
o(w7-4943185 $3.00 + .oo
0 IYX5 Pergamon Preu Ltd

CSRL: A LANGUAGE FOR EXPERT SYSTEMS
FOR DIAGNOSISt

TOM BYLANDER, SANJAY MITTAL* and B. CHANDRASEKARAN
Artificial Intelligence Group, Department of Computer and Information Science,

The Ohio State University, Columbus, OH 43210, U.S.A.

(Received September 1984)

Abstract-We present CSRL (Conceptual Structures Representation Language) as a language to facilitate
the development of expert diagnosis systems based on a paradigm of “cooperating diagnostic specialists.”
In our approach diagnostic reasoning is one of several generic tasks, each of which calls for a particular
organizational and problem-solving structure. A diagnostic structure is composed of a collection of
specialists, each of which corresponds to a potential hypothesis about the current case. They are organized
as a classification or diagnostic hierarchy, e.g. a classification of diseases. A top-down strategy called
establish-refine is used, in which either a specialist establishes and then refines itself, or the specialist
rejects itself, pruning the hierarchy that it heads. CSRL is a language for representing the specialists of
a diagnostic hierarchy and the diagnostic knowledge within them. The diagnostic knowledge is encoded
at various levels of abstractions: message procedures, which describe the specialist’s behavior in response
to messages from other specialists; knowledge groups, which determine how data relate to features of
the hypothesis; and rule-like knowledge, which is contained within knowledge groups.

I. INTRODUCTION

Many kinds of problem-solving for expert systems have been proposed within the AI community.
Whatever the approach, there is a need to acquire the knowledge in a given domain and implement
it in the spirit of the problem-solving paradigm. Reducing the time to implement a system
usually involves the creation of a high-level language that reflects the intended method of
problem-solving. For example, EMYCIN[11 was created for building systems based on MYCIN-

like problem-solving[2]. Such languages are also intended to speed up the knowledge acquisition
process by allowing domain experts to input knowledge in a form close to their conceptual
level. Another goal is to make it easier to enforce consistency between the expert’s knowledge
and its implementation.

CSRL (Conceptual Structures Representation Language) is a language for implementing
expert diagnostic systems that are based on our approach to diagnostic problem-solving. This
approach is an outgrowth of our group’s experience with MDX, a medical diagnostic program[3],
and with applying MDX-like problem-solving to other medical and nonmedical domains. CSRL
facilitates the development of diagnostic systems by supporting constructs that represent di-
agnostic knowledge at appropriate levels of abstraction.

First, we will overview the relationship of CSRL to our overall theory of problem-solving
types and the diagnostic problem-solving that underlies CSRL. We then present CSRL, illus-
trating how its constructs are used to encode diagnostic knowledge. Two expert systems under
development in our laboratory, which use CSRL, are then briefly described. Based on our
experience with these systems, we point out where improvements in CSRL are needed.

2. CLASSIFICATORY DIAGNOSIS

The central problem-solving of diagnosis, in our view, is classificatory activity. This is a
specific type of problem-solving in our approach, m;aning that a special kind of organization
and special strategies are strongly associated with performing expert diagnosis. In this section
we will briefly review the theory of problem-solving types, as presented by Chandrasekaran[4],
and the structure and strategies of the diagnostic task[5].

tThis an expanded version of a paper of the same title presented at the 1983 International Joint Conference on
Artificial Intelligence.

Wurrently at Knowledge Systems Area, Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304, U.S.A.

449

450

2.1 Types of problem-solving

T. BYLANDER et al.

We propose that expert problem-solving is composed of a collection of different problem-
solving abilities. The AI group at Ohio State has been working at identifying well-defined types
of problem-solving (called generic tasks), one of which is classificatory diagnosis. (For the
purposes of this discussion we will use “diagnosis ” in place of “classificatory diagnosis” with
the understanding that the complete diagnostic process includes other elements as well.) Other
examples include knowledge-directed data retrieval, consequence finding, and a restricted form
of design.

Each generic task calls for a particular organizational and problem-solving structure. Given
a specific kind of task to perform, the idea is that specific ways to organize and use knowledge
are ideally suited for that task.

Even when the specification of a problem is reduced to a given task within a given domain,
the amount of knowledge that is needed can still be enormous (e.g. diagnosis in medicine). In
our approach the knowledge structure for a given task and domain is composed of specialists,

each of which specialize in different concepts of the domain. Domain knowledge is distributed
across the specialists, dividing the problem into more manageable parts, and organizing the
knowledge into chunks that become relevant when the corresponding concepts become relevant
during the problem-solving.

Decomposing a domain into specialists raises the problem of how they will coordinate
during the problem-solving process. First, the specialists as a whole are organized primarily
around the “subspecialist-of” relationship. Each task may specify additional relationships that
may hold between specialists. Second, each task is associated with a set of strategies that take
advantage of these relationships and the problem-solving capabilities of the individual specialists.
The choice of what strategy to follow is not a global decision, but is chosen by the specialists

during problem-solving.

2.2 The diagnostic task
The diagnostic task is the identification of a case description with a specific node in a

predetermined diagnostic hierarchy. Each node in the hierarchy corresponds to a hypothesis
about the current case. Nodes higher in the hierarchy represent more general hypotheses, and
lower nodes are more specific. Typically, a diagnostic hierarchy is a classification of malfunc-
tions of some object, and the case description contains the manifestations and background
information about the object. For example, the Auto-Mech expert system[6] attempts to classify
data concerning an automobile into a diagnostic hierarchy of fuel-system malfunctions. Figure
1 illustrates a fragment of Auto-Mech’s hierarchy. The most general node, the fuel system in
this example, is the head node of hierarchy. More specific fuel-system malfunctions, such as
fuel-delivery problems, are classified within the hierarchy.

Each node in the hierarchy is associated with a specialist that contains the diagnostic
knowledge to evaluate the plausibility of the hypothesis from the case description. From this
knowledge the specialist determines a confidence value representing the amount of belief in the
hypothesis. If this value is high enough, the specialist is said to be established.

The basic strategy of the diagnostic task is a process of hypothesis refinement, which we
call establish-refine. In this strategy, if a specialist establishes itself, then it refines the hypothesis
by invoking its subspecialists, which also perform the establish-refine strategy. If its confidence
value is low, the specialist rejects the hypothesis and performs no further actions. Note that
when this happens, the whole hierarchy below the specialist is eliminated from consideration.
Otherwise the specialist suspends itself and may later refine itself if its superior requests it.

Bad Fuel Problems

n--._

Fuel Mixture Problems

Low Octane Water in Fuel Dirt In Fuel

Fig. I Fragment of a diagnostic hierarchy

CSRL 451

With regard to Fig. 1, the following scenario might occur. First, the fuel-system specialist
is invoked, since it is the top specialist in the hierarchy. This specialist is then established, and
the two specialists below it are invoked. Bad fuel problems are rejected, eliminating the three
subspecialists of bad fuel from consideration. Finally, the fuel-mixture specialist is established,
and its subspecialists (not shown) are invoked.

An important companion to the diagnostic hierarchy is an intelligent data-base assistant
that organizes the case description, answers queries from the diagnostic specialists, and makes
simple inferences from the data[7]. For example, the data base should be able to infer that the
fuel tank is not empty if the car can be started. The diagnostic specialists are then relieved from
knowing all the ways that a particular datum could be inferred from other data.

There are several issues relevant to diagnostic problem-solving that we will not address
here. The simple description above does not employ strategies for bypassing the hierarchical
structure for common malfunctions, for handling multiple interacting hypothesis, or for ac-
counting for the manifestations. Also, additional control strategies are required when many
nodes are in a suspended state. For discussion on some of these topics, see Gomez and Chan-
drasekaran[5]. Test ordering, causal explanation of findings, and therapeutic action do not
directly fall within the auspices of the classificatory diagnosis as defined here, but expertise in
any of these areas would certainly enhance a diagnostic system. Fully resolving all of these
issues and integrating their solutions into the diagnostic framework are problems for future
research.

2.3 Differences from other approaches

The usual approach to building knowledge-based systems is to emphasize a general knowl-
edge representation structure and different problem-solvers that use that knowledge. One dif-
ference in this approach is that the organization of knowledge is not intended as a general
representation for all problems. Rather it is tuned specifically for diagnosis. By limiting the
type of problem to be solved, a specific organizational technique (classification hierarchy) and
problem-solving strategy (establish-refine) can be used to provide focus and control in the
problem-solving process.

Another difference is that the specialists in the hierarchy are not a static collection of
knowledge. The knowledge of how to establish or reject is embedded within the specialists.
Each specialist can then be viewed as an individual problem-solver with its own knowledge
base. The entire collection of specialists engages in distributed problem-solving.

3. CSRL

CSRL is a language for representing the specialists of a diagnostic hierarchy and the
diagnostic knowledge within them. The diagnostic knowledge is encoded at various levels of
abstractions. Message procedures describe the specialist’s behavior in response to messages
from other specialists. These contain the knowledge about how to establish or refine a specialist.
Knowledge groups determine how selected data relate to various features or intermediate hy-
potheses that are related to the specialist. The selected data may be the values of other knowledge
groups, so that a single knowledge group can “summarize” the results of several others.
Knowledge groups are composed of rule-like knowledge that matches the data against specific
patterns and, when successful, provides values to be processed by the knowledge group.

3.1 Specialists

In CSRL a diagnostic expert system is implemented by individually defining each specialist.
The super- and subspecialists of the specialist are declared within the definition. Figure 2 is a

(Specialist BadFuel
(declare (superspecialist FuelSystem)

(subspecialists LowOctane WaterInFuel DirtInFuel))
(kgs . ..I
(messages . ..)I

Fig. 2. Skeleton specialist for BadFuel

452 T. BYLANDER et al

skeleton of a specialist definition for the bad fuel node from Fig. 1. The declare section specifies
its relationships to other specialists. The other sections of the specialist are examined below.

Since CSRL is designed to use only a simple classification tree, many choices concerning
the composition of the hierarchy must be made. This is a pragmatic decision, rather than a
search for the “perfect” classification tree. The main criteria for evaluating a classification is
whether enough evidence is normally available to make confident decisions. To decompose a
specialist into its subspecialists, the simplest method is to ask the domain expert what subhy-
potheses should be considered next. Usually the subspecialists will differ from one another
based on a single attribute (e.g. location, cause). For further discussion on this and other design
decisions in CSRL, see Bylander and Smith[8].

3.2 Messuge procedures

The messages section of a specialist contains a list of message procedures that specify how
the specialist will respond to different messages from its superspecia1ist.t “Establish,” “Re-
fine, ” “Establish-Refine” (combines Establish and Refine), and “Suggest” are predefined
messages in CSRL; additional messages may be defined by the user. Below, we will examine
how Establish and Refine procedures are typically constructed.

Message procedures are the highest level of abstraction for diagnostic knowledge within
specialists. Just as in general message-passing languages, messages provide a way to invoke a
particular kind of response without having to know what procedure to invoke. Strategies for
diagnosis, such as Establish-Refine, are usually easy to translate into a message protocol.
However. CSRL does not provide any way to specify and enforce message protocols.

Figure 3 illustrates the Establish message procedure of the BadFuel specialist. “relevant”
and “summary” are names of knowledge groups of BadFuel. “self” is a keyword that refers

to the name of the specialist. This procedure first tests the value of the relevant knowledge
group. (If this knowledge group has not already been executed, it is automatically executed at
this point.) If it is greater than or equal to 0, then BadFuel’s confidence value is set to the value
of the summary knowledge group, or else it is set to the value of the relevant knowledge group.
In CSRL a confidence value scale of - 3 to + 3 is used (integers only). A value of + 2 or + 3
indicates that the specialist is established. In this case the procedure corresponds to the following
diagnostic knowledge.

First perform a preliminary check to make sure that BadFuel is a relevant hypothesis to
hold. If it is not (the relevant knowledge group is less than 0). then set BadFuel’s confidence
value to the degree of rclcvancy. Otherwise, perform more complicated reasoning (the sum-
mary knowledge group combines the values of other knowledge groups) to determine BadFuel’s
confidence value.

Figure 4 shows a Refine procedure that is a simplified version of the one that BadFuel

uses. “subspecialists” is a keyword that refers to the subspecialists of the current specialist.
The procedure calls each subspecialist with an English message. $ If the subspecialist establishes
itself (t ? tests if the confidence value is +2 or +3), then send it a Refine message.

CSRL has a variety of other kinds of statements and expressions so that more complicated

(Establish (if (GE relevant 0)
then (SetConfidence self sunrmary)

else (SetConfidence self relevant)))

Fig. 3. Establish procedure of BadFuel.

+A specialist I\ not allowed to send messages to its superspecialist. However. other message-passing routes are
allowed. Specifically. a specialist may send a message to itself. across the hierarchy, and to indirect subspecialists. In
the latter case each interconnecting specialist is sent a “suggest” message and decides within its suggest message
procedure whether or not to pass the original message downwards.

$‘For convenience many of CSRL’s control constructs mimic those of INTERLISP; however, these constructs are
executed by the CSRL interpreter, not by using LISP EVAL. LISP code is allowed within message procedures, but
only within a construct called “DoLisp. ” This is not intended to let specialists have arbitrary code, but to allow
interaction with other LISP-implemented systems.

CSRL

(Refine (for specialist in subspecialists
do (Call specialist with Establish)

(if (+? specialist)
then (Call specialist with Refine))))

Fig. 4. Refine procedure.

453

strategies can be implemented. For example, a “Reset” statement deletes the confidence value

and the knowledge group values of a specialist. This might be used when additional tests are
performed, making it necessary to recalculate the confidence value. Also, messages can be
parameterized, and message procedures can declare local variables.

3.3 Knowledge groups

The kgs section of a specialist definition contains a list of knowledge groups that are used
to evaluate how selected data indicate various features or intermediate hypotheses that relate to
specialist’s hypothesis. A knowledge group can be thought of as a cluster of production rules
that map the values of a list of expressions (boolean and arithmetic operations on data) to some
conclusion on a discrete, symbolic scale. Different types of knowledge groups perform this
mapping differently: e.g. directly mapping values to conclusions, or ha;ling each rule add or
subtract a set number of “confidence” units.

Knowledge groups are intended for encoding the heuristics that a domain expert uses for
inferring features of an hypothesis from the case description. The main problem is that this
inference is uncertain--there is rarely a one-to-one mapping from data to the features of the
hypothesis. The way that this is handled in CSRL is borrowed from the uncertainty handling
techniques used in MDX[9].

Each feature or intermediate hypothesis is associated with a knowledge group. The data
that the domain expert uses to evaluate the feature are encoded as expressions in the knowledge
group. These are usually queries to a separate data-base system. Each combination of values
of the expressions is then mapped to a level of confidence as determined by the domain expert.
This set of knowledge groups becomes the data for another knowledge group, which determines
the confidence value of the specialist from the confidence values of the features.? By examining
the results of test cases, we see that the knowledge groups are relatively easy to debug, since
the attention of the domain expert can be directed to the specific area of knowledge that derived
the incorrect result.

As an example, Fig. 5 is the relevant knowledge group of the BadFuel specialist mentioned
above. It determines whether the symptoms of the automobile are consistent with bad fuel
problems. The expressions query the user (who is the data base for Auto-Mech) for whether
the car is slow to respond, starts hard, has knocking or pinging sounds, or has the problem
when accelerating. ‘ ‘AskYNU?” is a LISP function that asks the user for a Y, N, or U (unknown)

answer from the user, and translates the answer into T, F, or U, the values of CSRL’s three-

(relevant Table
(match (AskYNU? “Is the car slow to respond”)

(AskYNU? “Does the car start hard”)
(And (AskYNU? “Do you hear knocking or pinging sounds”)

(AskYNU? “Does the problem occur while accelerating”))
with (if T ? ?

then -3
elseif ? T ?

then -3
elseif ? ? T

then 3
else 1)))

Fig. 5. Relevant knowledge group of BadFuel

tActually, any number of knowledge group levels can be implemented

454 T. BYLANDER ef al.

valued logic. Each set of tests in the if-then part of the knowledge group is evaluated until one
matches. The value corresponding to this “rule” becomes the value of the knowledge group.
For example, the first rule tests whether the first expression is true (the “?” means doesn’t
matter). If so, then - 3 becomes the value of the knowledge group. Otherwise, other rules are
evaluated. The value of the knowledge group will be 1 if no rule matches. This knowledge
group encodes the following diagnostic knowledge:

If the car is slow to respond or if the car starts hard, then BadFuel is not relevant in
this case. Otherwise, if there are knocking or pinging sounds and if the problem occurs while
accelerating, then BadFuel is highly relevant. In all other cases BadFuel is only mildly
relevant.

Figure 6 is the summary knowledge group of BadFuel. Its expressions are the values of
the relevant and gas knowledge groups (the latter queries the user about the temporal relationship
between the onset of the problem and when gas was last bought). In this case, if the value of
the relevant knowledge group is 3 and the value of the gas knowledge group is greater than or
equal to 0, then the value of the summary knowledge group (and consequently the confidence
value of BadFuel) is 3, indicating that a bad-fuel problem is very likely.

3.4 Comparison with rule-bused languages
There is nothing in CSRL that is not programmable within rule-based languages such as

OPSS[lO] or EMYClN[l]. The difference between CSRL and these languages is that CSRL
makes a commitment to a particular organizational and programming style. CSRL is not intended
to be a general-purpose representation language, but is built specifically for the classificatory
diagnosis problem. It is possible to program in a rule-based language, so that there is an implicit
relationship between rules so that they correspond to knowledge groups and specialists. Rl,
although not a diagnostic expert system, is an excellent example of how one creates implicit
grouping of rules in such a system[111. The central idea underlying CSRL is to make these
relationships explicit. The expert system implementor is then relieved from trying to impose
an organization on a organizationless system and is free to concentrate on the conceptual

structure of the domain. Also, there is a greater potential to embed explanation and debugging
facilities that can take advantage of the expert system organization.

3.5 The CSRL environment
The current version of CSRL is implemented in INTERLISP-D and LOOPS, an object-

oriented programming tool. Each specialist is implemented as a LOOPS class, which is in-
stantiated for each case that is run. The LOOPS class hierarchy is used to specify default
message procedures and shared knowledge groups, making it easy to encode a default establish-
refine strategy, and letting the user incrementally modify this strategy and add strategies as
desired. A graphical interface displays the specialist hierarchy and, through the use of a mouse,
allows the user to easily access and modify any part of the hierarchy. Additional facilities for
debugging and explanation are being implemented.

4. EXPERT SYSTEMS THAT USE CSRL

4.1 Auto-Mech
Auto-Mech is an expert system that diagnoses fuel problems in automobile engines[6].

This domain was chosen to demonstrate the viability of our approach to nonmedical domains,
as well as to gain experience and feedback on CSRL.t The purpose of the fuel system is to
deliver a mixture of fuel and air to the air cylinders of the engine. It can be divided into major
subsystems (fuel delivery, air intake, carburetor, vacuum manifold) that correspond to initial
hypotheses about fuel-system faults.

tAuto-Mech was developed using an early version of the language

CSRL

(sunmrary Table
(match relevant gas

with (if 3 (GE 0)
then 3

elseif 1 (GE 0)
then 2

elseif ? (LT 0)
then -3)))

Fig. 6. Summary knowledge group of BadFuel

455

Auto-Mech consists of 34 CSRL specialists in a hierarchy that varies from four to six
levels deep. Its problem-solving closely follows the establish-refine strategy. Before this strategy
is invoked, Auto-Mech collects some initial data from the user. This includes the major symptom
that the user notices (such as stalling) and the situation when this occurs (e.g. accelerating and

cold engine temperature). Any additional questions are asked while Auto-Mech’s specialists are
running. The diagnosis then starts and continues until the user is satisfied that the diagnosis is
complete. The user must make this decision because the data that Auto-Mech uses are very
weak at indicating specific problems, and, more importantly, Auto-Mech is unable to make the
repair and determine whether the problem has been fixed.

A major part of Auto-Mech’s development was determining the assumptions that would
be made about the design of the automobile engine and the data that the program would be
using. Different automobile engine designs have a significant effect on the hypotheses that are
considered. A carbureted engine, for example, will have a different set of problems than a fuel-
injected engine (the former can have a broken carburetor). The data was assumed to come from
commonly available resources. The variety of computer analysis information that is available
to mechanics today was not considered, in order to simplify building Auto-Mech.

4.2 Red
Red is an expert system whose domain is red-blood-cell antibody identification[l2]. An

everyday problem that a blood bank contends with is the selection of units of blood for transfusion
during major surgery. The primary difficulty is that antibodies in the patient’s blood may attack
the foreign blood, rendering the new blood useless as well as presenting additional danger to
the patient. Thus, identifying the patient’s antibodies and selecting blood that will not react
with them is a critical task for nearly all red-blood transfusions.

The Red expert system is composed of three major subsystems, one of which is implemented
in CSRL. The non-CSRL subsystems are a data base, which maintains and answers questions
about reaction records (reactions of the patient’s blood in selected blood samples under a variety
of conditions), and an overview system, which assembles a composite hypothesis of the anti-
bodies that would best explain the reaction record[131. CSRL is used to implement specialists
corresponding to each antibody that Red knows about (about 30 of the most common ones) and
to each antibody subtype (different ways that the antibody can react).

The major function of the specialists is to rule out antibodies and their subtypes whenever
possible, thus simplifying the job of the overview subsystem, and to assign confidence values,
informing overview of which antibodies appear to be more plausible. The specialists query the
data base for information about the test reactions and other patient information, and also tell
the data base to perform certain operations on reaction records.

An interesting feature of Red is the way it handles the problem of interacting hypotheses.
It is possible for the patient’s blood to have practically any number or combination of antibodies,
which makes it very hard for a single specialist to determine how well it will fit with other
specialists in a composite hypothesis. In Red each specialist is encoded to assume that it is
independent-it looks at the data as if no other specialist can account for the same data. The
knowledge of how the specialists can interact is left to the overview subsystem. This would be
problematic if few specialists could rule themselves out, but it so happens that in this domain
it is rare to have more than a few antibodies that cannot be independently ruled out. Thus Red’s
CSRL subsystem makes overview’s problem-solving computationally feasible since it consid-
erably reduces the amount of search that would otherwise be necessary.

456 T. BYLANDER et al.

5. NEEDED IMPROVEMENTS IN CSRL

The largest flaw in CSRL is that there is no strategy that determines when diagnosis should
stop. Currently, the default procedures simply ask the user if the current diagnosis is satisfactory.
Some notion of what it means to account for the data needs to be added to the language. The
work on Red’s overview system is a step in this direction, but there needs to be more integration
of overview and CSRL (currently overview starts after the specialists are finished) and a better
understanding of what kinds of interactions can occur between two hypotheses. Progress in this
area would also help increase the focus of the diagnosis; i.e. the diagnosis could concentrate
on accounting for the most important manifestation(s).

Another problem is the meaning of the confidence value of a specialist. In MDX this value
was directly associated with the amount of belief in the specialist. However, in both Auto-
Mech and Red, this meaning had to be slightly altered to fit the purposes of the expert system.
In Auto-Mech the confidence value is used to indicate whether the hypothesis was worth
pursuing. In Red it is used to indicate the specialist’s plausibility, given the independence
assumption mentioned earlier. It is not possible in either expert system to confirm a specialist

without outside help. In Auto-Mech a repair or highly specific test must be performed, but in
Red all the specialists must be considered together. This does not create a problem for the
process of establish-refine problem-solving, but makes it difficult to explain what the confidence
value means. Any explanation facility must understand the assumptions that are being made in
order to make coherent explanations.

6. CONCLUSION

We believe that the development of complex expert systems will depend on the availability
of special-purpose languages with organizational and problem-solving tools that match the
conceptual structure of the domain. CSRL represents an initial step in this direction. It provides
facilities to organize diagnostic knowledge in accordance with the structure of the domain. In
particular, CSRL’s constructs facilitate the encoding of rule-like and strategic knowledge into
appropriate abstractions: knowledge groups, message procedures, and specialists.

Acknow~/edgments~We would like to acknowledge Jack Smith and Jon Sticklen for many fruitful discussions concerning
CSRL’s design. Many improvements in the language are due to Mike Tanner and John Josephson, who implemented
the CSRL specialists in Auto-Mech and Red., The language development is funded by a grant from the Battelle
Memorial Laboratories University Distribution Program, and experimentation and application in different domains is
supported by AFOSR grant 82-0255, and NSF grant MCS-8103480.

I

8

9.

IO.
II.
12.

13.

REFERENCES

W. van Melle, A domain independent production-rule system for consultation programs. Proc. Sixth Int. Cot$ on

ArtijZcial Intelligence, pp. 923-925. Tokyo (1979).
E. H. Shortliffe, Computer-Based Medical Consultations: MYCIN. Elsevier. New York (1976).
B. Chandrasekaran and S. Mittal, Conceptual representation of medical knowledge for diagnosis by computer:
MDX and related systems, in Advancrs in Computers, pp. 217-293. Academic Press. New York, (1983).
B. Chandrasekaran, Towards a taxonomy of problem solvin, ~7 types. AI Mq. 4. 9917 (1983).
F. Gomez and B. Chandrasekaran, Knowledge org,;nization and distribution for medical diagnosis. IEEE Trans.

Svst.. Man Cybentetics SMC-11. 34-42 (1981).
M. C. Tanner and ‘f. Bylander, Application of the CSRL language to the design of expert diagnosis systems: the
auto-mech experience. Proc. Joint Swvices Workshop on Artificial /nte//igence in Maintenunce. Department of
Defense, pp. 13lll52, Denver (1984).
S. Mittal and B. Chandrasekaran, Conceptual representation of patient data bases. J. Medical Swt. 4, 169-185

(1980).
T. Bylander and J. W. Smith, Using CSRL for medical diagnosis. Pmt. .%wmd Int. Cmfl IVI Medical Computer
Science and Compututimal Medicine. IEEE Computer Sot.. Glouster. Ohio C 1983).
B. Chandrasekaran, S. Mittal and J. W. Smith, Reasoning with uncertain knowledge: the MDX approach. Proc.
Con,qrcts Americtm Medical Informtics A.ssociation. San Francisco (19X2).
C. L. Forpy, OPS5 Users Manuul. Tech. Rept. CMU-CS-8 I 135, Carnegie-Mellon University (I98 I).
J. McDermott. RI: a rule-based configurer of computer systems. Artificial Irttrll. IY. 39-88 (1982).
J. W. Smith. J. Josephson, C. Evans, P. Straum and J. Noga, Design for a red-cell antibody identification expert.
Proc. Srcond lat. Co@ on Medical Computer Science and Computational Mrdir,inr. IEEE Computer Sot.,
Glouster, Ohio (1983).
J. Josephson, B. Chandrasekaran and J. W. Smith, The Ovrrvte~~ Fmctim in Diagnostic Problem Solving. Technical
Paper, Al Group, Dept. of Computer and Information Science, The Ohio State University (1984).

