and t2 with t 2 ~ t~ D ~)*
3 x:tt V y:t2 P[x,y] I'-- V y:t2 q x:t~ P[x,y] for all sorts
t~ and t2

are taken to be of universal validity (that is: across differ-
ent application areas of the system), and are therefore
hardwired into the retrieval mechanism. A second set
of rules, that is part of the retrieval mechanism in the
knowledge base rather than the proof theory, are the
results that deal with the commutativity and associativity
of certain logical connectives. For any operator ~ that
has been declared as "binary-commutative' , the inference
rule

P d p Q ~ Q ~ P

is hardwired into the knowledge base retrieval mechanism,
as are, for every 'set-operator' , the additional rules

PF- Pdp P
(P dp (Q dp R)) I-- ((P ~ Q) dp R).

*it is exactly because of this rule that in the section on logical represen-
tation declaration we required all sorts except ~ to be non-empty.

136 Knowledge-Based Systems

By taking all these rules out of the explicit declaration
of the proof strategy and transferring them to the retrieval
mechanism of the knowledge base, we have given a limited
deductive capability to the knowledge base.

The retrieval mechanism comprises two sequential
stages, a syntactic 'pattern matcher' and a 'unifier'.
Syntactic pattern matching is effected using the discrimi-
nation net technique mentioned above. Given a formula
as a query to the knowledge base, this process will
retrieve all formulas with the same pattern of operators
and predicates, subject to the commutativity and associa-
tivity rules as declared for the particular language. This
means that unification will be attempted only on patterns
that have a strong possibility of succeeding.

The patterns that can be specified as input to the
syntactic pattern maching phase are allowed to contain
'recta-logical (propositional) variables' that can match
with formulas of the logical representation language
rather than with terms. These meta-logical variables will
be bound to the corresponding components of the
matching expression, using pattern matching under the
inference rules governing commutativity and associa-
tivity. For example, the pattern (& f ?P) will match
with a formula like (& g f) , binding ?P with g after
applying commutativity. To facilitate the retrieval of
expressions containing set-operators, a special version
of these meta-logical variables is available, the so-called
'segment-variables'. These segment variables do not
match with formulas, but with lists of logical formulas.
For example, a formula like (& f g h) will match with
a pattern like (& g ?P'segment), binding ?P with the list
(f h). Because of the meta-logical variables, the patterns
sent to the knowledge base for retrieval are actually
schemata, representing whole families of queries rather
than just a single query.

In the second phase of the retrieval process the unifier
will construct bindings of the logical variables occurring
in the query. This is necessary since in the context of
expert systems we are interested in performing construc-
tive proofs, and we therefore need the values for the
existentially quantified variables in the query for which
the query succeeds. In other words, for a query such
as 3 x:ttp(x), we want not only a yes/no response, but
also the values of x which can be deduced from the
contents of the knowledge base. Notice that these bind-
ings might only consist of restrictions on the sort of
x, rather than of bindings of x to terms. The sorted
unification algorithm might tell us that the query
succeeds for all values of x of a certain sort t2, with
t2 c t,. In this way, taxonomic reasoning is performed
at retrieval time.

A final point to be made about the declaration of
the proof theory concerns the soundness and complete-
ness of the set of inference rules. In order to guarantee
soundness of the proof theory, the knowledge engineer
should not be allowed to declare arbitrary inference
rules, but only to select inference rules from a predefined
(and sound) set*. This selection process will of course
affect the completeness of the system. However, the loss
of completeness in the context of expert systems is not
serious, since one does not want to infer a//facts that
follow from the available knowledge, but only those facts
that one is interested in.

*Such a selection procedure has not been provided in the current
implementation of Socrates.

P R O O F S T R A T E G Y D E C L A R A T I O N

At this point, the knowledge engineer has declared both
a logical language and a corresponding proof theory.
From a purely logical point of view, no further declara-
tions are necessary. The combination of language and
proof theory determines all the possible inferences that
the system can make. However, in order to create a
practical computer system, one more step has to be
taken. Proving statements in any non-trivial logical
language is a search intensive problem. The logical
language and proof theory together define a search space
for the proof process. What remains to be done is the
specification of the strategy that the system should use
to traverse this space while searching for a proof. For
this task, Socrates provides a declarative language for
representing such a control strategy, described below.
Because such a declarative language has certain dis-
advantages associated with it, a more procedural
language has also been investigated (see below).

Declarative representation of control knowledge

Socrates allows the knowledge engineer to explicitly
specify a control strategy. This control strategy provides
the system with a description of its desired behaviour,
and is interpreted at run time by the meta-level inter-
preter. As a result, the meta-level interpreter executes
this control strategy, and thereby guides the search
through the space of all possible proofs. The language
that is used to express the control strategy is a many
sorted version of Horn Clause Logic. This language,
although also a logical representation language, should
be distinguished from the logical languages used to
represent the domain knowledge. Unlike the object-level
languages, the language used at the meta-level has a
fixed set of logical connectives, namely exactly those
connectives needed in Horn Clause Logic: conjunction,
implication and negation, plus disjunction. All these
connectives are declared as non-commutative, non-
associative. This is done because the procedural interpre-
tation (i.e. the way in which the meta-level interpreter
executes expressions of the language) is also fixed. The
procedural interpretation of the language is the standard
interpretation for Horn Clauses, the standard depth-first
proof procedure as found in Prolog systems. The reason
why Socrates does not allow the knowledge engineer
to change the control regime of the meta-level interpreter
(which would amount to providing a meta-meta-level
interpreter~f) follows from the analysis of models of
rationality, sketched above. As indicated, typical expert
system tasks such as diagnosis, planning, monitoring,
etc. are related to particular control regimes. The meta-
level controls the behaviour of the object-level
interpreter according to the expert system task. The
variation in control is achieved by changing the meta-
level knowledge base. There is no need to change the
interpreter, which always has the same task, namely con-
trolling the behaviour of the object-level interpreter by
using the data in the meta-level knowledge base.

The parts of the meta-level language that are still
subject to declarations made by the knowledge engineer

tThe notion of a meta-meta-level interpreter should not be confused
with the scheduler; the relation between meta-level interpreter and
scheduler is very different from the relation between object-level and
meta-level interpreter.

Voi I No 3 June 1988 137

are therefore the set of constants, predicates and function
symbols, the sort hierarchy, and the set of "evaluable
predicates'. Figure 2 shows an example of a description
of a local-best-first non-exhaustive backward chaining
control strategy. For this control strategy a sort
hierarchy was defined containing the sorts formula, list-
of-formulas, substitution and list-of-substitutions. The
sort formula was further subdivided into compound-,
evaluable- and non-evaluable-formula. A further
specialization of list-of-formulas was non-empty-list-of-
formulas. In the example shown in Figure 2, clause (1)
states that in order to prove a non-compound expression
F on the basis of the contents of knowledge base
partition P giving a substitution S as a result, the system
should either try to see if the formula is a known fact
in the knowledge base, try to infer the formula on its
own, or it should ask the end-user. Trying to infer the
formula means generating all possible inferences, select-
ing some of these possible inferences, and continuing
with clause (2). That clause chooses the best of all
selected possible steps, and tries to continue the proof
with this selection. If this succeeds, the proof terminates
(i.e. non-cxhaustive), if this fails, the proof continues
with the next best step. Clause (3) states the criterion
used in the best-first search, while clause (4) describes
what needs to be done in order to prove a compound
expression: prove both left- and right-hand sides of the
compound expression, and combine the results. Clause
(5) states that all evaluable predicates encountered in
a proof should be evaluated without any further control
scheduling.

This example shows how the different aspects of this
strategy can be changed if needed for a particular appli-
cation. For example, the order of the disjuncts in clause
(1) might be changed to ask the end-user for solutions
before the system tries a proof itself, or the ask-user

(I) (v F:non-evaluable-formula, P:partition, S:substitution,
Next:non-empty-list-of-formulas.
SomeNext:non-empty-list-of-formulas)
[knowledge-base-lookup(F, P, S)

V (object-level-interpreter(F, P, backward. Next) &
~lect-inferences(Next, SomeNext) &
infer(SomeNext, P, S))

V ask-uscr(F, P, S))
-oproof(F. P, S)]

(2) (V inferences:non-empty-list-of-formulas, P:partition,
S:substitution, Best:formula, Rest:list-of-formulas)
[best(Inferences. Best,Rest) & (proof(Best, P. S) V
infer(Rest, P, S))
-,infer(Inferences, P. S)]

(3) (V List-non-empcy-list-of-formulas,
Best:formula, Rest:list-of-formulas)
[higher-certainty-value(List, Best,Rest)
--.best(List, Best,Rest)l

(4) (V F:compound-formula. P:partition, S:substitution,
Lhs:formula, Rhs:formula, LhsSubst:substitution,
RhsSubst:substitution)
[split-compound-expression(F, Lhs, Rhs) &
proof(Lhs;, P, LhsSubst) & proof(Rhs, P, RhsSubst)
&-combine(LhsSubst.
RhsSubst, S) --* proof(F, P, S)]

(5) V F:evaluable-formula, P:partition, S:substitution.
[evaluate(F. P, S) -, proof(F, P, S)]

Figure 2. Declarative speciJ~cation of control in Socrates

disjunct might be deleted altogether. The criterion used
for the best-first scheduling could be changed, or a new
decision for scheduling the order in which conjuncts
are proved in clause (4) could be introduced. More
thorough changes to the strategy could also be made,
but they would amount to writing a completely new
proof strategy rather than changing the one shown in
this example.

Of the evaluable predicates in Figure 2 (such as ask-
user, knowledge-base-lookup, combine) the predicate
object-level-interpreter is the most important one. This
predicate encapsulates the interface between the meta-
level interpreter executing the control strategy, and the
object-level interpreter handling the logical representa-
tion language and the corresponding proof theory. The
input of this predicate is an object-level formula F, the
name of a knowledge base partition P and a direction
in which to apply inference rules (either forward or back-
ward), and returns as output the result of applying all
inference rules specified as part of the proof theory for
partition P to the input formula F in the indicated direc-
tion. In terms of the proof search space, this amounts
to generating all nodes that are accessible from the
current node as represented by F. Thus. the predicate
object-level-interpreter allows the meta-level interpreter
to access an explicit representation of the object-level
search space, and to choose which branches of the
object-level proof tree will be expanded on the basis
of the control regime provided by the knowledge
engineer.

Unlike many logic-based meta-level architectures pro-
posed in the literature, (such as Silver t°, or the Prolog
system described inZ°), Socrates completely separates the
languages used at the object-level from the language
used at the meta-level. Even when the object-level repre-
sentation language happened to be defined as sorted
Horn Clause Logic, the two languages would still be
syntactically separate. The meta-level and object-level
languages are connected through a 'naming relation'.
The meta-level language contains names for all object-
level expressions. In Socrates, the name of an object-level
sentence corresponds to a constant in the meta-level
language. Other meta-level constants are used to denote
bindings for object-level variables. If this is required,
meta-level expressions could range over any of the extra-
logical properties of object-level expressions, such as
truth values, certainty factors, justifications, etc. In this
way, for instance, Socrates could be configured to deal
with certainty values by specifying as part of the control
strategy how certainty values should be used in a proof.
This corresponds to the approach suggested by
Shapiro 2;, with the important difference that Socrates
makes a correct distinction between meta-level and
object-level languages, whereas Shapiro confuses the two
and uses Prolog for both.

A number of reasons can be given why it is important
for the meta-level language to be separated from the
object-level languages. First, there is an epistemological
reason: as argued in 2~, different domains require
different representation languages, and the object-level
and the meta-level of Socrates deal with widely different
domains (the object-level deals with the application
domain of the system, while the meta-level deals with
the issue of controlling the object-level). A second argu-
ment concerns the modularity of the system: it should

138 Knowledge-Based Systems

be possible to vary control knowledge and domain
knowledge independently. The third argument is one
of explanation: in order to enable the system to include
control knowledge explicitly in its explanations, it is
important for both the human reader and the automated
explanation generator that control knowledge can be
syntactically distinguished from domain knowledge.

Procedural representation of control knowledge

The approach to the specification of a proof strategy
described above is based on the use of a declarative
meta-level language. Although the declarative style of
control of reasoning has its attractions, there are also
disadvantages. Two problems in particular are caused
by the use of a declarative language, and in an attempt
to overcome these problems Socrates provides an alter-
native, more procedural language for specifying control
regimes. First, the extra layer of interpretation that is
incurred by the explicit meta-level interpreter is expen-
sive, because of the declarative nature of the meta-ievel
language. A procedural meta-level language would be
much closer to the underlying implementation language
and machine architecture, and therefore cheaper to
execute. Second, much of the knowledge expressed in
the meta-level language is procedural, rather than
declarative. For example, one often wishes to apply
knowledge of the form 'try method-I before method-2',
or 'in order to achieve goal-l, achieve sub-goal-I to
subgoal-n'. In the declarative meta-level language this
type of procedural knowledge has to be expressed by
either relying on the hardwired control regime for the
meta-levei interpreter, or by using semantic attachment.
Neither of these ways of expressing procedural
knowledge is very desirable, since they encode knowledge
implicitly rather than represent it explicitly. A more pro-
cedural language provides a more natural medium for
expressing the procedural control knowledge.

Our approach to procedural control is therefore to
provide a 'meta-level programming language' rather in
the vein of ML 3° in its relationship to LCF. That is,
we provide high level primitives that make the writing
of control regimes easier. It is important to note that
a procedural control language is only an alternative way
of implementing the separation of control knowledge
from object-level knowledge. The procedural approach
still clearly separates control knowledge from object-
level knowledge. The difference is that rather than put-
ting the control knowledge into a declarative knowledge
base with its own interpreter, we propose implementing
a special purpose meta-level interpreter that incorporates
the control knowledge. The three stage process of build-
ing systems is retained. One particular point to note
is that we retain the explicit declaration of inference
rules and provide primitives to apply inference rules.
The procedural meta-levei language consists of the
implementation language of the system (Common Lisp),
extended with primitives implementing standard artifi-
cial intelligence techniques that have been found useful
in writing interpreters.

Central to the system is the use of lazy evaluation.
The procedural meta-level language provides facilities
for the manipulation of lazily evaluated lists, which form
the basis for backtracking and coroutining in the control
regimes. The second important component is agenda-

(defun proof (GoalList Partition Subst &aux NewGoals
NewSubst)

(if GoalList
(foreach (NewGoals. New Subst)

in (or (any-of (order-inferences (evaluate (first
GoalList)

:partition Partition :subst Subst))
(order-inferences (lookup (first GoalList)

:partition Partition :subst Subst))
(select-inferences

(generate-backward-inferences
(first GoalList)

:partition Partition :subst Subst)))
(ask-user (first GoalList) :partition Partition

:subst Subst))
generate-each (proof (append NewGoals
(cdr GoalList))

Partition NewSubst)) (list Subst)))

Figure 3. Procedural specification of control in Socrates

based reasoning. This technique allows the knowledge
engineer to experiment with several different control
strategies, often only changing the way the agenda is
handled without changing the rest of the control regime
code. The third component is a pattern matcher which
provides the basis of pattern directed invocation of proof
methods.

It is important to realize that in this procedural
approach it is still the case that the only inference rules
are those declared explicitly during the declaration of
the proof theory (as described above). Language primi-
tives are provided to apply the declared inference rules.

Figure 3 shows an example of a control regime formu-
lated in the procedural meta-level language. This code
is the procedural equivalent of the declarative prover
given in Figure 2. The main function is called 'proof'
and performs the same function as the predicate of that
name. Being stream-based, proof returns a stream of
substitutions that prove the goals in the 'GoalList' argu-
ment. Thus, if the GoalList is empty there is one such
proof, given by the Subst argument. If the GoalList
is not empty then the inference rules are applied to the
first goal in GoalList. The 'any-of macro is a way of
lazily combining streams. Thus, in this example, we
generate all the possible inferences using 'evaluate' (and
put them in a preferred order), then all the possible
inferences using 'lookup' (again in preferred order),
finally followed by a selection of the possible inferences
generated using all the inference rules. 'If and only if'
no possible inferences are generated by this procedure,
then 'ask-user' is applied to obtain possible inferences.
Each inference rule application generates three things:
a set of new goals to be proved in order to prove the
goal (bound to the variable 'NewGoals'); a new substi-
tution, bound to the variable 'NewSubst'; and a justifi-
cation, which merely describes which inference rule has
been applied and is effectively ignored by this prover.
The 'foreach' macro itself generates a stream of answers.
Thus, if at some later stage in the proof there is a need
to backtrack, the next inferences will be generated only
then. Note that, unlike the declarative prover, which
generates only the first proof, the procedure 'proof
returns a stream of proofs, and thus generates the set
of all proofs (lazily).

It was noted at the beginning of this section that much

Vol 1 No 3 June 1988 139

control knowledge seems very procedural in nature (such
as the execution of a sequence of goals). However, some-
times control knowledge is declarative in nature (e.g.
a set of criteria used in the ordering of conjuncts). The
architecture of Socrates is such that even with procedural
control it is still possible to invoke a declarative meta-
level interpreter that is implemented using the techniques
described above.

Although the above features provide a basis for a
procedural language for formulating control regimes,
certain problems remain. First, the current language may
not be powerful enough, and further additions may be
needed. Second, although in one sense the current proce-
dural meta-level language might not be powerful enough,
in another sense it might be too powerful. As described,
the procedural meta-level language consists of extensions
to Common Lisp, thereby making all the general purpose
expressive power of Lisp available to the knowledge
engineer when writing control regimes. It might well
be the case that this provides too powerful a language,
since it does not restrict the knowledge engineer in any
way.

The scheduler
A third level in the architecture of Socrates (see Figure
1) is the 'scheduler'. This third level is not actually imple-
mented in the current Socrates architecture, but it can
be added to the current system with little effort. The
main notion that is treated at this level is that of a
"subtask'. As shown in Reichgelt and van Harmelen 29,
many expert systems perform not just one simple task,
but a composite one that can be thought of as consisting
of a number of elementary tasks (MYCIN, RI and VM
are among the systems discussed in that paper). It is
unlikely that one appropriate control regime can be
found that would be suitable for these composite tasks.
Rather, the composite task should be split up into its
constituent subtasks, and a proper control regime can
then be chosen for each of the subtasks.

The subtasks that would result from this decomposition
process are the kind of prototypical tasks proposed in
Reichgelt and van Harmelen 29, Chandrasekaran 6, and
Breuker and Wielinga 5, like classification, monitoring,
simulation, design, etc. The scheduling level of the
Socrates architecture is meant to deal with this sub-
division of the major task into prototypical subtasks.
Each of these prototypical subtasks can then be solved
using the appropriate meta-level control strategy. (By
using the knowledge base partition mechanism, it is
possible to equip a Socrates configuration with more
than one control strategy.) For engineering purposes
it would be easiest to equip the scheduling level with
a language similar to (but again syntactically separate
from) the language used to describe the control strategy
at the meta-level. However, early experience indicates
that the type of knowledge to be expressed at the schedul-
ing level is of a very procedural nature (even more so
than the knowledge expressed at the meta-level), and
therefore a language with more conventional procedural
primitives, such as sequences, conditionals, loops and
subroutines, might be more appropriate.

PRACTICAL PROGRESS AND
A C H I E V E M E N T S
A version of the Socrates architecture as described above

has been implemented in approximately 15K lines of
Common Lisp code. (Notice the distinction between
"implementation language" and "representation
language'of a system: although the knowledge represen-
tation and inference process of Socrates are both logic
based, the system is n o t implemented in Prolog or any
other logic programming language.) The system
currently runs in a number of Common Lisp implemen-
tations on UNIX based systems. In one of these
Common Lisp systems, the Poplog system, a graphics-
based knowledge engineer interface, has been con-
structed, allowing interaction with the system via menus,
browsers, graphers, etc.

A substantial set of different control strategies has
been written as meta-level programs, including backward
and forward chaining, exhaustive and non-exhaustive
search, user guided or automatic conflict resolution,
best-first, depth-first, breadth-first search, branch and
bound type algorithms, generate and test procedures,
elimination and confirmation strategies, etc.

A number of demonstration systems have been built
using Socrates, including an expert system in the domain
of personal investment advice and a route planning
system. More significantly. Socrates has been used to
reimplement an existing expert system under the name
of DOCS, developed by GEC Research in collaboration
with Westminster Hospital, London. This system con-
sists of 130 rules divided over two knowledge base
partitions. The partition hierarchy is organized so that
these two partitions can use data from a common work-
ing memory partition. A sort hierarchy of over 80 sorts
was used to model the taxonomic hierarchy of the
medical domain. A generate and test control strategy
was specified tbr this system, consisting of some 20
clauses in the meta-level knowledge base.

In the area of theorem proving Socrates has been
used to solve the problem described by Walther 2',
known as 'Schubert's steamroller'. This problem was
originally formulated because of the huge search space
that it generates. Using the sort hierarchy to model the
taxonomic part of the problem, a breadth-first search
strategy, implemented using our procedural control tech-
niques, resulted in the first natural deduction style proof
for this problem. A number of other procedural control
strategies were implemented to solve the problem, and
a comparison of these different strategies showed the
importance of the exploitation of meta-knowledge to
guide the search for a proof. This application of Socrates
is described in detail by Davies 23. Current areas of
activity are:
• The use of meta-level interpretation for dealing with

extra-logical issues, such as uncertainty, truth
maintenance, explanation, etc. (how the slot-value
annotation mechanism of Socrates' knowledge base
opens up these possibilities is described above).

• The implementation of modal logics through the use
of reification, as described by Reichgelt 3 ~.

• The classification of domains and subtasks, as stated
by Reichgelt and van Harmelen 2s'29, in order to
provide the knowledge engineer with guidelines that
indicate how to choose the appropriate representation
language given a particular application domain, and
how to choose the appropriate control regime given
a particular prototypical task.

• The development of a library of control regimes that

140 Knowledge-Based Systems

can be executed by the system. Rather than having
to write a new control strategy from scratch every
time, the knowledge engineer can use a library of
preprogrammed control strategies. The knowledge
engineer can then either use one of the strategies
directly from the library, or use one of the library
elements as the basis for his own control strategy
by making small changes to the preprogrammed
strategy.

OPEN P R O B L E M S

Of the three stages of the configuration process, the
third one (declaring a proof strategy) is by far the most
problematic. An important open question here is the
choice of a good language for specifying such a control
strategy. As described above, the system primarily uses
a declarative logical language to do this, but a procedural
language has also been investigated. Apart from the type
of language used at the meta-level, a related problem
is the required vocabulary of such a language. At the
moment, the vocabulary of the system is specified by
the knowledge engineer, and although this is to a certain
extent inevitable, since part of the vocabulary will be
application-specific, one would hope that at least a
central core vocabulary can be distinguished that can
be preprogrammed into the system. The example of a
control regime discussed above suggests predicates to
do with manipulating substitutions and formulas, and
with generating the object-level search space, but a more
extensive and more exactly defined vocabulary is needed
in order to alleviate the task of the knowledge engineer.

A second problem associated with the explicit meta-
level interpreter is that of meta-level overhead. Although
the flexibility in defining the appropriate control strategy
at the meta-level can considerably reduce the object-level
search space, the price we have to pay for this is the
fact that the object-level inference process is completely
simulated by the meta-level interpreter. This is obviously
much more expensive than an object-level interpreter
that has the appropriate control strategy hardwired into
it. This problem could be solved by taking the explicit
formulation of a control regime, and compiling it into
an interpreter that has the particular control regime
hardwired into it. This compilation process (whose first
stages could be similar to that described by Altman and
Buchanan 3z) has been simulated in Socrates by hand
coding a number of hardwired control strategies. Experi-
ence with these hardwired strategies in both the DOCS
system and in solving Schubert's steamroller indicates
that the meta-level overhead can indeed be reduced to
an acceptably small amount.

C O N C L U S I O N

The work described in this paper attempts to create an
environment for building expert systems based on the
following principles:

• An epistemological analysis of the domain and task
of a particular application guides the choice of the
appropriate knowledge representation language and
the appropriate control regime.

• Logic is used as the main underlying formalism.
• Control knowledge is represented explicitly and is

separated from the domain knowledge.

When configuring the Socrates environment into a
particular expert system, a knowledge engineer can vary
the architecture along three dimensions:

• The representation language: a knowledge engineer
can define his own logical representation language,
including first order logics (possibly many-sorted),
modal logics, temporal logics, etc.

• The inference rules for the logical language: the set
of rules that determine the possible inferences made
in the logical language can be changed by the
knowledge engineer.

• The control regime under which the inference rules
will be used to perform proofs in the logical represen-
tation language.

An implementation of the Socrates abstract architecture
and a number of applications of the system have proved
the feasibility of this approach.

Due to limitations of space, some of the arguments
and descriptions in this paper are rather terse. A long
version of this paper can be found in Corlett, Davies,
Khan, Reichgelt and van HarmelenL

A C K N O W L E D G E M E N T S

As the grant holder, Peter Jackson has made many con-
tributions to the work described above. Ray McDowell
and Dave Brunswick have contributed to the work done
at GEC Research. The research was carried out as part
of Aivey Project IKBS/031 in which GEC Research,
the University of Edinburgh and GEC Avionics were
partners. The university work was supported by SERC
grant GR/D/17151.

REFERENCES

1 AIvey, P 'Problems of designing a medical expert
system' 3rd Tech. Conf. British Comput. Soc.
Specialist Group on Expert Syst. (December 1983)
pp 20-42

2 Bobrow, D and Stef'~, M The LOOPS Manual Rank
Xerox, UK (1983)

3 The knowledge engineering environment Intellicorps,
California, USA (1984)

4 Williams, C ART, the advanced reasoning tool,
conceptual overview Inference Corporation, Los
Angeles, California, USA (1983)

5 Breuker, J A and Wiefinga, B J 'Models of Expertise'
Proc. 7th Europ. Conf. on Artif. Intel. (July 1986)
pp 306-318

6 Chandrasekaran, B 'Towards a functional architec-
ture for intelligence based on generic information
processing tasks' 7th Int. Joint Conf. on Artif. lntel.
(August 1987) pp 1183-1192

7 Corlett, R, Davies, N, Khan, R, Reichgelt, H and
van Harmelen, F 'Socrates: a flexible toolkit for
building logic based expert systems' in Jackson, P,
Reichgelt, H and van Harmelen, F (eds) Logic-based
knowledge representation MIT Press, USA (1988)

8 Davis, R 'Meta rules: reasoning about control' Artif.
lntel. Vol 15 No 2 (1980) pp 179-222

9 Bundy, A and Welham, B 'Using meta-level inference
for selective application of multiple rewrite rules in
algebraic manipulation' Artif. Intel. Vol 16 No 2
(1981) pp 189-212

Vol 1 No 3 June 1988 141

10 Clancey, W "The advantages of abstract control
knowledge in expert system design' Proc. 3rd Annual
Meeting of th ~ American Assoc..for A rt([~ Intel. (1983)
pp 74-78

11 Aiello, L and Levi, G 'The uses of metaknowledge
in AI systems' Proc. European Conf. on Artif. Intel.
(September 1984) pp 707-717

12 Clancey, W 'Representing control knowledge as
abstract tasks and metarules' in Cooml~, M and Bolc,
L (eds) Springer-Verlag, FRG (1985). Also: Stanford
Knowledge Systems Laboratory, Working Paper No
KSL-85-16 (April 1985)

13 Claneey, W 'The epistemology of a rule-based expert
system: a framework for explanation' Artif. lntel.
Vol 20 (1983) pp 215-251. Also: Stanford Heuristic
Programming Project, Memo HPP-81-17, STAN-CS-
81-896 (November 1981)

14 Bundy, A, Byrd, L, Luger, G, Mellish, C, Milne, R
and Palmer, M 'Solving mechanics problems using
meta-level inference" Proe. Int. Joint Conf. on Artif.
lntel. (August 1979). Also in Michie, D (ed.) Expert
S.vstems in the Micro Electronic Age Edinburgh
University Press, UK (1979) pp 50 64

15 Davis, R 'TEIRESIAS: applications of meta-level
knowledge' in Davis, R and Lenat, D B (eds)
Knowledge-Based Systems in Artificial Intelligence
McGraw-Hill, New York, USA (1982) pp 227~,90

16 Pereira, L M "Logic control with logic' Proc. 1st
Int. Logic Programming Conf. (1982) pp 9-18. Also
in: Campbell, J A (ed) Implementations ~?fProlog Ellis
Horwood, UK (1984)

17 Genesereth, M and Smith, D 'An overview of meta-
level architecture' Proc. 3rd Annual Meeting of the
American Assoc. for Art(f. Intel. (1983) pp 119-124

18 Sterling, L 'Implementing problem solving strategies
using the meta-level" DAI Research Paper No 209,
Department of Artificial Intelligence, University of
Edinburgh, UK (1984)

19 Silver, B Meta-level InJerence Studies in Computer
Science and Artificial Intelligence, North Holland,
Amsterdam, The Netherlands (1986)

20 Welham, B 'Peclaratively programmable interpreters
and meta-level inferences' Hewlett-Packard Labora-
tories Bristol Research Centre Technical Memo No
HPL-BRC-TM-86-027 (September 1986). Also in:

Maes, P and Nardi, D (eds) Meta-h, vel architectures
an'l r~/h, ction North Holland. Amsterdam. The
Netherlands (1987)

21 Waltber, C "A mechanical solution of Schubert's
steamroller by many-sorted resolution" Proc. 4th
Annual Meeting of the American Assoc. Art(f. lntel.
(1984) pp 330- 334

22 Cohn, A G 'OL the solution of Schubert's steamroller
in many sorted logic" Pro,'. 9th Int. Join t. Con/i on
Art(/: lntel. (August 1985) pp 345-352

23 Davies, N "Schubert's steamroller in a natural
deduction theorem prover" Proc. 7th Tech. Conf. of
the British Comput. Soc. Specialist Group on Expert
Syst. (December 1987)

24 Weyhraueh, R 'Prolegomena to a theory of
mechanised formal reasoning' Art(/: hztel. Vol 13 No
1 (1980)pp 133 170

25 Bledsoe, W 'Non-resolution theorem proving" Artif.
Intel. Vol 9 No I (1977) pp I--35

26 Gallaire, M and Lassetre, C 'Meta-level control for
logic programs" in Clark, K and Tarnlund, S (eds)
Logic Programming Academic Press. UK (1982) pp
173 188

27 Shapiro, E "Logic programs with uncertainties: a tool
for implementing rule-based systems" Proc. 8th Int.
Joint Conf. on Art(f. lntell. (August 1983) pp 529-532

28 Reichgelt, H and van Harmelen, F "Relevant criteria
for choosing an inference engine in expert systems"
Proc. 5th Tech. Conf. of the British Comput. Soc.
Specialist Group on Expert Syst. (December 1985)
pp 21--30

29 Reichgelt, H and van Harmelen, F "Criteria for choos-
ing representation languages and control regimes for
expert systems" The Knowledge Eng. Rev. Vol I
No 4 (December 1986) pp 2-- 17

30 Gordon, M, Milner, R and Wadsworth, C Edinburgh
LCF." a mechanized logic of computation Springer-
Verlag Lecture Notes in Computer Science, Vol 78
Springer-Verlag, FRG (1979)

31 Reichgelt, H 'Semantics for a reified temporal logic"
Proc. 1987 AISB Conf. (April 1987) pp 49 62

32 Altman, R B and Bwehanan, B G 'Partial compilation
of strategic knowledge' Proc. 6th Annual Meeting o[
the American Assoc. /or ,4rt(/~ lntel. (July 1987)
pp 399- 404

142 Knowledge-Based Systems

