
Artificial Intelligence 109 (1999) 187–209

Representation of propositional expert systems
as partial functions

Robert M. Colomb1

Department of Computer Science and Electrical Engineering, The University of Queensland,
Queensland 4072, Australia

Received 10 February 1998; received in revised form 6 December 1998

Abstract

Propositional expert systems classify cases, and can be built in several different forms, including
production rules, decision tables and decision trees. These forms are inter-translatable, but the
translations are much larger than the originals, often unmanageably large. In this paper a method
of controlling the size problem is demonstrated, based on induced partial functional dependencies,
which makes the translations practical in a principled way. The set of dependencies can also be used
to filter cases to be classified, eliminating spurious cases, and cases for which the classification is
likely to be of doubtful validity. 1999 Elsevier Science B.V. All rights reserved.

Keywords:Propositional systems; Machine learning; Decision tables; Decision trees; Knowledge filtering

1. Introduction

There is a large class of expert systems whose purpose is essentially to classify
cases, for example, to diagnose disease from symptoms. Several different methods are
used to represent the knowledge in such systems, and to form the basis of computer
implementations, including propositional production rules, decision tables and decision
trees.

It has been known for some time that these representations are equivalent, in that a
system represented in one can be automatically translated into another, exactly preserving
the input–output behaviour of the original representation. This issue is addressed in detail
by Colomb and Chung [5]. Translatability means that a body of knowledge can be
represented in different ways for different purposes. For example, an expert system may be

1 Email: colomb@csee.uq.edu.au.

0004-3702/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00013-2



188 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

built by experts as a set of rules, which might be a natural way for humans to understand
the knowledge; but a decision table representation can make it much easier to perform
an analysis of the vulnerability of the knowledge base to measurement errors [3]; and a
decision tree representation may give a fast bounded time implementation [19,20]. On the
other hand, an expert system may be built originally as a decision tree, say by induction
from a set of cases [15,16], but be translated into one of the other forms for analysis or
understandability. Since these various representations of knowledge are interchangeable,
we will call them alldecision objects.

However, even though the translations can be automatically performed by simple
algorithms, there is a severe practical difficulty, namely that the translated representation
can be very much larger than the original. Furthermore, most of the constituent parts of the
translated object may not be used in practice, even if all the parts of the original are.

The main result reported in this paper is to show why this problem of greatly increased
size occurs and to show a simple method of representing decision objects which eliminates
it. To do this, we first exhibit a unified representation of the various forms of decision
objects and present in this representation the translatability results from the literature. We
then show how the translated representation becomes inflated, and that this inflation is the
result of representing inherently partial functions on the attribute space as total functions.
To solve the problem, we show a simple way of representing and estimating the domain of
the partial classification function represented by the decision object, and show that by use
of the knowledge of the domain, we obtain practical translation among forms of decision
objects with little inflation. The paper concludes with a discussion and implications of the
results.

2. Forms of decision object

A classification system typically processes a case consisting of measurements of a
number of variables by assigning a classification to the case. This section is a collection
and systematization of results from the literature. The proofs are therefore given somewhat
informally since the full detail is available elsewhere.

2.1. Propositions

We interpret a variable as a measuring instrument, used by a computer system to
monitor a real-world process of some kind. A measurement by a specific variable is
the assignment of a specific value to that variable, notionally by the real-world process.
The value setbelonging to a variable is a discrete set of names, usually describing
qualitative properties. A value set must have at least two members. The prototypical
case is a Boolean variable with values{true, false}, but other value sets are possible:
for example, the variablesex has the value set{male, female}. If a variable refers to
a continuous measurement, its value set frequently names the results of a series of
relational tests on the measurement: for example, the variabletsh might have the values
high,borderline_high,normal,borderline_low, low,missing. There is no limit in principle



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 189

to the cardinality of a value set. This notion of variable with finite value set is widely
applicable: in particular, it is the basis for most expert systems.

In an application, there are generally a number of variables. More formally, there is a set
X = {xi}, consisting of at least one variable. This set of variables is interpreted as a view
of the real-world process. Each variablexi has a value setVi . A state of the real-world
process as measured by the system is an assignmentxi = vj for vj in Vi for all variables.
This measurement of state is referred to as acase. The setX will be called thevariable set
associated with the system under consideration.

An elementary propositionconsists of a variable and a value from the value set belonging
to that variable, designatedxi = vij for vij in Vi . We will designate bypi the set of
elementary propositionspij associated with variablexi . The elementary propositions
associated with the variables{xi} will be referred to ascase elementary propositions.
A case is represented as a proposition by achoicefrom {pi}, that is exactly one member
of eachpi . Theith choice will be designatedci and a casec will be represented by the set
{ci}. Eachci is a case elementary proposition associated with variablexi . Classification is
a function whose domain is the set of possible choices from{pi}, and whose range is a set
of elementary propositions whose value set is a (typically small) finite setD = {dj }. The
classification assigned to a case will be represented as a proposition of the form class= dj
for dj in D, whereclassis a reserved variable name. Elementary propositions associated
with the variableclasswill be referred to asclassification elementary propositions.

Example 1. Consider a system with two variablesx1 (sex) with value set{female,male}
and x2 (pregnant) with value set{true, false}. The case elementary propositions asso-
ciated with each variable arep1 = {sex= female,sex= male} and p2 = {pregnant=
true,pregnant= false}. There are four possible choices from{pi}, two of which
are {sex= male,pregnant= false} and {sex= male,pregnant= true}. D is the set
{normal,plausible,extraordinary}. Assume that the classification assigned to the two cases
exhibited are, respectively, the classification elementary propositionsclass= normaland
class= extraordinary, while the classification assigned to the two other choices are both
class= plausible.

Definition 2. An elementary proposition isbinary if its value set has cardinality 2.

Proposition 3. The negation of an elementary proposition is a conjunction of elementary
propositions.

Proof. An elementary proposition is a formula of the formxi = vij . If it is not true that
xi = vij , then it must be true thatxi = v, wherev ∈ Vi\vij , so that

∼(xi = vij )≡
∨
k 6=j

xi = vik,

wherek ranges over the indexes of the members of the value setVi . 2
Corollary 4. The negation of a binary elementary proposition is a binary elementary
proposition.



190 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

2.2. Rules

A rule system form of decision object is a collection of production rules. Production
rules are constructed from elementary propositions, classifications, and a distinguished
set of propositionsA= {a} designatedintermediate elementary propositions. Intermediate
elementary propositions are distinguished by having variables distinct from the variables
which can occur in cases, and not including the reserved variableclass. The antecedent of
a rule is a conjunction of case or intermediate elementary propositions, or the negations
of either, while the consequent is either an intermediate or classification elementary
proposition. There is a single consequent in each production rule, so that a rule system
is a collection of propositional Horn clauses. A production rule system will be called
well-formedif its dependency graph [2] is acyclic. Thedependency graphfor a system
of production rules has one node for each rule. An arc is defined with sourceN1 and target
N2 if the consequent of the rule atN1 appears in the antecedent of the rule atN2. Note
that this requirement is stronger than stratification as defined in the cited work. That work
labels an arc “positive” or “negative” according to whether the consequent ofN1 appears
as a positive or, respectively, negative literal in the antecedent ofN2. A stratified system
has no cycles including a negative arc, but allows cycles all of whose arcs are positive.

The semantics of a propositional production rule based decision object is based on
datalog under negation as failure. A set of propositional Horn clauses is trivially a datalog
intensional database (IDB), since there are no variables. The extensional database (EDB)
consists of a set of predicates each of which corresponds to one of the elementary case
propositions. Each of the EDB predicates either contains one tuple, which consists of the
token “true”, or is empty. The standard stratified naive bottom-up evaluation procedure
populates the IDB predicates by propagating the “true” token. The classifications assigned
to a case are the classification elementary propositions which are not empty. All this is
a straightforward application of the principles of datalog as described, for example, by
Ullman [21,22].

Example 5. We will re-cast Example 1 as a datalog system. The IDB consists of the three
Horn clauses:

(class= normal) :- (sex=male), (pregnant= false)
(class= extraordinary) :- (sex=male), (pregnant= true)
(class= plausible) :- (sex= female),

and assume the EDB represents the case of a pregnant male:

(sex=male)= {true}
(sex= female)= { }
(pregnant= true)= {true}
(pregnant= false)= { }.

The datalog evaluation produces the following population of IDB predicates

(class= normal)= { }
(class= extraordinary)= {true}
(class= plausible)= { }.



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 191

The datalog semantics of rule systems shows that the well-formedness criterion which
excludes recursion entirely involves no loss of generality.

Theorem 6. For every stratified propositional IDB P there is an IDB with an acyclic
dependency graph which has the same perfect model.

Proof. Based on the datalog naive evaluation procedure. This procedure starts with the
given EDB and no population for any IDB predicate, and proceeds from stratum to
stratum (making sure that clauses containing negated predicates in their antecedents are
not evaluated until all the clauses with those predicates as consequents are fully evaluated).
Each step evaluates all clause bodies and possibly generates tuples for some of the IDB
predicates. This evaluation is called applying theT operator. The initial population is
namedT (0), and the population aftern steps is calledT (n). It terminates when a fixed
point is reached:T (n+ 1)= T (n). T (n) is the perfect model. 2
Lemma 6.1. In a propositional IDB, each predicate generates tuples only once.

Proof. Each predicate in the IDB can have at most one tuple. Therefore once a clause puts
a tuple in a predicate, it is fully evaluated.2

Even though a propositional predicate may be defined in several clauses, at most one
clause firing fully evaluates the predicate.

Lemma 6.2. For a given EDB, the evaluation procedure selects an acyclic subset of IDB
clauses, which are the only clauses to generate tuples.

Proof. A clause can generate tuples only if all of its positive antecedent literals have
populations, and none of its negative antecedent literals can possibly have populations.
At each stepn of the evaluation, include the clauses which generate tuples inT (n) in
the required subset. Designate the clauses added atT (n) by C(n), and the union up ton
of theC(n) by S(n). Lemma 6.1 insures that a clause can be in at most oneC(n). That
the required subset at the fixed point is acyclic can be seen by induction. ClearlyS(1) is
acyclic, since the only clauses which can generate tuples inT (1) must have antecedents
entirely in the EDB. IfS(n) is acyclic, thenC(n+ 1) includes only clauses all of whose
antecedents contain only positive literals defined inS(n) and negative literals which are
empty and which have been fully evaluated, soS(n+ 1) can have no cycles.2

Each EDBe generates an acyclic subset of the IDB by Lemma 6.2. Designate that subset
by S(e).

Lemma 6.3. If e is an EDB andS′ is an IDB which generates no tuples when evaluated
with EDBe, there is an IDB with an acyclic dependency graph which has the same perfect
model asS′ when evaluated with EDB other thane and the same perfect model asS(e)
when evaluated with EDBe.



192 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

Proof. By construction. IfS(e) generated no tuples when evaluated with EDB other than
e, andS(e) had no intermediate elementary propositions in common withS′, thenS′ ∪S(e)
would be the desired IDB. In general, this is not the case. We need to isolateS(e) from
other EDBs and to make sure all intermediate elementary propositions inS(e) do not occur
in any other clause in the IDB.

It is easy to specify an additional set of rules which will serve to identify EDBs.
A propositional EDB is a pattern of presence or absence of a token in a fixed collection of
predicates. For EDBe, we can create a rule with consequenti(e) which is true if the EDB
is the patterne and empty otherwise. The antecedent ofidentification predicatei(e) has
a positive literal for every proposition having a token in EDBe, and a negative literal for
every proposition lacking a token.

Also, since all elementary propositions assigned values inS(e) are assigned values by
clauses inS(e) together with EDBe, we can replace the names of the variables associated
with all intermediate propositions inS(e) with names tagged bye. We will call this process
isolation of an IDB.

For S(e), construct an IDBS′(e) by includingi(e) as a conjunct in the antecedent of
all clauses inS(e). The only IDB which can generate tuples when evaluated with EDB
e is S′(e). Further,S′(e) has the same perfect model asS(e) (excluding the introduced
identification predicates). IfS′(e) is also the isolation ofS(e), thenS′ ∪ S′(e) is IDB
required for the lemma.2

The identification predicate is what really does the job. The only reason for worrying
about isolation is that the dependency graph is defined in terms of the propositions which
are the consequents of clauses, not clauses in isolation. Even though the introduction of
the identification predicates is enough to keepS′(e) from any influence in the evaluation
of any other EDB, the isolation is required to separate the dependency graph.

Proof of Theorem 6. Construct the finite set (cardinalityN ) of all possible choices from
{pi} as the set of possible casesC. Impose an ordering onC, yielding a sequence of cases
with thekth member identified byck, k 6N . For eachck constructS(ck). ConstructS′′(0)
as the empty IDB. For eachk > 0 constructS′′(k) by the application of Lemma 6.3 to
S′′(k− 1) andck . S′′(N) is the required IDB, which has an acyclic dependency graph and
has the same perfect model asP for every possible case.2

Theorem 6 is of course not a practicable procedure to convert recursively defined
propositional production rule sets to nonrecursive production rule sets. However, it shows
that the use of recursion adds no expressive power. Therefore it is reasonable to suggest to
the programmer of a recursively defined propositional production rule set that the set be
re-implemented to avoid recursion.

Definition 7. Two decision objects are equivalent if they have the same perfect model for
all EDBs.



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 193

2.3. Decision table

A decision table consists of a two-dimensional array of cells. Associated with each row
in the array is a classification. Theith cell in a row is a nonempty disjunction of elementary
propositions from the set of elementary propositions associated with theith variable. A row
in a decision table can be viewed as a rule whose antecedent is a conjunction of cells,
and whose consequent is a classification. Therefore, a decision table can be viewed as a
conjunction of row rules.

Example 8. The following is a decision table equivalent to the system in Example 5.

Row Sex Pregnant Classification

1 sex=male pregnant= true class= extraordinary

2 sex=male pregnant= false class= normal

3 sex= female pregnant= true∨
class= plausible

pregnant= false

Definition 9. A cell is a don’t care cell if it is the disjunction of all the elementary
propositions in the set associated with its column.

The cell in Example 8 row 3 associated with the variablepregnantis a don’t care cell.

Theorem 10. An acyclic rule system is equivalent to a decision table.

Proof. (Detailed in [5].) Essentially done by successively unfolding (partially evaluating)
the production rules, replacing the intermediate propositions by formulas consisting
entirely of case elementary propositions or their negations. The result is a conjunction of
rules whose consequents are classification elementary propositions. The result is expressed
in clausal form. These clauses are rows in a decision table, with the exception that a given
row may contain no elementary proposition from the set associated with a given variable.
If this is the case, the antecedent of the clause is augmented by a conjunct consisting of the
don’t care cell associated with the variable, which evaluates totrue. 2
Definition 11. A decision table isunambiguousif no assignment of truth values to
elementary propositions can assigntrue to more than one classification elementary
proposition.

An ambiguous decision table can arise from several sources. Decision tables arising
from Theorem 10 can be ambiguous due to errors in the rule set. One motivation for using
Theorem 10 is to check the set of rules for ambiguity, which is very difficult to see in
the rule representation. It can also be ambiguous only for impossible cases. Insulating a
system from impossible cases is one of the primary motivations of this paper. Sometimes



194 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

decision tables are used to identify situations in which there is normally one classification,
but sometimes can have more-multiple disease states for instance. In this situation, we can
without loss of generality replace the variables in the classification elementary propositions
with Cartesian products of variables, and the values by Cartesian products of values, so that
the form of the elementary proposition is preserved and the table becomes unambiguous,
preserving the remainder of the present theory.

Definition 12. A decision table is complete if every assignment of truth values to
elementary propositions assignstrue to at least one classification elementary proposition.

Observation 13. A rule system can be equivalent to an ambiguous and/or incomplete
decision table. See [5].

2.4. Decision tree

A decision tree is a tree consisting of nodes of two classes:deciding nodesand leaf
nodes. Each deciding node is associated with a variable and each leaf node is associated
with a classification elementary proposition. Each arc has as its source a deciding node,
and is associated with a case elementary proposition from the set associated with its source
(associated arc proposition). Our formulation is somewhat unusual in that each leaf node
is associated not only with a classification elementary proposition but with a proposition
composed from case elementary propositions. The operational semantics is that a leaf node
fires on a case if all the arc propositions in a path to the root are consistent with the case,
and so is the leaf proposition. A decision tree may therefore fail to classify a case.

Example 14. The following is a decision tree equivalent to the table in Example 8.

Node1 sex—female—Leaf 2 (pregnant= true)∨ (pregnant= false)→ (class= plausible)
|male
Node3 pregnant—true—Leaf 4 true→ (class= extraordinary)

| false
Leaf 5 true→ (class= normal).

Definition 15. A decision tree iscompleteif each deciding node is the source of arcs
associated with all of the elementary propositions associated with its variable, and all of its
leaf propositions are equivalent totrue.

Definition 16. A path propositionis associated with a path from the root to a leaf, and is
the conjunction of all the associated arc propositions conjoined with the leaf proposition.

Proposition 17. A conjunction of elementary propositions is either inconsistent or a
choice from the sets of elementary propositions associated with a subset of the variables.

Proof. Two distinct elementary propositions associated with the same variable are
inconsistent. Therefore, any consistent conjunction contains at most one elementary
proposition associated with each variable.2



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 195

Proposition 18. A path proposition is equivalent to a decision table.

Proof. The leaf proposition can be expressed in disjunctive normal form. The path
proposition is therefore the conjunction of each of the leaf proposition disjuncts with
all the arc propositions. By Proposition 17, each of the resulting disjuncts contains at
most one elementary proposition associated with each of the variables associated with
the deciding nodes in the path and the variables in the path propositions, or is inconsistent.
If inconsistent, the disjunct can be removed. Finally, each disjunct can be augmented with
don’t care cell propositions associated with any variable lacking any associated elementary
proposition in the disjunct. 2
Theorem 19. A decision tree is equivalent to an unambiguous decision table, which is
complete if the tree is.

Proof. Each distinct path through the decision tree is equivalent to a decision table each
row of which is associated with the path’s leaf classification elementary proposition. Each
path proposition is inconsistent with every other path proposition, since every pair of
paths must share at least one deciding node and the arcs in each path whose source is
that deciding node have different and therefore, inconsistent associated arc propositions
(which are are case elementary propositions with the same variable and a different value
for each arc). The union of the decision tables from all paths is a decision table, which is
unambiguous, since each leaf and therefore, path has a single classification.

If the decision tree is complete, then each deciding node partitions the set of possible
cases, so there is a partition of the set of possible cases where each partition is associated
with a leaf. The leaf proposition istrue, so that every case in that partition is consistent
with the decision table equivalent to the path proposition associated with the leaf. Each
case in the population of possible cases is therefore, contained in one of the parts of the
partition, and is therefore, consistent with at least one row in the decision table.2
Theorem 20. An unambiguous decision table is equivalent to a decision tree, which is
complete if the table is.

Proof. By induction on the number of attributes associated with the table. We adopt the
convention that a decision table with no attributes has a single row with the propositional
valuetrue, and therefore a single classification.

Basis step: If any of the following is the case, then the induction terminates with the
indicated action:

(1) The number of attributes is zero. Create a leaf node whose classification is the
table’s single classification elementary proposition, and whose leaf proposition is
true. (Depends on the table being unambiguous.)

(2) The number of rows is zero. Create a leaf node whose classification elementary
proposition is arbitrary and whose leaf proposition isfalse.

(3) The number of distinct classifications is one. Create a leaf node whose classification
elementary proposition is the table’s unique classification, and whose leaf proposi-
tion is the disjunction of propositions created from each row by the conjunction of
the cell propositions.



196 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

Induction step: There is at least one attribute, at least one row, and at least two distinct
classifications in the tableT .

(1) Select an attribute a by some method (this point is discussed below).
(2) Create a deciding node associated with this attribute.
(3) For eachv in the value set of a, create:
• An arc whose source is the deciding node created and whose arc proposition is
a = v.
• A decision tableT (a, v) derived by removing the cell associated witha from

each row ofT in which the cell associated witha is consistent witha = v.
T (a, v) has one fewer attribute in its associated attribute set thanT , so the induction
proceeds.

The tree is not complete unless every deciding node is the source of an arc associated
with each elementary proposition associated with its variable. The arcs are created by
part (3) of the induction step. If one of the elementary propositions is missing, then
the table has no row consistent with that elementary proposition and no case with that
elementary proposition as a conjunct will be classified. Similarly, if the leaf proposition
does not evaluate totrue, then no case consistent with the path proposition conjoined with
the negation of the leaf proposition will be classified by the table, so the table must be
incomplete. The tree is therefore, complete if the table is.2

From a practical point of view, the key to the algorithm developed from this theorem is in
the method of choosing an attribute in part (1) of the induction step. Shwayder [19,20] uses
a heuristic based on equalizing the number of rows in theT (a, v) (maximum dispersion),
giving one of the standard algorithms for translating from a decision table to a decision
tree. Quinlan [16] uses a heuristic based on minimizing the maximum number of distinct
classifications in theT (a, v) (maximum entropy gain). Theorem 20 with the maximum
entropy gain selection procedure gives a variant of the ID3 algorithm.

Theorems 19 and 20 show that decision trees and unambiguous decision tables are
exactly equivalent.

2.5. Cases

Quinlan’s 1986 paper [16] is based on the concept of a training set of cases, and is
intended to construct a decision tree from a training set.

Definition 21. A training setis a set of cases. Associated with each case is a classification.

Proposition 22. A training set is a decision table.

Proof. By inspection. 2
Definition 23. A training set isnoise-freeif it is unambiguous.

Observation 24. Theorem 14 applied to a noise-free training set using the maximum
entropy gain selection procedure is the ID3 algorithm.



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 197

2.6. Ripple-down rule trees

Another form of propositional knowledge representation is the ripple-down rule tree [7].
A ripple-down rule tree is a binary tree consisting of a set ofdecision nodesand a set of
leaf nodes. A decision node is associated with a conjunction of elementary propositions.
A leaf node is associated with a classification elementary proposition. There are two arcs
whose source is a decision node. Thetrue arc is taken if the node proposition is consistent
with a case, thefalsearc otherwise.

Example 25. The following is an example of a ripple-down rule tree equivalent to the
decision tree in Example 14:

Node1 if (sex=male)& (pregnant= true)—true—Leaf 2 (class= extraordinary)
| false

Node3 if (sex= female)—true—Leaf 4 (class= plausible)
| false
Leaf 5 (class= normal).

Definition 26. An rdr path propositionassociated with a path through a ripple-down rule
tree is constructed from a path from the root to a leaf. If the path takes atrue arc, then the
proposition associated with the decision node is a conjunct. If the path takes afalsearc,
then the negation of one of the conjuncts in the associated proposition is a conjunct.

Proposition 27. Without loss of generality, an rdr path proposition is a decision table row.

Proof. An rdr path is a conjunction of disjuncts. Each disjunct is a disjunction of
elementary propositions associated with the same variable, since disjunctions are either
single elementary propositions or are negations of elementary propositions (Proposition 3).
By Boolean algebra, the rdr path can be represented as a disjunction of conjunctions of
elementary propositions. By Proposition 17, each disjunct is either a choice from a set
of variables or inconsistent. An rdr path is therefore, either inconsistent or a conjunction
of disjuncts of elementary propositions associated with distinct variables. If the rdr path
lacks elementary propositions associated with a given variable, the corresponding don’t
care proposition can be conjoined. The classification is the classification associated with
the leaf node. 2
Theorem 28. A ripple-down rule tree is equivalent to an unambiguous decision table.

Proof. The decision table is the union of all rdr path propositions. Note that there can
be many rdr path propositions associated with a single leaf, if the path from the root
to the leaf takes anyfalsepaths whose source decision node is a nontrivial conjunction
of elementary propositions, so there may be many rows in the decision table with the
classification associated with a given leaf. However, rows with classifications from distinct
leaves are inconsistent, since there must be a decision node in common, with one path
taking thetrue arc and one thefalsearc. The table is therefore unambiguous.2



198 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

Section 2 has presented a framework in which the equivalences among the various forms
of decision object (rules, decision tables, decision trees, cases and ripple-down rule trees)
can be easily seen. Using these equivalences, one can develop a classification system using
a form of decision object convenient for the developers, then translate it into other forms
for purposes of analysis and execution.

3. What is wrong with this picture?

The idyllic theory described in the previous section encounters problems when put into
practice. Section 3 describes the problems encountered and analyses their cause.

Some terminology is needed. We will say that a decision object has a number of parts.
What a part is depends on the form of decision object. For a set of rules, a part is a rule;
for a decision table, a row; for a decision tree or ripple-down rule tree, a leaf. Thesizeof
an object is the number of parts it has.

A decision object is designed to solve a practical classification problem. We would
expect that when we build a decision object, no matter what its size, that all of its parts
will be used in practice. A part that is not used represents a cost giving no benefit. We
will say that a decision object iscompactto the extent that all of its parts are used in
practice (measured, for example, by monitoring the decision object over a long period of
use). Generally speaking a decision object in its constructed form will be compact.

The problem we encounter is that when an object is transformed, the new object can be
very much larger than the original, and much less compact. We designate this phenomenon
asinflation.

For example, the transformations from Theorems 10, 20 and 28 were applied to a
well-known expert system Garvan ES1 [11], which constructed clinical interpretations of
thyroid hormone assays in a hospital pathology laboratory. It was in clinical use from about
1984–1990, and was applied to many thousands of cases per year. The compactness of the
various forms was tested using a sample of 9805 cases, representing more than one year’s
use towards the end of the system’s life when its accuracy was more than 99%.

Garvan ES1 was constructed as a set of production rules, of which at the end of its life
there were 661, all of which were exercised by the set of cases. The system was, as one
might expect, very compact. Applying Theorem 10, the production rules were transformed
into an equivalent decision table which had 5286 rows. Only 653 of these rows were fired
by any of the year’s cases. The transformed object is much larger than the original, and
much less compact.

Theorem 20 was then applied to the 653-row subset of the transformed decision table
consisting of the rows which were fired by any of the year’s cases, using the maximum
dispersion selection procedure, resulting in a decision tree with 30,693 leaf nodes, of which
only 807 were fired by any of the 9805 cases. The inflation is much worse than in the
previous situation.

Finally, Compton and Jansen [7] produced a ripple-down rule version of the knowledge
base (called Garvan RDR) which had 557 leaves in its ripple-down rule tree, all of which
were necessarily exercised in practice since the tree was constructed in a process based on
the sample of cases. Application of the algorithm derived from Theorem 28 would result



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 199

in a decision table with 481,803,735 rows. One would expect, of course, that some of these
rows would be inconsistent or would be subsumed by other rows. Nevertheless, only 680
of the rows fire on any of the cases, giving an extreme inflation.

Inspection of the proofs of the theorems shows how the transformed object gets
bigger than the original. Theorem 10 translates a set of production rules to a decision
table by progressively substituting the antecedents of intermediate propositions for their
occurrences in other rules. If the antecedent is a disjunction, or appears negated in a
rule, or both, a rule absorbing the intermediate proposition gets broken into several rules
whose antecedents are conjunctions of elementary propositions. If the absorbing rule has
itself an intermediate proposition as a consequent, the rules multiply. The algorithm for
transforming rules to decision tables derived from Theorem 10 therefore produces a result
whose size is exponential in the length of a chain of intermediate propositions. (Garvan
ES1 had an average of three intermediate propositions between the measurements and the
classifications.)

Translating from a decision table to a decision tree, part (3) of the induction step of
Theorem 20 duplicates rows of the decision table where the cell associated with the
selected variable contains a disjunction of elementary propositions. The algorithm derived
from the theorem therefore, produces a result whose size is exponential in the number of
variables. (Garvan ES1 had 34 variables, and the decision tree had an average path length
from the root to a leaf of about 14.)

Finally, the number of rows in the decision table equivalent of a ripple-down rule tree is
more than the product of the number of conjuncts in the propositions associated with the
decision nodes in the longest chain offalsearcs.

So we can see how inflation happens, but it remains to see why it happens. After all, the
original decision object is created compact. We can see how it gets large, but where do all
the unused parts come from?

To see this, we step back to the black box view of a classification expert system. The
system can be seen as monitoring some real-world process which generates cases. The
system observes the cases through its variables. Each distinct case is represented by a
choice of values for the variables. The variables can therefore be seen to determine a
space defined by the distinct possible choices. We call this space theattribute spacefor
the process. It depends solely on the variables and their value sets.

The attribute space for a process can be quite large. A convenient measure of its size is
the number of bits necessary to represent a case, disregarding the statistics of the process.
If all the variables are Boolean, the size of the space is the number of variables. Otherwise,
the size of the space is the total of the log to the base 2 of the cardinalities of the value sets.
For example, Garvan ES1 has 34 variables, whose value sets range in cardinality from 2 to
6. Its size is 46 bits.

If Garvan ES1 has an attribute space of 46 bits, there are 246≈ 1014 possible distinct
cases. At 105 cases per year and if all cases are different, it would take 109 years before
all the cases were encountered. In practice, as one might expect, there are fewer than 4000
distinct cases in the year’s history, some of which occur more than 100 times. Where the
attribute space is large, one would expect that the process has many variables which are
contingent on others taking specific values (pregnancy is a relevant variable only if the
sex of the patient is female, for example). Also, values of some variables occur in patterns



200 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

depending on the values of others (the hormone profile of a pregnant woman or a child
is different from a male adult, for example, and there are different characteristic disease
states). In general, where the attribute space is large one would expect that almost every
combination of values would produce a case the domain experts would regard as absurd.
Even if there were 106 possible valid cases for the Garvan ES1 process, one would have to
generate 108 cases at random before the expert would find one that makes sense.

This observation suggests that in systems with large attribute spaces the real-world
process is confined to a very small region. The knowledge of the experts is confined
to this small region, which we might call theregion of experience. The expert system
classifies cases, so can be seen as a function taking the region of experience to a space of
classifications. This accounts for the compactness of the decision objects constructed.

These decision objects are, however, constructed as total functions on the attribute space,
not as partial functions. The strategy works essentially because by definition the process
being monitored never generates an impossible case. However, this strategy leaves the
expert system vulnerable to errors or maliciousness. The famous experiment in which
Lenat answered Mycin’s questions as for a dead person, and Mycin happily diagnosed a
specific course of treatment, is almost certainly a case where the input lay outside Mycin’s
region of experience.

Decision objects get their compactness essentially by liberal use of don’t care
propositions, or by conjunctions of elementary propositions which fail in limited ways.
These elements are found and expanded by the transformation algorithms. Inflation is a
side effect of the practice of constructing classification systems as total functions.

4. A cure for inflation

If inflation is a side effect of the construction of classification systems as total functions
on large attribute spaces, then it would seem reasonable to look for a cure by defining
the systems as partial functions. If one could get a characterisationK of the region of
experience associated with a process generating cases to be classified, then we could use
K to prune the transformed decision objects as they are being created. In Theorem 10
(rule→ table), we would keep only those disjuncts of the definition of an intermediate
proposition which are consistent withK. In Theorem 20 (table→ tree), part (3) of the
induction step would only make copies of rows which are consistent withK. In Theorem 28
(rdr tree→ table), we would keep only those rdr paths which are consistent withK. A good
estimate ofK would not only control inflation, but would act as a filter detecting cases
which are either spurious or perhaps legitimate but outside the experience of the domain
experts.

A natural way to representK is by a set of constraints stating that the values of certain
variables are determined by the values of others. These sort of constraints are partial
functional dependencies (PFDs). The variables are in general independent, but if the set of
variables in the domain of the dependency take on a particular combination of values, then
the value of the variable in the range of the dependency is fixed. For example, in general
the variablessexandpregnantare independent. However, ifsextakes the valuemale, then



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 201

pregnanttakes the valuefalse. Similarly, if pregnanttakes the valuetrue, thensextakes
the valuefemale(at least in the experience of Garvan ES1).

Partial functional dependencies could be constructed by the domain experts as part of the
process of building a decision object. Certainly, thesex/pregnantsituation in the previous
paragraph is pretty straightforward. However, many expert systems are constructed by
induction using various methods to produce various forms of decision object. If a body
of cases is available, then it is plausible to induce a set of partial functional dependencies.

In fact, one can seea priori that it must be possible to induce a set of partial functional
dependencies. If the set of cases available is much smaller than the attribute space, then
by assumption there are very many combinations of variable values which do not occur.
The problem is therefore, not whether we can induce a set of PFDs, but whether we can
induce a set of practical size which gives a sufficiently tight upper bound on the region of
experience, whether the induction can be done at an acceptable cost, and whether the set
induced is statistically reliable.

There are a number of algorithms available for estimating sets of PFDs. One is from
the method of rough sets [13] which looks for rules resulting from value reducts, taking
each attribute in turn as a decision attribute (set of classifications). Another comes from the
data mining literature [1]. In data mining terminology, a PFD is an association with 100%
confidence (no counterexamples).

We want PFDs with a small number of elementary propositions in their antecedents.
There are two reasons for this. The first is that a single PFD withm elementary propositions
in the antecedent and consequent taken together constrains the attribute space more the
smallerm is. If all the variables are Boolean and there aren variables, then a single
constraint reduces the attribute space by a factor of 2n−m+1. The second reason for wanting
PFDs with few propositions in their antecedent is that the algorithms for computing PFDs
are exponential in the number of propositions in the antecedent. Small PFDs are therefore,
both stronger and practical to compute.

Finally, we want PFDs which are statistically reliable. In the absence of a good theory
of the statistics of PFDs, it seems reasonable to look for PFDs which have a large number
of positive examples (in data mining terminology, associations with high support). This
prevents rare cases from contributing possibly spurious PFDs.

The existence of a good set of PFDs is a question which can only be settled
experimentally in particular situations. To gain experience, we estimated PFDs for Garvan
ES1 from the set of 9805 cases (of which 3856 are distinct), using the rough sets library.2

We applied the algorithm to the set of 3856 distinct cases, so that duplicated cases did
not contribute to support. This process produced 382 PFDs with a single elementary
proposition in their antecedent at a support level of 1 and 332 such PFDs with a support
level of 10. Further, there were 13384 PFDs with two elementary propositions in their
antecedent at a support level of 1 and 5858 such PFDs at a support level of 10. Since we are
here concerned with the theoretical basis and computational feasibility of working with sets
of PFDs, but want statistically reliable constraint sets, we chose the upper support level (10
examples with no counterexamples). We will call these two sets of constraints GarvanK1

2 Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland.



202 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

and GarvanK2, respectively, and in general a set of constraints with one antecedentK1,
and with twoK2.

Further experience might suggest a different support level, but at least in this case the
number of rules computed does not vary greatly with differences in support level so it
would make little difference in the following.

This shows that it is possible, in at least one application, to induce a reasonable set of
small PFDs. The remaining question is how strong they are—the size of the region of
experience defined by them, and what difference they make to the inflation problem. This
requires some more theory.

Definition 29. A propositioncoversa case if the case is consistent with the proposition.

Definition 30. A variable ismissingfrom a proposition if the proposition contains no
elementary proposition associated with it.

One way to compute the strength is to use a method of Cragun and Stuedel [8]. In our
terminology, they show that if a proposition is in disjoint disjunctive normal form (each
disjunct is inconsistent with every other) the number of cases covered by the proposition
is the sum of the number of cases covered by each disjunct. The number of cases covered
by each disjunct is one if the disjunct is the conjunction of propositions associated with
all variables, and the product of the cardinality of the value sets of the missing attributes
otherwise.

Unfortunately, this method is of limited utility, sinceK is constructed in conjunctive
normal form, and the process of conversion from conjunctive to disjunctive normal forms
is exponential in the number of conjuncts. GarvanK1 requires the computation of 2332≈
10100 conjuncts, while GarvanK2 requires 35858≈ 102610 conjuncts, clearly beyond the
bound of computational feasibility, even for GarvanK1 only.

One might think that there might be considerable redundancy inK, in that some of the
constraints might be deduced from others. This is particularly easy to test in the case ofK1,
since the redundancy can be viewed as a case of transitive closure. Ifa→ b andb→ c are
both inK1, then the algorithms used will ensure that the redundanta→ c is also. Applying
this method to the 332-conjunct GarvanK1 reduces it to 296 conjuncts, taking the cost of
conversion to disjunctive normal form from 10100 to 1089, still well beyond computational
feasibility.

Although there may be problems where the Cragun and Steudel approach is feasible, it
is clear that there are some in which it is not. A Monte Carlo method based on constraint
propagation is more generally applicable.

The basis of the Monte Carlo method is the generation of random cases. A naive
approach would generate a population of random cases and count the cases which
satisfyK. This is not generally practical, since we are expecting the region of experience
to be a tiny fraction of the entire attribute space—in the case of Garvan ES1, the region of
experience might be as small as 10−10 of the attribute space.

If we augment the generation of random cases with propagation of constraints, we obtain
a feasible method of generating an estimate of the size of the region of experience.



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 203

Algorithm 31. Estimate the strength of a set of constraintsK.
The algorithm is based on generating cases by successively choosing random values for

variables and propagating these values, until all variables are assigned values. The average
number of random bits needed to generate values is an estimate of the size of the space
covered byK. A variable which is not assigned a definite value will be referred to as an
open variable. Note that the method may restrict the possible values a variable may be
assigned, but the variable remains open until a definite value is assigned (this last applies
only to variables the cardinality of whose value set is greater than 2).

(1) When sufficient cases have been generated terminate, returning the average number
of bits needed to generate a case.

(2) Generate a single case:
• If all variables have values assigned, terminate, returning the number of bits

needed to select values. Otherwise:
• Select an open variable at random. Generate sufficient random bits to give this

variable a definite value, and assign that value. (Note that the cardinality of the
value set may be reduced due to earlier constraint propagation.)
• Propagate the new value to the other open variables usingK.

Algorithm 31 is a special case of the more general problem of propagation of finite
domain constraints. It would be possible to build a constraint size estimating procedure
using a finite domain constraint logic programming language [12].

Using an implementation of Algorithm 31 specifically designed forK1 constraint sets,
GarvanK1 was found to be of size 25.4 bits [6]. Since the attribute space for Garvan ES1 is
of size 46 bits, the region of experience for GarvanK1 is 2−20≈ 10−6 of the total attribute
space. This gain of 20 bits is more than half of the maximum possible gain for Garvan ES1.
There are nearly 4000 distinct cases, so the region of experience is at least 12 bits large, so
the maximum gain is 46− 12= 34 bits.

This result suggests that a plausible strategy for inducingK is to first induceK1,
proceeding further only ifK1 is not strong enough. A very simple algorithm suffices to
computeK1.

Algorithm 32. ComputeK1 from a set of casesC.
Construct an above the diagonal triangular arrayA of integers each of whose rows

and columns is indexed by a member of one of the value sets of one of the variables
underlyingC. Initialise this matrix to 0.

For each memberc of C, increment all the cells inA which correspond to pairs of values
of variables inc.

Each cell ofA now contains the number of instances the associated variable values co-
occur inC.

Each variable valuex = v selects a set of cells ofA corresponding to all other variable
values. If all but one of the cells associated with a given value is zero, withx ′ = v′ indexing
the nonzero cell, thenx = v→ x ′ = v′ is a partial functional dependency.

Algorithm 32 requires an array which is square in the aggregate cardinality of the value
sets (which is about 100 for Garvan ES1). It would be practicible to extend the algorithm



204 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

to three dimensions to computeK2, since the size of the corresponding matrix would be
cubic in the aggregate cardinality of the value sets.

We now know that it is possible, in at least one case, to economically induce a small,
strong set of PFDs. It remains to see what effectK has on the inflation problem.

An experiment was run using the algorithm resulting from Theorem 20 (table→ tree),
using a slightly different attribute selection procedure, applied to the 653-rule decision
table resulting from applying the algorithm derived from Theorem 10 to the Garvan ES1
rule set, then selecting only those rows which were consistent with all of the 9805 cases [4].
In this experiment, the algorithm generated a tree with 46,378 leaves, of which 4562 were
consistent with GarvanK1, and 985 were consistent with at least one case.

We can conclude from this section that the method of representingK as a set of partial
functional dependencies is plausibly a practical approach to the inflation problem. The
practicality issue is addressed in Section 6 below.

5. Further properties of K

The setK of constraints was introduced as a heuristic designed to control the inflation
problem when translating propositional classification systems from one form to another.
We observed in passing that another use forK was as a filter to detect cases that were
either spurious or, if valid, at least outside the experience on which the classification expert
system is based.

If we take the use ofK as a filter seriously, and stipulate that the expert system is a
partial function defined only on the subset of the attribute space covered byK, we can
incorporateK into the translation theorems obtaining a corresponding set of translation
procedures which is likely to be much less susceptible to inflation.

Proposition 33. Given a conjunctionA of elementary propositions and a caseC
associated with the same variable set asA; either A is inconsistent,A and C are
inconsistent, orA& C =C.

Proof. By Proposition 17, a conjunction of elementary propositions is either inconsistent
or a choice from the sets of elementary propositions associated with a subset of the
variables. A case is a choice from the complete set of variables. Therefore in the
conjunction of an arbitrary consistent conjunctionA of elementary propositions, for
each elementary proposition inA there is an elementary proposition inC associated
with the same variable. If they are distinct,A andC are inconsistent with each other.
OtherwiseA& C =C by the Boolean algebra identitya& a= a applied to the elementary
propositions in the conjunction.2
Proposition 34. For any consistent setK of partial functional dependencies and any
caseC covered byK, K & C =C.

Proof. K can in principle be represented in disjunctive normal form in elementary
propositions. For each disjunctD, Proposition 33 gives eitherC&D = C or C is



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 205

inconsistent withD. SinceC is consistent withK, at least one of the disjuncts must be
consistent withC. The result follows from the Boolean algebra identityA∨A=A. 2

We now modify Theorems 10, 20 and 28.

Theorem 35 (Rules→ tableK). An acyclic rule system defined on the region of the
attribute space covered by a setK of partial functional dependencies is equivalent to a
decision table defined on the same region of the attribute space.

Proof. Theorem 10 proceeds by unfolding the set of rules, removing intermediate
propositions, starting from intermediate propositions which are the consequents of rules
having only elementary propositions in their antecedents. If a particular rule is of the form
p→ q , then the application of the rule to a casec follows the derivation process:

(1) c, p→ q.

(2) c, c& p→ q.

(3) If c is consistent withp: c, c→ q (by Proposition 33).

(4) c, c→ q, q.

If q is an intermediate proposition, the process of unfolding in Theorem 10 creates a
single proposition which is the only proposition whose consequent is the intermediate
proposition, and similarly for its negation. By Proposition 34, step (2) in the derivation
can be replaced by

(2′) c, c& K& p→ q.

If c is consistent withp, thenK is consistent withp, for anyc, by the definition ofK.
If the antecedentp is expressed in disjunctive normal form, then any disjunct inconsistent
with K can be removed, as step (3) of the derivation will never succeed.

With this modification, the process of unfolding ultimately results in a decision table all
of whose rows are consistent withK. 2

An algorithm derived from Theorem 35 will prune the rows of the decision table as they
are constructed, so will arrive smoothly at the final decision table consistent withK.

Theorems 19 and 20 were concerned with a complete propositional system, which
was able to classify any possible case in the attribute space. Completeness as defined in
Definitions 8 and 15 is no longer relevant, since we are looking at decision objects which
are deliberately incomplete. This leads to the following definition of completeness with
respect to a set of constraints.

Definition 36. A decision objectP is complete with respect to a set of partial functional
dependenciesK if P classifies every case covered byK.

Proposition 37. If N(P) is the disjunction of cases not classified byP , thenP is complete
with respect to a set of partial functional dependenciesK if N(P) is inconsistent withK.



206 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

Proof. By inspection. 2
Proposition 37 may not lead to computationally feasible algorithms in all circumstances.

However, ifN(P) can be represented in disjunctive normal form withm conjuncts, then
the test for competeness with respect toK is no worse than testing whetherm cases are
in the region of experience defined byK. One would expect that the leaf propositions in a
decision tree would tend to be relatively small (note that don’t care cells can be eliminated
by the Boolean algebra identitya& true= a). A leaf proposition in disjunctive normal
form with say 10 conjuncts per disjunct, having say 5 disjuncts, requires computation of
105 conjuncts to convert its negation to disjunctive normal form, which is tolerable. Most
of these conjuncts would probably either be inconsistent or subsumed by others, so that the
resulting expression would likely not have an excessive number of disjuncts. One would
expect that there would be problems where the concept could be applied.

Definition 36 leads to modifications of Theorems 19 and 20.

Theorem 38 (Tree→ tableK). A decision tree defined on the region of the attribute space
covered by a setK of partial functional dependencies is equivalent to an unambiguous
decision table defined on the same region of the attribute space, which is complete with
respect toK if the tree is.

Proof. Follows Theorem 19, except that only paths through the decision tree consistent
with K are included in the decision table, since if a path is inconsistent withK, no valid
case will be consistent with it.

If the tree is complete with respect toK, then for every casec covered byK, there is one
path through the tree consistent withc. This pathP(c) is consistent withK by definition
ofK, so is included in the table. Thus every casec covered byK is consistent with at least
one row of the table. 2
Theorem 39 (Table→ treeK). An unambiguous decision table system defined on the
region of the attribute space covered by a setK of partial functional dependencies is
equivalent to a decision tree defined on the same region of the attribute space, which is
complete with respect toK if the table is.

Proof. Parallels that of Theorem 20. Replace part (3) in the induction step with
(3′) For eachv in the value set of a such that the path proposition in the tree down to a

P(a, v) is consistent withK, create:
• An arc whose source is the deciding node created and whose arc proposition is
a = v.
• A decision tableT (a, v) with one row derived from each rowr of T in which

the cell associated witha is consistent witha = v, and such thatP(a, v)& r
consistent withK, by removing the cell associated witha.

This proves that the tree is equivalent to the table onK, since no branch pruned is consistent
with K, nor is any row excluded from theT (a, v). The tree is therefore complete with
respect toK if the table is. 2

Finally, we modify Theorem 28 (rdr-tree→ table), giving



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 207

Theorem 40 (rdr-tree→ tableK). A ripple-down rule tree is equivalent with respect to
K to an unambiguous decision table.

Proof. The decision table is the union of all rdr path propositions which are consistent
with K. The remaining observations from the proof of Theorem 28 apply.2

We have now achieved a practical set of translation procedures for decision objects
taking into account that they are partial functions on their attribute space. The issue of
practicality is canvassed below.

6. Discussion

The main result of this paper has been the solution of the problem of inflation in
the translation of decision objects from one form to another. The key idea has been the
characterisation of the region of experience using a set of constraints expressed as partial
functional dependencies.

These problems are conceptually quite simple. Their difficulty arises from their origin in
exponential data structures and exponential algorithms. It is easy to construct worst-case
examples where the computations are very long, so they depend for their utility on the
typical case turning out to be tractable, in much the same way as the simplex algorithm in
linear programming. The procedures have been tested on a large problem and shown to be
practicable, but one would not be able to routinely recommend them until they had been
used by a wide variety of people on a wide variety of problems and intractable cases did
not arise in practice—again like the simplex algorithm—which is well beyond the scope
of a single project.

We can, however, consider the characteristics of situations where the procedures would
fail. There are two things which could go wrong:
• the set of PFDs comprisingK could have few rules with a small number of

antecedents, instead very many rules with a large number of antecedents; or
• the use ofK could fail to prune the decision objects in the translation process.

The former would be a problem both because the cost of computingK increases rapidly
with the number of antecedents in the rules, and partly because of the cost of using a very
large set of rules with a large number of antecedents. A system with an impracticableK

would be extremely complex: it would be large, else the exponential algorithms would not
reach their practical limits (a six-attribute decision table can be exhaustively analysed); and
it would lack simple relationships so would be difficult for humans to either understand or
to gather enough data for a statistically reliable decision object induction.

The latter mode of failure requires that the inflation of the decision objects be highly anti-
correlated with the set of constraints. This would be surprising, because the decision object
is built from the relationships of the case elementary propositions to the classification
elementary propositions and the set of constraints is built from the relationships of the
case elementary propositions among themselves. One would think that a system where the
two were strongly correlated would be noticeably peculiar.

This highly informal argument indicates that the results of this paper are likely to be of
wide applicability.



208 R.M.Colomb / Artificial Intelligence 109 (1999) 187–209

Solving the inflation problem with a set of constraints suggests a number of problems
which will be the subject of further research.

First, the study of the set of constraints itself: estimation of its size, simplifying it, etc.,
which can likely make use of the techniques of constraint logic programming (e.g., [14]).
Second, results in the theory of propositional expert systems can be revisited and improved,
for example, the computational stability of expert systems as reported in [3]. In that work,
the chief problem was to analyse a decision object in the form of a decision table to identify
situations, where small changes in attribute space make large changes in classification
space, using essentially a Hamming distance measure on attribute space. The results could
be improved by considering only errors which remain within the region of experience.

Of course, use of the set of constraints as a filter can improve the brittleness of a wide
range of expert systems, improving results such as that of Webb and Wells [23], which
used method based on classification. In particular, there are problems such as described by
Davidsson [9] in which a good characterisation of the region of experience is crucial. In that
work, problems such as design of a coin-sorting machine are considered. In Europe, one
often finds coins from other countries in a set of coins to be sorted. It becomes essential
to recognise that a coin is foreign and to reject it while sorting the coins of a particular
country. Use of partial functional dependencies should be able to improve Davidsson’
results. Further, in the collection of data describing the region of experience one could
also obtain data describing a range of foreign coins, and so also have a set of cases which
is explicitly outside the desired region of experience, which could improve the estimates
of K.

Edwards et al. [10] has investigated the problem ofprudencein an expert system. The
type of system concerned is an automated medical pathology laboratory system, which
produces clinical interpretations of samples using the analysis machine results and a
small amount of descriptive information about the patient. (The system, called PIERS,
is a descendant of Garvan ES1.) In the application, it is a legal requirement that all
clinical interpretations be signed by an appropriate specialist. This requirement represents
a significant residual human involvement.

The proposal of Edwards et al. is for the expert system to maintain records of all the
cases it processes and to append to an interpretation how different the present case is from
other cases previously processed. Cases very similar to previous cases can be assumed to
have very reliable interpretations, while the more different a case is from previous cases,
the closer checking the interpretation should have. Edwards et al.’s approach is to use the
range of values for particular variables as a measure of similarity. We speculate that an
incremental computation of a set of partial functional dependencies might give a more
general and more reliable measure. In particular, we would investigate including all partial
functional dependencies, no matter how weak their support, so long as they have 100%
confidence. A new case can either increase the support of a dependency or break it, so
that earlier estimates would tend to overconstrain the region of experience, which would
be gradually widened as the system was used. Each case violating a constraint would be
subject to special scrutiny.

Finally, note that the characterisation of the region of experience by a set of constraints
differs fundamentally from clustering methods: the set of constraints identifies the



R.M.Colomb / Artificial Intelligence 109 (1999) 187–209 209

boundary of the region, while clustering methods generally identify the centres of regions
of interest. It might be profitable to investigate the interaction of the two kinds of method.

References

[1] R. Agrawal, R. Srikant, Mining Generalized Association Rules VLDB’95, Morgan Kaufmann, Los Altos,
CA, 1995, pp. 407–419.

[2] K.R. Apt, H.A. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.), Foundations
of Deductive Database and Logic Programming, Morgan Kaufmann, Los Altos, CA, 1988, pp. 89–148.

[3] R.M. Colomb, Computational stability of expert systems, Expert Systems with Applications 5 (1992) 411–
419.

[4] R.M. Colomb, Y.-P. Chen, Use of partial functional dependencies to make practical approximate translations
among forms of propositional expert systems, in: A. Sattar (Ed.), Proc. 5th Australian Joint Conference on
Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 1342, Springer, Berlin, 1997, pp. 167–
176.

[5] R.M. Colomb, C.Y. Chung, Strategies for building propositional expert systems, Internat. J. Intelligent
Systems 10 (1995) 295–328.

[6] R.M. Colomb, J. Sienkiewicz, Analysis of redundancy in expert systems case data, in: Proc. 8th Australian
Joint Conference on Artificial Intelligence, World Scientific, Singapore, 1995, pp. 395–402.

[7] P. Compton, R. Jansen, A philosophical basis for knowledge acquisition, Knowledge Acquisition 2 (1990)
241–257.

[8] B.J. Cragun, H.J. Steudel, A decision-table-based processor for checking completeness and consistency in
rule-based expert systems, Internat. J. Man-Machine Studies 26 (1987) 633–648.

[9] P. Davidsson, Learning characteristic decision trees, in: Proc. 8th Australian Joint Conference on Artificial
Intelligence, World Scientific, Singapore, 1995, p. 579.

[10] G. Edwards, B.H. Kang, P. Preston, P. Compton, Prudent expert systems with credentials: managing the
expertise of decision support systems, Internat. J. Biomedical Computing 40 (1995) 125–132.

[11] K.A. Horn, P. Compton, L. Lazarus, J.R. Quinlan, An expert computer system for the interpretation of
thyroid assays in a clinical laboratory, Australian Computer J. 17 (1985) 7–11.

[12] J. Jaffar, M.A. Maher, Constraint logic programming: A survey, J. Logic Programming 19/20 (1994) 503–
581.

[13] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Knowledge, Kluwer Academic, Dordrecht,
1991.

[14] M.J. Maher, Constrained dependencies, Theoret. Comput. Sci. 173 (1997) 113–149.
[15] J.R. Quinlan, Semi-autonomous acquisition of pattern based knowledge, in: J.E. Hayes, D. Michie, Y.-H.

Pao (Eds.), Machine Intelligence 10, Ellis Horwood, London, 1982, pp. 159–172.
[16] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81–106.
[17] T. Sato, Equivalence-preserving first order unfold/fold transformation systems, Theoret. Comput. Sci. 105

(1992) 57–84.
[18] H. Seki, Unfold/fold transformations of stratified programs, in: G. Levi, M. Martelli (Eds.), Logic

Programming: Proc. 6th International Conference (Lisbon), MIT Press, Cambridge, MA, 1989, pp. 554–
568.

[19] K. Shwayder, Conversion of limited-entry decision tables to computer programs—A proposed modification
to Pollack’s algorithm, Comm. ACM 14 (1971) 69–73.

[20] K. Shwayder, Extending the information theory approach to converting limited-entry decision tables to
computer programs, Comm. ACM 17 (1974) 532–537.

[21] J.D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1, Computer Science Press,
Rockville, MD, 1988.

[22] J.D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 2, Computer Science Press,
Rockville, MD, 1989.

[23] G.I. Webb, J. Wells, Recent progress in machine-expert collaboration for knowledge acquisition, in: Proc.
8th Australian Joint Conference on Artificial Intelligence, World Scientific, Singapore, 1995, pp. 291–298.


