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a b s t r a c t

There has been a growing research interest in the use of intelligent methods in biomedical studies. This is
the result of developments in the area of data analysis and classifying techniques. In this paper, an expert
system based on least squares support vector machines (LS-SVM) for diagnosis of valvular heart disease
(VHD) is presented. Wavelet packet decomposition (WPD) and fast-Fourier transform (FFT) methods are
used for feature extracting from Doppler signals. LS-SVM is used in the classification stage. Threefold
cross-validation method is used to evaluate the proposed expert system performance. The performances
of the developed systems were evaluated in 105 samples that contain 39 normal and 66 abnormal subjects
for mitral valve disease. The results showed that this system is effective to detect Doppler heart sounds.
The average correct classification rate was about 96.13% for normal subjects and abnormal subjects.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, realized medical studies showed that important
causes of human deaths in the world are heart diseases. The heart
valve disorders are of importance among the heart diseases.
Among them, mitral and aortic valve disorders are the most com-
mon ones. For this reason, the early detection of valvular heart dis-
eases is one of the most important medical research areas (Akay,
Akay, & Welkowitz, 1992; Turkoglu, Arslan, & Ilkay, 2002). Nowa-
days, the used methods for diagnosis of the valvular heart diseases
are non-invasive techniques (electrocardiograms, chest X-rays,
heart sounds and murmur from stethoscope, ultrasound imaging
and Doppler techniques) and invasive techniques (angiography
and transozefagial echocardiograph) (Nanda, 1993). However, each
method is limited in its ability to offer efficient and thorough
detection and characterization. All these methods are based on
experience and information of physician. Therefore, developing
Human–Machine interfaces with the existing methods of studies
has become popular in these areas. By using these interfaces, the
cardiologist can understand the output of the examination systems
more easily and diagnose the problem more accurately (Philpot,
Yoganathan, & Nanda, 1993; Turkoglu et al., 2002).

Doppler techniques are the most preferred methods because
they are completely non-invasive and without a risk in the serial
studies (Keeton & Schlindwein, 1997; Turkoglu et al., 2002). In
the recent years, Doppler technique has found increasing use in
the medical area (Wright, Gough, Rakebrandt, Wahab, & Wood-

cock, 1997). Doppler heart sounds (DHS) are one of the most
important sounds produced by blood flow, valves motion and
vibration of the other cardiovascular components (Jing, Xuemin,
Mingshi, & Wie, 1997). However, the factors such as calcified dis-
ease or obesity often result in a diagnostically unsatisfactory Dopp-
ler techniques assessment, therefore, it is sometimes necessary to
assess the spectrogram of the Doppler shift signals to elucidate
the degree of the disease (Wright et al., 1997). The main aim of
our work is to aid the diagnosis in such cases. Among Doppler tech-
niques, the most ubiquitous and straightforward are the waveform
profile indices such as the pulsatility index (PI), Pourcelot or resis-
tance index (RI) and A/B Systolic Diastolic ratio, which are highly
correlated and led to highly erroneous diagnostic results (Izzeto-
glu, Erkmen, & Beksac, 1995; Turkoglu et al., 2002). These indices
rely on the peak systolic and end-diastolic velocities, with only
the PI making use of the mean velocity over the cardiac cycle. More
sophisticated methods have also been developed such as the La-
place transform and principal components analysis. However, none
of the simple or more complex analytical techniques has yielded an
acceptable diagnostic accuracy so as to be commonplace in the
vascular clinic (Wright et al., 1997). In this study, the developed
method is a decision support system and will cause more effective
usage of the Doppler technique. Until now, many studies have been
realized to automatically classify Doppler signals using pattern rec-
ognition techniques (Chan, Chan, Lam, Lui, & Poon, 1997; Guler &
Kara, 1995; Turkoglu et al., 2002). Nevertheless, the effective stud-
ies on the Doppler heart sounds are also limited (Turkoglu, Arslan,
& Ilkay, 2002a).

The Doppler heart sounds can be obtained simply by placing the
Doppler ultrasonic flow transducer over the chest of the patient.
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But the disadvantage of the Doppler method is that it requires the
constant attention of the doctor to detect subtle changes in the
DHS (Chan et al., 1997). The presented method prevents subtle
changes in the DHS from escaping the physician’s attention by per-
ceiving them, even if the physician does not pay a continuous
attention (Turkoglu, Arslan, & Ilkay, 2002b).

Up to now, several papers have been proposed for classifying
Doppler signals by using pattern recognition techniques (Chan et
al., 1997; Çomak, Arslan, & Türkoğlu, 2007; Turkoglu et al.,
2002b; Uguz, Arslan, & Türkoğlu, 2007; Wright et al., 1997). The
data set which was obtained by Turkoglu et al. (2002b) was used
by Çomak et al. (2007) and Uguz et al. (2007) too. Çomak et al. pro-
posed to develop a decision support system based on wavelet
decomposition and short-time Fourier transform to develop the
performance of Turkoglu et al. (2002b). Uguz et al. proposed a bio-
medical system based on continuous hidden Markov model classi-
fier for the diagnosis of valvular heart diseases. The proposed
methodology was composed of two stages. At the first stage, the
initial values of average and standard deviation were calculated
by separating observation symbols into equal segments according
to the state number and using observation symbols appropriate to
each segment. At the second stage, the initial values of average and
standard deviation were calculated by separating observation sym-
bols into the clusters (FCM or K-means algorithms) that have equal
number of states and using observation symbols appropriate to the
separated clusters.

Least square SVM uses equality constraints and solves a set of
linear equations in the dual space instead of solving a quadratic
programming problem as for the standard SVM. This simplifies
the computations and enhances the speed considerably. There ex-
ists a link between the LS-SVM classifier formulations with the
well-known Fisher discriminant analysis, namely by extending it
to a high-dimensional feature space. Some parameters have to be
tuned to achieve a high level performance of the LS-SVM, including
the regularization parameter and the kernel parameter corre-
sponding to the kernel type (Lukas, Devos, Suykens, et al., 2004;
Suykens & Vandewalle, 1999).

This study will introduce the technique that will aid clinical
diagnosis, enable the further research of VHD, and provide a deci-
sion support system for recognition of VHD. This study uses the
powerful mathematics of wavelet signal processing and entropy,
FFT to efficiently extract the features from pre-processed Doppler
signals for the purpose of recognizing between abnormal and nor-
mal subjects of the VHD. Thus, the doctor can make a comparison
between the diagnoses by the developed method and the diagno-
ses by the existing methods. If the results are different, the exam-
inations can be repeated or performed more carefully. In this way,
the physician can decide more realistically.

This paper is organized as follows. In Section 2, we review some
basic properties of the pattern recognition, the Doppler heart sig-
nals, WPD, FFT, wavelet entropy and LS-SVM. In Section 3, the
implementation stage is described and the effectiveness of the pro-
posed method for the classification of Doppler signals in the diag-
nosis of VHD is demonstrated. Finally, conclusion is presented in
Section 4.

2. Preliminaries

In this section, the theoretical foundations of the presented
study are given in the following subsections.

2.1. Pattern recognition

Pattern recognition consists of some sequential stages, the first
stage is feature extraction from the patterns, which is the conver-

sion of patterns to features that are regarded as a condensed rep-
resentation, ideally containing all-important information. The
second stage is feature selection. At which a smaller number of
meaningful features that best represents the given pattern without
redundancy is identified. The next stage is classification. At which a
specific pattern is assigned to a specific class according to the char-
acteristic features selected for it. This general abstract model is
shown in Fig. 1, allows a broad variety of different realizations
and implementations. Applying this terminology to the medical
diagnostic process, the patterns can be identified, for example, as
particular, formalized symptoms, recorded signals, or as a set of
images of a patient. The classes obtained represent the variety of
different possible diagnoses or diagnostic statements (Dickhous &
Heinrich, 1996; Turkoglu et al., 2002). The techniques applied to
pattern recognition use artificial intelligence approaches (Bishop,
1996; Turkoglu et al., 2002).

2.2. DHS signals

The audio DHS can be obtained by simply placing the Doppler
ultrasonic flow transducer over the chest of the patient (Chan et
al., 1997; Turkoglu et al., 2002). (Fig. 2) shows a DHS signal. The
DHS produced from echoes backscattered by moving blood cells
is generally in the range of 0.5–10 kHz (Saini, Nanda, & Maulik,
1993). DHS signal spectral estimation is now commonly used to
evaluate blood flow parameters in order to diagnose cardiovascular
diseases. Spectral estimation methods are particularly used in
Doppler ultrasound cardiovascular disease detection. Clinical diag-
nosis procedures generally include analysis of a graphical display
and parameter measurements, produced by blood flow spectral
evaluation. Ultrasonic instrumentation typically employs Fourier-
based methods to obtain the blood flow spectra and blood flow
measurements (Madeira, Tokhi, & Ruano, 2000; Turkoglu et al.,
2002).

A Doppler signal is not a simple signal. It includes random char-
acteristics due to the random phases of scattering particles present
in the sample volume. Other effects such as geometric broadening

feature
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patterns classes

Fig. 1. The general abstract model of pattern recognition approach.

0 1 2 3 4 5
-1

-0.5

0

0.5

1

Time (sec)

A
m

pl
itu

de
 (

vo
lt)

Fig. 2. The waveform pattern of the Doppler heart sound.
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and spatially varying velocity also affect the signal (Turkoglu et al.,
2002). The following is the Doppler equation:

Df ¼ 2vf cos h
c

ð1Þ

where v equals the velocity of the blood flow, f equals the frequency
of the emitted ultrasonic signal, c equals the velocity of sound in tis-
sue (approximately 1540 m/s), Df equals the measured Doppler fre-
quency shift, and h equals the angle of incidence between the
direction of blood flow and the direction of the emitted ultrasonic
beam (Saini et al., 1993; Turkoglu et al., 2002).

2.3. Wavelet packet decomposition

Wavelet transforms are finding inversed use in fields as diverse
as telecommunications and biology. Because of their suitability for
analyzing non-stationary signals, they have become a powerful
alternative to Fourier methods in many applications, where such
signals abound (Akay, 1997; Burrus, Gopinath, & Guo, 1998; Coif-
man & Wickerhauser, 1992; Devasahayam, 2000; Karabetsos,
Papaodysseus, & Koutsouris, 1998; Liang & Nartimo, 1998; Quirog-
a, 1998; Quiroga, Roso, & Basar, 1999).

The main advantage of wavelets is that they have a varying win-
dow size, being wide for slow frequencies and narrow for the fast
ones, thus leading to an optimal time-frequency resolution in all
the frequency ranges. Furthermore, owing to the fact that windows
are adapted to the transients of each scale, wavelets lack the
requirement for stationary (Quiroga, 1998). Wavelet decomposi-
tion uses the fact that it is possible to resolve high-frequency com-
ponents within a small time window, while only low-frequency
components need large time windows. This is because a low-fre-
quency component completes a cycle in a large time interval,
whereas a high-frequency component completes a cycle in a much
shorter interval. Therefore, slow varying components can only be
identified over long time intervals but fast varying components
can be identified over short time intervals. Wavelet decomposition
can be regarded as a continuous time wavelet decomposition sam-
pled at different frequencies at every level or scale. The wavelet
decomposition functions at level m and time location tm can be ex-
pressed as the following equation:

dmðtmÞ ¼ xðtÞ �Wm
t � tm

2m

� �
ð2Þ

where Wm is the decomposition filter at the frequency level m. The
effect of the decomposition filter is scaled by the factor 2m at stage
m, but otherwise the shape is the same at all scales. Wavelet packet
analysis is an extension of the discrete wavelet transform (DWT)
(Burrus et al., 1998) and it turns out that the DWT is only one of
the much possible decomposition that could be performed on the
signal. Instead of just decomposing the low-frequency component,
it is therefore possible to subdivide the whole time-frequency plane
into different time-frequency pieces as can be seen from Fig. 3. The
advantage of wavelet packet analysis is that it is possible to com-

bine the different levels of decomposition in order to achieve the
optimum time-frequency representation of the original (Keeton &
Schlindwein, 1997).

2.4. Fast-Fourier transform

The discrete Fourier transform (DFT) of a sequence can be eval-
uated directly by the following equation, which involves the order
of N2 complex multiplications and additions, so these processes
need more computation time. Because of this problem, a quicker
method must be used to evaluate this equation. The fast-Fourier
transform (FFT) provides such methods

FðkXÞ ¼
XN�1

n¼0

f ðnTÞe�jXTnk 0 6 k 6 N � 1 ð3Þ

where f is the impulse response of a finite impulse response filter, N
is finite number, the Eq. (3) can be written in the form of

FðkXÞ ¼
XN�1

n¼0

f ðnTÞWnk
N ð4Þ

where WN ¼ e�jð2p=NÞ. If N is even, then we can split the sequence f
into even and odd terms. If N = 1024, then the FFT requires 1% of
the time required for the discrete calculation of DFT (Banks, 1991).

2.5. Least square SVM

LS-SVM was proposed by Suykens and Vandewalle (1999). It is
the reformulation of the standard SVM, which was intended by Vap-
nik in 1995 (Lukas et al., 2004). LS-SVMs generalization performance
was compared with the standard SVM by Van Gestel et al. We review
the LS-SVM formulation as follows: we are given a training data set
of n data points fxi; yig

n
i¼1, where xi 2 Rd is the ith input vector and

yi 2 R is the label of ith class. For binary classification, yi takes only
two values {-1,+1}, in regression stage it can take any real value. In
kernel designs, the idea was to transform the input patterns into
Reproducing Kernel Hilbert Space (RKHS) by a set of mapping func-
tions /ðxÞ If reproducing kernel denoted in RKHS as K ¼ ðx; x’Þ;which
is defined as (Lukas et al., 2004; Suykens & Vandewalle, 1999)

Kðx; x0Þ ¼ /ðxÞ � /ðxÞ0 ð5Þ

In the RKHS, a linear classification is performed. The discriminant
function takes the form

yðxÞ ¼
Xn

i¼1

w � /ðxÞ þ b ð6Þ

where w is the weight vector in the RKHS, and b 2 R is bias term.
The discriminant function of LS-SVM classifiers is constructed by
minimizing the following primal problem:

min
w;b;n

Pðw; b; nÞ ¼ 1
2
kwk2 þ C

2

Xn

i¼1

n2
i ð7Þ

subject to the equality constraints yi � ðw � /ðxiÞ þ bÞ ¼ ni8i, where
the regularization parameter, C > 0. Note that the formulation for
classifier design is same as that for regression. Traditionally, an
inequality constraint is exploited on the slack variables ni to pun-
ish the misclassified patterns only. Nevertheless, the formulation
of LS-SVM produces penalty to all the patterns if their discrimi-
nant function is not equal to the corresponding target value, as
the traditional regression formulation does. Standard Lagrangian
techniques are used to derive the dual problem (Lukas et al.,
2004; Suykens & Vandewalle, 1999). The Lagrangian for the pri-
mal problem is

Lðw; b; n; aÞ ¼ 1
2
kwk2 þ C

2

Xn

i¼1

n2
i þ

Xn

i¼1

aifyi� ðw:/ðxÞ þ bÞ � nig ð8Þ

Signal

C D
DWThigh-passlow-pass

Terminal nodes

Fig. 3. Wavelet packet decomposition.
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where ai are Lagrangian multipliers. The Karush–Kuhn–Tucker
(KKT) conditions for the primal problem are

oL
ow
¼ 0) w ¼

Xn

i¼1

ai/ðxiÞ ð9Þ

oL
ob
¼ 0)

Xn

i¼1

ai ¼ 0 ð10Þ

oL
oni
¼ 0) ai ¼ Cni 8i ð11Þ

Together with the KKT conditions for Lagrangian multipliers ai, Suy-
kens and Vandewalle (1999) write them as a linear system, and sug-
gest to solve two linear systems and then combine the results to get
the final solution to the KKT linear system.

3. Methodology

Fig. 4 shows the used decision support system block diagram. It
consists of three parts: (a) data acquisition and pre-processing, (b)
feature extraction, and (c) classification by LS-SVM.

3.1. Data acquisition and pre-processing

All the original audio DHS signals were acquired from the Acu-
son Sequoia 512 Model Doppler Ultrasound system in the Cardiol-
ogy Department of the Firat Medical Center. DHS signals were
sampled at 20 kHz for 5 s and signal-to-noise ratio of 0 dB by using
a sound card which has a 16-bit A/D conversion resolution and a
computer software prepared by us in the MATLAB (version 5.3)
(The MathWorks Inc. Natick, MA, USA). The Doppler ultrasonic flow
transducer used (Model 3V2c) was run at an operating mode of
2 MHz continuous wave. The Doppler signals of the heart valves
were obtained by placing the transducer over the chest of the pa-

tient with the aid of an ultrasonic image. The digitised data, which
have 39 normal and 66 abnormal subjects, were stored on hard
disk of the PC. The subject group consisted of 58 males and 47 fe-
males with the ages ranging from 19 to 78 years. The average age
of the subjects was 47.5 years. Pre-processing to obtain the feature
vector was performed on the digitized signal in the following
order.

3.1.1. Filtering
The reserved DHS signals were high-pass filtered to remove un-

wanted low-frequency components, because the DHS signals are
generally in the range of 0.5–10 kHz. The filter is a digital FIR, which
is a fiftieth-order filter with a cut-off frequency equal to 500 Hz and
window type is the 51-point symmetric Hamming window.

3.1.2. White de-noising
White noise is a random signal that contains equal amounts of

every possible frequency, i.e., its FFT has a flat spectrum (Devasa-
hayam, 2000). The DHS signals were filtered by removing the white
noise by using a wavelet packet. The white de-noising procedure
contains three steps (Bakhtazad, Palazoglu, & Romagnoli, 1999):
(1) Decomposition: computing the wavelet packet decomposition
of the DHS signal at level 4 and using the Daubechies wavelet of
order 4; (2) Detail coefficient thresholding: for each level from 1
to 4, soft thresholding is applied to the detail coefficients; (3)
Reconstruction: computing wavelet packet reconstruction based
on the original approximation coefficients of level 4 and the mod-
ified detail coefficients of levels from 1 to 4.

3.1.3. Normalization
The DHS signals in this study were normalized using the follow-

ing equation so that the expected amplitude of the signal is not af-
fected by the rib cage structure of the patient,

DHSsignal ¼
DHSsignal

jðDHSsignalÞmaxj
ð12Þ

3.2. Feature extraction

Feature extraction is one of the important steps of pattern rec-
ognition so that it is the most important step of designing the deci-
sion support system based on pattern recognition because the best
classifier performance will decrease if the features are not chosen
well. The feature extraction stage must reduce the pattern vector
(i.e., the original waveform) to a lower dimension, which contains
most of the useful information from the original vector. The DHS
waveform patterns from heart valves are rich in detail and highly
non-stationary. In this study, the goal of the feature extraction is
to extract features from these patterns for intelligent classification.
After the data pre-processing has been realized, three steps are
proposed in this paper to extract the characteristics of these wave-
forms using MATLAB with the wavelet toolbox and the signal pro-
cessing toolbox.

3.2.1. Wavelet packet decomposition: to decomposition
To evaluate the wavelet packet decomposition, the tree struc-

ture was used. Wavelet packet decomposition was applied to the
DHS signal with the Daubechies-1 wavelet packets using the Shan-
non entropy as defined in the following equation. In this equation,
s is the DHS signal and si is ith coefficients of wavelet packet
decomposition of s. A representative example of the wavelet pack-
et decomposition of the Doppler sound signal of the heart mitral
valve is shown in Fig. 5,

EðsÞ ¼ �
X

i

s2
i � logðs2

i Þ ð13Þ

PREPROCESSING

Data acquisition
Filtering
White de-noising
Normalization

Doppler
Ultrasound

FEATURE EXTRACTION
Wavelet Packet
FFT
Wavelet entropy

CLASSIFICATION LS-SVM

Cleaned DHS Signal
(The heart valves)

Feature Space

Decision Space

CLASSIFICATION
RESULTS

Abnormal  valve
Normal  valve

Fig. 4. The algorithm of the expert system.
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3.2.2. Fast-Fourier transform
The FFT is the most robust and understood one of the various

time-frequency representations (Keeton & Schlindwein, 1997;
Turkoglu et al., 2002). Convert to frequency domain of waveforms
of terminal nodes was computed using a 512-point FFT. Because
the length of the terminal node signal was less than 512, FFT pad

of the terminal node signal was constituted with trailing zeros to
length 512. A representative example of the FFT spectrum of wave-
form of a terminal node is indicated in Fig. 6.

3.2.3. Wavelet entropy
We next calculated the norm entropy as defined in the follow-

ing equation of waveforms of the FFT spectrum:

EðsÞ ¼
X

i

jsij3=2 ð14Þ

where s is the FFT spectrum and si is ith coefficients of s Quiroga et
al. (1999). The resultant entropy data, which were normalized with
1/1000, are plotted in Fig. 7. The plot of the entropy data includes
256 features obtained from 256 terminal nodes, where each one
contains waveform of one frequency spectrum per DHS signal. Thus,
the feature vector was obtained by computing the wavelet packet
entropy values for each DHS signal.

3.3. Classification using LS-SVM

The objective of the classification is to demonstrate the effec-
tiveness of the proposed feature extraction method from the DHS
signals. For this purpose, the feature vectors were applied as the in-
put to an LS-SVM classifier. The KULeuven’s LS-SVMlab MATLAB/C
Toolbox was used for the purpose of training and testing. RBF
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kernel is used. Grid search algorithm is used to tune the c regular-
ization constant and r width of RBF kernel parameters. The deter-
mined optimal c value is 2.8439 and optimal r value is 29.316 for
predicting mitral valve diseases. Threefold cross-validation meth-
od was applied to the 105 experimental data sets for computing
the validation of LS-SVM model. In k-fold cross-validation method,
the data set is divided into k subsets, and the holdout method is re-
peated k times. At each time, k � 1 subsets are used for training
and kth subset is used for testing. Then the average error across
all k trials is computed. Therefore, every data point gets to be in
a test set exactly once, and gets to be in a training set k-1 times.
Different evaluation methods were used for calculating the perfor-
mance of the proposed expert system. The best test performance of
LS-SVM model is graphically presented in Fig. 8. As seen in Fig. 8,
LS-SVM model predicts the measured values at a high accuracy
rate. Threefold test performance of LS-SVM model is shown in Ta-
ble 1. The average correct classification rate is 96.13%.

4. Conclusions

In this study, a decision support system was developed for the
interpretation of the DHS signals using pattern recognition, and

demonstrated the diagnosis performance of this method on the
heart mitral valves. The task of feature extraction was performed
using the wavelet packet decomposition for multi-scale analysis,
FFT for time-frequency representations, and the wavelet entropy,
while classification was carried out by LS-SVM. The stated results
show that the proposed method can make an efficient
interpretation.

The feature choice was motivated by a realization that wavelet
decomposition essentially is a representation of a signal at a vari-
ety of resolutions. In brief, the wavelet packet decomposition has
been demonstrated to be an effective tool for extracting informa-
tion from the DHS signals. Moreover, the proposed feature extrac-
tion method is robust against the noise in the DHS signals.

In this paper, the application of the wavelet entropy to the fea-
ture extraction from DHS signals was shown. Wavelet entropy
proved to be a very useful tool for characterizing the DHS signal,
furthermore the information obtained with the wavelet entropy
proved not to be trivially related with the energy and consequently
with the amplitude of the signal. This means that with this method,
new information can be accessed with an approach different from
the traditional analysis of amplitude of DHS signal.

This system is of better clinical application over others, espe-
cially for earlier survey of a population. However, the position of
the ultrasound probe, which is used for data acquisition from the
heart valves, must be taken into consideration by a physician.
Although this decision support system was carried out on the heart
mitral valves, similar results for the other valves (tricuspid and
pulmonary) and other Doppler studies can be expected. Besides
the feasibility of a real-time implementation of the decision sup-
port system, by increasing the variety and number of DHS signals
additional information (i.e., quantification of the heart valve regur-
gitation and stenosis) can be provided for diagnosis.
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Uguz, H., Arslan, A., & Türkoğlu, I. (2007). A biomedical system based on hidden
Markov model for diagnosis of the heart valve diseases. Pattern Recognition
Letters.

Wright, I. A., Gough, N. A. J., Rakebrandt, F., Wahab, M., & Woodcock, J. P. (1997).
Neural network analysis of Doppler ultrasound blood flow signals: A pilot
study. Ultrasound in Medicine and Biology, 23(5), 683–690.

4238 D. Hanbay / Expert Systems with Applications 36 (2009) 4232–4238



EXPERT SYSTEMS WITH APPLICATIONS
An International Journal

EDITOR-IN-CHIEF
Jay Liebowitz, D.Sc.

966 Farm Haven Drive, Rockville, Maryland 20852, USA

EDITORIAL ADVISORY BOARD
Edward Feigenbaum
Stanford University, USA

Lance B. Eliot
University of Southern California, USA

Dianne C. Berry
University of Reading, UK

Walter Reitman
Rensselaer Polytechnic Institute, USA

Shri K. Goyal
GTE Laboratories, USA

Daniel E. O’Leary
University of Southern California, USA

Richard G. Vedder
University of North Texas, USA

James L. Rash
NASA Goddard Space Flight Center, USA

Randall Shumaker
Naval Research Laboratory, USA

David Bendel Hertz
University of Miami, USA

A. Desai Narasimhalu
Singapore Management University

Patricia Lightfoot
NASA Goddard Space Flight Center, USA

Mark Fox
Toronto, Ontario, Canada

Jae Kyu Lee
Korea Advanced Institute of Science and

Technology

I. Burhan Turksen
University of Toronto, Canada

Ching Suen
Concordia University, Canada

Ernest H. Forman
George Washington University, USA

Roar Fjellheim
Computas A.S., Norway

Jan Vanthienen
Catholic University, Leuven, Belgium

Jon R. Wright
AT&T Bell Laboratories, USA

Roy Rada
University of Maryland, USA

John P. Coyne
George Washington University, USA

John H. Carson
George Washington University, USA

Daniel Schutzer
Citicorp Investment Bank, USA

Paul Harmon
Harmon Associates, USA

Francisco J. Cantu
Instituto Tecnologico y de Estudios
Superiores de Monterrey, Mexico

Brian Gaines
University of Calgary, Canada

Michel Clerget
Cognitech, France

Kenneth J. Fordyce
IBM, USA

James R. Slagle
University of Minnesota, USA

Eliot Weinman
Software Productivity, USA

Randall Davis
Massachusetts Institute of Technology, USA

E. Balagurusamy
Mahareer Academy of Technology and

Sciences, India

Dieter Specht
Technische Universitat Cottbus, Germany

Vladimir Milacic
University of Belgrade, Yugoslavia

Hans Bergkvist
ATTEXOR S. A., Switzerland

Laura C. Davis
U.S. Navy Center for Applied Research in

Artificial Intelligence, USA

Jerald Feinstein
MITRE, USA

Efraim Turban
University of Hawaii, 3435 Kehala Dr.,

Kiehi HI 96753, USA

Bernt Bremdal
GeoKnowledge, Norway

Milton White
Datanamics Inc., USA

Editorial Office: Jay Liebowitz, 966 Farm Haven Drive, Rockville, Maryland 20852, USA. Tel./Fax: (+1) 301-770-2978; e-mail: jliebow1@jhu.edu

Author enquiries: For enquiries relating to the submission of articles (including electronic submission where available) please visit this journal’s homepage at http://www.elsevier.com/
locate/eswa. You can track accepted articles at http://www.elsevier.com/trackarticle and set up e-mail alerts to inform you of when an article’s status has changed. Also accessible from here

is information on copyright, frequently asked questions and more.
Contact details for questions arising after acceptance of an article, especially those relating to proofs, are provided after registration of an article for publication.

Publication information: Expert Systems with Applications (ISSN 0957-4174). For 2009, volumes 36, 37 are scheduled for publication. Subscription prices are available upon request

from the Publisher or from the Regional Sales Office nearest you or from this journal’s website (http://www.elsevier.com/locate/eswa). Further information is available on this journal and
other Elsevier products through Elsevier’s website: (http://www.elsevier.com). Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by
standard mail (surface within Europe, air delivery outside Europe). Priority rates are available upon request. Claims for missing issues should be made within six months of the date of
dispatch.

Advertising information: Advertising orders and enquiries can be sent to: James Kenney, Elsevier Ltd., 32 Jamestown Road, London NW1 7BY, UK; phone: (+44) 207 424 4216; fax:
(+44) 1865 853 136; e-mail: j.kenney@elsevier.com. Customers in the US and Canada can also contact: Mr Tino DeCarlo, Advertising Department, Elsevier Inc., 360 Park Avenue South,
New York, NY 10010-1710, USA; phone: (+1) (212) 633 3815; fax: (+1) (212) 633 3820; e-mail: t.decarlo@elsevier.com.

Orders, claims, and journal enquiries: please contact the Regional Sales Office nearest you:

St. Louis: Elsevier, Customer Service Department, 11830 Westline Industrial Drive, St. Louis, MO 63146, USA; phone: (877) 8397126 [toll free within the USA]; (+1) (314) 4537076
[outside the USA]; fax: (+1) (314) 5235153; e-mail: JournalCustomerService-usa@elsevier.com

Amsterdam: Elsevier, Customer Service Department, PO Box 211, 1000 AE Amsterdam, The Netherlands; phone: (+31) (20) 4853757; fax: (+31) (20) 4853432; e-mail: JournalsCustomer-
ServiceEMEA@elsevier.com

Tokyo: Elsevier, Customer Service Department, 4F Higashi-Azabu, 1-Chome Bldg, 1-9-15 Higashi-Azabu, Minato-ku, Tokyo 106-0044, Japan; phone: (+81) (3) 5561 5037; fax: (+81) (3)
5561 5047; e-mail: JournalsCustomerServiceJapan@elsevier.com

Singapore: Elsevier, Customer Service Department, 3 Killiney Road, #08-01 Winsland House I, Singapore 239519; phone: (+65) 63490222; fax: (+65) 67331510; e-mail: JournalsCustomer-
ServiceAPAC@elsevier.com

USA mailing notice: Expert Systems with Applications (ISSN 0957-4174) is published 10 issues per annum in January, March, April, May, July, August, September, October, November,
December by Elsevier Ltd. (The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK). Periodical postage paid at Rahway NJ and additional mailing offices.
USA POSTMASTER: Send change of address: Expert Systems with Applications, Elsevier, Customer Service Department, 11830 Westline Industrial Drive, St. Louis, MO 63146,
USA. Periodical postage paid at Rahway NJ and additional mailing offices.
AIRFREIGHT AND MAILING in USA by Mercury International Limited, 365, Blair Road, Avenel, NJ 07001.


