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Abstract

This paper proposes a method for electrocardiogram (ECG) heartbeat detection and recognition using adaptive wavelet network
(AWN). The ECG beat recognition can be divided into a sequence of stages, starting with feature extraction from QRS complexes,
and then according to characteristic features to identify the cardiac arrhythmias including the supraventricular ectopic beat, bundle
branch ectopic beat, and ventricular ectopic beat. The method of ECG beats is a two-subnetwork architecture, Morlet wavelets are used
to enhance the features from each heartbeat, and probabilistic neural network (PNN) performs the recognition tasks. The AWN method
is used for application in a dynamic environment, with add-in and delete-off features using automatic target adjustment and parameter
tuning. The experimental results used from the MIT-BIH arrhythmia database demonstrate the efficiency of the proposed non-invasive
method. Compared with conventional multi-layer neural networks, the test results also show accurate discrimination, fast learning, good
adaptability, and faster processing time for detection.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Bio-signals on the surface of the human reflect the inter-
nal status and electric activity, thus providing information
on internal organs with non-invasive measurement such as
ECG, echocardiogram, or scintigraphy (Chen, Chen, &
Tsai, 1997; Silipo & Marchesi, 1998). ECG has commonly
used to collect large amounts of measurements that contain
particular information in the signals. The typical diagnostic
method is off-line analysis from the recorded data, and
using a cardiogram to identify arrhythmic types of the
patients. Designing non-invasive tools, abnormal monitor-
ing techniques, signal processing, and classification capa-
bility for stationary/portable instruments has become an
essential task. In addition, further integrating several tech-
niques such as data analysis, pattern detection and discri-
mination, decision support, and human computer interface

is also necessary (Dickhaus & Heinrich, 1996; Qin et al.,
2003). To ensure accurate detection, the algorithm requires
real-time automatic classification, non-invasive, high-
performance computing technique, reliable solutions, and
simple for diagnosing disturbances of cardiac rhythm.

Diagnostic approaches have been applied to detection
with frequency-domain and time-domain techniques. The
QRS complex in ECG signals varies with the origination
and the conduction path of the activation pulse in the heart-
beat. When the activation pulse does not travel through the
normal conduction path, the QRS complex becomes wide,
and high-frequency components are attenuated. Power spec-
tra of individual QRS complex are found at frequencies
between 4 Hz and 20 Hz (Minami, Nakajima, & Toyoshima,
1999). With the time-domain technique, various features
from each heartbeat are extracted to detect arrhythmia
waveforms, such as width, height, area of QRS complex,
and QRS morphology, etc. (Osowski & Linh, 2001). Apply-
ing these particular features, artificial intelligence (AI)
approaches are used to perform ECG beat recognition. Var-
ious architectures for artificial neural networks (ANN) are
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used in this research, such as wavelet neural networks (Dick-
haus & Heinrich, 1996), back-propagation networks (Ach-
arya, Kumar, Bhat, Lim, & Lyengar, 2004; Minami et al.,
1999; Silipo & Marchesi, 1998), Fuzzy hybrid neural net-
works (Osowski & Linh, 2001; Wang, Zhu, Thakor, & Xu,
2001), self-organizing map network (Hu, Palreddy, &
Tompkins, 1997).

To develop a diagnostic method for arrhythmia classifi-
cation, signal analysis based on wavelet transform (WT)
has been presented to extract the characteristics of ECG
signals (Dickhaus & Heinrich, 1996; Qin et al., 2003).
The wavelet coefficients represent measures of similarity
of the local shape of the signal to the mother wavelet under
different dilation and translation parameters. This analysis
is robust to time-varying signal analysis and it can point
out occurrence time, but it is not capable of recognition.
With multiresolution and localization of the wavelets
(Lin & Wang, 2006) and pattern recognition capability of
the ANN, wavelet network (WN) has become important
for signal analysis and pattern recognition. When WN is
applied in the real word, for example, the morphology vari-
ations of ECG waveforms are different for different
patients, and even for the same patient or for the same type
(Osowski & Linh, 2001), traditional networks can become
a bottleneck requiring retraining with new features added
into the current database. PNN (Specht et al., 1988) and
general regression neural networks (GRNN) (Masters &
Land, 1997; Seng et al., 2002) have been presented, and
are recognized as having expandable or reducible network
structure, fast learning speed, and promising results. In
these adaptation methods, the choice of smoothing para-
meter has significant effects on the network outcome, and
the choice of parameter is usually based on the overall sta-
tistical calculation from pre-collected training data. A
dynamic model needs a non-statistical method as well as
automatic adjustment of the targets and smoothing para-
meters for dynamic process technique (Masters & Land,
1997; Seng et al., 2002).

In this paper, AWN is proposed to recognize normal
beat and six cardiac arrhythmias. The WN consists of
two subnetworks connected in cascade. In the wavelet
layer, the activation functions take the Morlet wavelets
and are responsible for extracting features from each
ECG signal. Subsequently, the PNN is an adaptive net-
work with automatic tuning parameters and is used to clas-
sify cardiac arrhythmias. The results show computational
efficiency and accurate recognition.

2. Adaptive wavelet network (AWN)

2.1. Morlet wavelet

In applications of signal analysis, it is necessary to
extract signal features. Fourier analysis consists of break-
ing up a signal into sinusoidal waves of various frequencies,
but it is only a time-domain transform, which has no time–
frequency localization features. Similarly, wavelet analysis

is the breaking up of a signal into dilations and translation
versions of the original wavelet, referred to as the mother
wavelet. The wavelets must be oscillatory, have amplitudes
that quickly decay to zero, and have at least one vanishing
moment. The Morlet wavelet is the modulated Gaussian
function, the family function is built starting from the fol-
lowing complex Gaussian function (Lin & Wang, 2006)
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R
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resents the collection of all measurable functions in the real
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where uR(x) and uI(x) are the real and imaginary part
respectively. Morlet wavelet is modulated Gaussian func-
tion by cosine. It has a better time–frequency localization
feature and smoothes noise interference. When u(x) 2
L2(R), then mother wavelet becomes the daughter wavelet
ud,t(x) with dilation parameter d and translation parameter
t, as Eq. (4)
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Fig. 1 shows the wavelets with various dilation parameters
ðd ¼ 1; 2; 3Þ and translation parameters (t = �1,0,1). In
this study, both real and imaginary parts of the ud,t(x)
can use to extract features from the ECG signals. Real part
wavelets are applied to extract the features of normal beat
(•) and cardiac arrhythmia disturbances including prema-
ture ventricular contraction (V), atrial premature beat
(A), right bundle branch block beat (R), left bundle branch
block beat (L), paced beat (P), and fusion of paced and
normal beat (F). The activation functions of the wavelet
nodes are derived from the mother wavelet udi,ti(xi) for
i = 1,2,3, . . . ,n, where n is the number of the wavelet
nodes. The input vector X ¼ ½x1; x2; x3; . . . ; xi; . . . ; xn� is con-
nected to the WN, and inputs are the sample data from the
QRS complexes as shown in Fig. 2.

2.2. Adaptive probabilistic neural network

Wavelets hybrid ANN is proposed to detect arrhythmia
disturbances, and WN combines the properties of the
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Morlet wavelets with the advantages of PNN. The second
subnetwork with hidden, summation, and output layer
is shown in Fig. 2. The number of hidden nodes Hk

ðk ¼ 1; 2; 3; . . . ;KÞ is equal to the number of training exam-
ples, while the number of summation nodes Sj and output

nodes Oj ðj ¼ 1; 2; 3; . . . ;mÞ equals to the types of distur-
bances. The weights wWH

ki (connecting the kth hidden node
and the ith wavelet node) and wHS

jk (connecting the jth sum-
mation node and the kth hidden node) are determined by K

input–output training pairs. The final output of node Oj is
(Masters & Land, 1997; Seng et al., 2002)

Hk ¼ exp �
XK
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where r1 ¼ r2 ¼ � � � ¼ rk ¼ � � � ¼ rK . However, there are
no means of generating an optimal smoothing parameter
rk, and adjusting the rk would refine the accuracy in the
dynamic environment. The optimal parameter rk is in-
tended to minimize the object function, which is defined
as squared error function ej (Masters & Land, 1997)

ejðu; T Þ ¼ ½T j � OjðuÞ�2; ð7Þ

where Tj is the desired output for input vector X, and the
implicit constraint is rk 5 0. The first partial derivatives
of error are shown in Eq. (8)
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Fig. 1. The wavelets with various dilations and translations.
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Fig. 2. Architecture of the adaptive wavelet network.
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The gradient method is used to update parameter rk with
iteration process, as in Eq. (11)

rkðp þ 1Þ ¼ rkðpÞ þ g
oejðu; T Þ

ork
; ð11Þ

where g is the learning rate, and p is the iteration number.
In this study, AWN based algorithm contains two stages:
the learning stage and recalling stage, as detailed below
(Lin & Wang, 2006).

2.2.1. Learning stage

Step (1) For each training example X ðkÞ ¼ ½x1ðkÞ; x2ðkÞ;
. . . ; xiðkÞ; . . . ; xnðkÞ� for k ¼ 1; 2; 3; . . . ;K, and i ¼ 1;
2; 3; . . . ; n, create weights wWH

ki between wavelet node
ui and hidden node Hk by

uiðkÞ ¼ cos 5ðxiðkÞ�tiÞ
di

h i
e
�ðxiðkÞ�tiÞ2

2rd2
i

xi ¼ V ðiÞ; ti ¼ V norðiÞ

8><
>: ; ð12Þ

wWH
ki ¼ uiðkÞ; ð13Þ

where di is the dilation parameters, di 2 Z; xi is a se-
quence of samples obtained from the QRS complex of
unknown signal V; ti is the translation parameters, a se-
quence of samples obtained from the QRS complex of
normal beat Vnor; n is the number of sampling points;
and WWH = [wWH

ki ] is a k by n matrix.
Step (2) Create weights wHS

jk between hidden node Hk

and summation node Oj by

wHS
jk ¼

1

0

�
ðj ¼ 1; 2; 3; . . . ;mÞ; ð14Þ

where the values of wHS
jk are the predicted outputs asso-

ciated with each stored pattern wWH
ki , and WHS = [wHS

jk ] is
k by m matrix. Connection weights from hidden nodes
Hk to summation node

P
are set 1.

2.2.2. Recalling stage

Step (1) Get network weights wWH
ki and wHS

jk .
Step (2) Apply test vector X ¼ ½x1; x2; x3; . . . ; xi; . . . ; xn� to
the AWN. Compute the output of wavelet node ui

uiðxiÞ ¼ cos
5ðxi � tiÞ

di

� �
e
�ðxi�tiÞ2

2rd2
i ð15Þ

Step (3) Compute the output of hidden node Hk by
using Eq. (5). The optimal value rk can be obtained
by using Eqs. (8)–(11) based on minimum misclassifi-
cation error (Convergent Condition: Infinity Norm).
Step (4) Compute the outputs of node Oj by using the
Eq. (6).

3. Cardiac arrhythmias detection procedure

3.1. ECG characteristic and feature extraction

An ECG signal represents the changes in electrical
potential during the heartbeat as recorded with non-inva-
sive electrodes on the limbs and chest; a typical ECG signal
consists of the P-wave, QRS complex, and T-waves. The P-
wave is the result of slow-moving depolarization of the
atria. The rapid depolarization of the ventricles results in
the QRS complex of the ECG, which is a sharp wave about
1 mV amplitude and 80–100 ms duration. The plateau part
of the action potential after QRS is called the ST segment
(Silipo & Marchesi, 1998). The ECG waveform is the result
of the potential change that propagates within the heart
(electrical activity) and causes the cardiac muscle contrac-
tion, even varying with rhythm origin and conduction path.
For example, when the activation pulse originates in the
atrium and travels through the normal conduction path,
the QRS complex has a sharp and narrow deflection, or
else the QRS complex becomes wide and distorted (Minami
et al., 1999). In the time domain, the normal beat and typ-
ical arrhythmia heartbeats are normalized as shown in
Fig. 3. Each ECG signal has various morphological infor-
mation and features, which can be used to classify seven
categories.

The QRS complex of the ECG is important information
in heart-rate monitoring and cardiac diseases diagnosis.
The R-waves are detected by a peak detection algorithm,
which begins by scanning for local maxima in the absolute
value of ECG data. For certain window duration, the
searching continues to look for a larger value. If this search
finishes without finding a larger maximum, the current
maximum is assigned as the R peak (Minami et al.,
1999). Centered on the detected R peak, the QRS complex
portion is extracted by applying a window of 280 ms, and
P-wave and T-wave are excluded by this window duration.
Based on 360 sampling rate, 100 samples can be acquired
around the R peak (Sampling point n = 100, 50 points
before and 50 points after). After sampling and performing
analog-to-digital conversion, individual QRS complexes
are extracted. The real part of wavelets uRd,t(xi), d = 3,
i = 1,2,3, . . ., 100, as Eq. (12), are responsible for extract-
ing features under low frequency analysis, and these fea-
tures are reconstructed by 100 wavelet nodes to form the
symptomatic patterns, as shown in Fig. 4. For example,
the symptomatic pattern of a normal beat has a near
rectangular-impulse-sequence graph with amplitude one.
The morphology of symptomatic patterns will reveal the
serious dip and bumpy shapes for abnormal heartbeats.
Symptomatic patterns of the same categories have similar
morphology or multiform. The amplitudes having a spe-
cific dip range can be observed between zero and one
in the rectangular section. According to the morphology,
various patterns indicate different cardiac diseases. These
symptomatic patterns are considered for training the
AWN.

2604 C.-H. Lin et al. / Expert Systems with Applications 34 (2008) 2601–2611



Author's personal copy

3.2. Training patterns creation

In this study, the dataset of QRS complexes typically for
seven categories are taken from the MIT-BIH arrhythmias
database (from Record 100 to Record 234) (Goldberger
et al., 2000). The database contains 48 records, and each
record is slightly over 30 min long. In most records, the
upper signal is a modified limb lead II (ML II) and the
lower signal is a modified lead V1 (VI). Seven heartbeat
classes have been included in the investigations, involving
normal beat, supraventricular ectopic beat, bundle branch
ectopic beat, and ventricular ectopic beat as shown in
Table 1 (Chazal, Dwyer, & Reilly, 2004). A total of 43
QRS complexes (ML II Signal) are selected including
patient numbers 107, 109, 111, 118, 119, 124, 200, 209,
212, 214, 217, 221, 231, 232, and 233, and the templates
of seven classes are produced by Eqs. (12) and (13). The
numbers of symptomatic patterns from the same class are
7-, 11-, 2-, 7-, 8-, 6-, and 2-set data (Knor = 7, KV = 11,
KA = 2, KL = 7, KR = 8, KP = 6, KF = 2) respectively.
Because the characteristics are enhanced, the number of
training data requirements can be reduced. We can system-

atically create weights between wavelet nodes and hidden
nodes with 43-set training data, k ¼ 1; 2; 3; . . . ; 43. The
weights between hidden nodes and summation nodes are
encoded as binary values by Eq. (14) with signal ‘‘1’’ for
belonging to Class j, j ¼ 1; 2; 3; . . . ; 7.

The AWN contains 100 wavelet nodes, 43 hidden nodes,
eight summation nodes, and seven output nodes. The num-
ber of wavelet nodes is equal to the number of the sampling
points, the number of hidden nodes is equal to the number
of training data, and each output represents one normal
beat and six types of arrhythmias as defining output vector
O = [O1, O2, O3, O4, O5, O6, O7] = [ONor, OV, OA, OL, OR,
OP, OF]. The selection sort is applied to find the maximum
value that indicates the arrhythmic type. The output values
are between 0 and 1, where a value close to 1 means ‘‘Nor-

mal’’, and close to 0 means ‘‘Abnormal’’. If clinicians pro-
vide some suggestion or more patterns are generated in
clinical investigation, training data can be continually
added to the current database. The database can be
enhanced at any time with new training data. The corre-
sponding hidden nodes will continue to grow, and will
update the network weights without re-iteration to corrupt

Fig. 3. Typical arrhythmia heartbeats in time domain (Lead II signal).
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the previous database or weights. This process results in
very fast training, and the network is adaptive to data
changes by tuning smoothing parameters.

4. Experiment result

The proposed detection algorithm was developed on a
PC Pentium-IV 2.4 GHz with 480 MB RAM and Matlab
workspace, based on the MIT-BIH arrhythmias records.
The performance of the proposed model was tested with
learning performance for the training data and detection
accuracy for the untrained data, as detailed below.

4.1. Single cardiac arrhythmia with noise influence

In ECG measurement, signals may be disturbed by noise
such as power line interference (Minami et al., 1999) or
quantification error (Gaussian noises). The ECG signal

sometimes is disturbed by 50 Hz or 60 Hz interference
whose amplitude is approximately 5–6 times less than the
R-peak, as Fig. 5a shows the ECG signals of normal heart-
beat and V in the time domain, and Fig. 5b shows the ECG
signals with 60 Hz noise influences. Using 100 heartbeats
(about 1.5 min long) of the patient numbers 119, 200, and
212 (Goldberger et al., 2000) containing normal beats, pat-
tern Vs, and pattern Rs, the results show that high accura-
cies of the proposed algorithm, as shown in Table 2. Test 1
shows the test results without any noise, and Test 2 shows
the results with presenting ECG signals involving 60 Hz
interference. The proposed method is robust enough to han-
dle noisy environments. Overall accuracies are greater than
90%. The positive predictivity of more than 80% is obtained
to quantify the performance of proposed method with or
without a noisy background. It can be seen that the features
of heartbeats are still strong enough to recognize, and the
symptomatic patterns are not corrupted by noise influences
as shown in Fig. 6. When the symptomatic patterns have

Fig. 4. Various symptomatic patterns in time–frequency domain.
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morphological variation or sag shapes, the critical times for
starting and ending of occurrences are clearly noted, and
the number of abnormal beats is easy to count. This study

case confirms that the proposed method can work in an
uncertain environment with a noisy background.

4.2. Multiple cardiac arrhythmias

Some of the clinical cases include multiple cardiac
arrhythmias, for example ventricular ectopic beat, bundle
branch ectopic beat, fusion, and paced beats. Using 100
heartbeats of the patient numbers 217, 214, and 118 includ-
ing multiple cardiac arrhythmias (Masters & Land, 1997),

Table 1
Heartbeat types of human ECG data

Class Beat Symbol Record Patient

Normal Normal beat • MIT-100 Male, age 69
MIT-103 Male, age *
MIT-119 Female, age 51
MIT-200 Male, age 64
MIT-209 Male, age 62
MIT-212 Female, age 32
MIT-221 Male, age 83

Ventricular ectopic beat Ventricular premature contraction V MIT-119 Female, age 51
MIT-200 Male, age 64
MIT-221 Male, age 83
MIT-233 Male, age 57

Supraventricular ectopic beat Atrium premature beat A MIT-202 Male, age 68
MIT-232 Female, age 76

Bundle branch ectopic beat Left bundle branch block beat L MIT-109 Female, age 64
MIT-111 Female, age 47
MIT-207 Female, age 89
MIT-214 Male, age 53

Right bundle branch block beat R MIT-118 Male, age 69
MIT-124 Male, age 77
MIT-212 Female, age 32
MIT-231 Female, age 72

Unknown Paced beat P MIT-107 Male, age 63
MIT-217 Male, age 65

Fusion beat Fusion of paced and normal beat F MIT-217 Male, age 65

Note: *: Not recorded.

Fig. 5. ECG signals in time domain (Record 119) (a) ECG signals of
normal beat and V; (b) ECG signals of normal beat and V with 60 Hz
power line interference.

Table 2
The test results of single cardiac arrhythmias

Record Number of arrhythmias CPU time
(s)

Accuracya

(%)• V A L R P F

119 Actual 75 25 0 0 0 0 0 – –
Test1 75 25 0 0 0 0 0 0.096 100
Test2 75 25 0 0 0 0 0 0.105 100

200 Actual 62 38 0 0 0 0 0 – –
Test1 62 35 0 1 2 0 0 0.109 97
Test2 62 35 0 1 2 0 0 0.156 97

212 Actual 5 0 0 0 95 0 0 – –
Test1 9 0 0 0 91 0 0 0.109 96
Test2 9 0 0 0 91 0 0 0.110 96

a Accuracy (%) = (Nr/Nt) · 100%; Nr: the number of correctly discri-
minated beats; Nt: total number of heartbeats.

C.-H. Lin et al. / Expert Systems with Applications 34 (2008) 2601–2611 2607
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Test 1 and Test 2 show that the accuracies are greater than
90%, as shown in Table 3. The results confirm that the

major types are paced beat (P), left bundle branch beat
(L), and right bundle branch beat (R). Fig. 7 shows the
traced detection results of patient number 118 and appears
six misclassification errors (�) of class R in the output
OR. The processes recognized 94 paced beats with six fail-
ures, 95 left bundle branch ectopic beats with four failures,
and 99 right bundle branch ectopic beats with six failures,
respectively. The positive predictivity of more than 80% is
also obtained to quantify the performance with or without
a noisy background. Second study case confirms that the
proposed method can detect multiple cardiac arrhythmias
with high confidence.

Fig. 6. Symptomatic patterns in time–frequency domain (a) symptomatic
patterns of normal beat and V; (b) symptomatic patterns of normal beat
and V with 60 Hz power line interference.

Table 3
The test results of multiple cardiac arrhythmias

Record Number of arrhythmias CPU time
(s)

Accuracya

(%)• V A L R P F

217 Actual 0 3 0 0 0 94 3 – 94
Test 0 4 0 0 1 88 7 0.113

214 Actual 0 5 0 95 0 0 0 – 96
Test 1 5 3 91 0 0 0 0.108

118 Actual 0 1 0 0 99 0 0 – 94
Test 4 1 0 2 93 0 0 0.111

a Accuracy (%) = (Nr/Nt) · 100%; Nr: the number of correctly discri-
minated beats; Nt: total number of heartbeats.

Fig. 7. Detection results of patient number 118. Note: �: Error.

2608 C.-H. Lin et al. / Expert Systems with Applications 34 (2008) 2601–2611
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4.3. Learning performance tests

Figs. 8a and b show the squared errors and smoothing
parameters versus learning cycles, respectively. The perfor-
mance of AWN is affected by the width of the Gaussian
activation function. As the width of Gaussian function
decreases, decision boundaries can become increasingly
nonlinear. For a very narrow Gaussian function, the net-
work approaches a nearest-neighbor classifier (Lin & Tsao,
2005; Lin & Wang, 2006). Eqs. (8)–(11) are used to find
near-optimum smoothing parameters that minimize the
training-data error of the AWN as the number of training
data increases from K1=18 to K6=43. The corresponding
hidden nodes will continue to grow from 18 to 43, and con-
struct the network weights without any iteration process.
This process results in very fast training, and the network
is adaptive to match desired output with add-in/delete-off
training patterns by tuning smoothing parameters for six
learning stages. Learning rates g = 0.1–0.3 are selected
for training AWN as shown in Table 4. Fig. 8 shows the
final squared errors after the training AWN has been
responsible for the determining smoothing parameters.
For the convergent condition e 6 10�3, AWN rapidly con-
verges to the nearest local minimum for less than 40 learn-
ing cycles in a shorter processing time. It takes 0.782 s

(Average CPU Time) to classify the 43 training data into
seven categories.

The output values of AWN are shown in Fig. 9a. AWN
automatically adjusts outputs to approach the targets with
tuning smoothing parameters in the learning stages.
Threshold value 0.5 is used to separate ‘‘Normal’’ from
‘‘Abnormal’’, and can correctly discriminate. The proposed
method has the advantages of fast learning process, learn-
ing stage with slight iteration for updating weights,
and adaptation capability. However, the performance is
affected by the parameter of Gaussian activation function.
For 43 trained data and 1200 untrained data including sin-
gle and multiple cardiac arrhythmias, the ranges of param-
eters could be determined by experience and trial-and-error
procedure with tuning parameters. The detection accuracy
decreases as smoothing parameters increase. The choice of
parameters will affect the estimation error, and the suitable
range is from 0.05 to 0.30 for reducing misclassification
errors, and the accuracies are greater than 90% as shown
in Fig. 9b. Refining the parameters can enhance the detec-
tion accuracy by using the proposed optimum method. The
near-optimal parameter r = 0.078 can minimize the classi-
fication error, and the accuracies are the maximums for
single and multiple cardiac arrhythmias, as shown in
Fig. 9b.

For comparison purposes, we have also applied the
WBPN composed of 100 wavelet nodes in the wavelet layer
and multi-layer neural network (MLNN). For the second
subnetwork, a MLNN is used for training with the back-
propagation learning algorithm. Only one hidden layer is
used, and the number of hidden nodes is determined by
the experience formulas as shown in Table 4. Traditional
MLNN has some limitations including very slow learning
process, needs iteration for determining weights and learn-
ing rates (g = 0.2–0.8), and needs to determine the network
architecture such as the number of hidden layers and hid-
den nodes, which is difficult to retrain with new training
data. With various tests, we can see that the training time
of AWN outperformed WBPN. AWN has a fast learning
process needing no iteration for updating weights, a flexible
hidden nodes mechanism with add-in or delete-off, and
automatic adjustment of the targets and parameter r. With
the same training data, the proposed AWN shows better
performance than WBPN as shown in Table 4.

Table 4
Comparison of AWN with WBPN

Method Network
topology

Training
patterns

Learning
rate g

Learning
cycles

Average
CPU time
(s)

*AWN 100-43-8-7 43 0.1–03 640 0.782
WBPN 100-100-27-7 43 0.2–0.8 <10000 <800

100-100-54-7
100-100-107-7

Note: (1) NH = (NI + NO)1/2; (2) NH = (NI + NO)/2; (3) NH = (NI + NO).
NH: the number of hidden node; NI: the number of input node; NO: the
number of output node.
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5. Conclusion

The diagnostic procedure based on WT and PNN has
been presented to recognize cardiac arrhythmias. For
ECG signals, classifier based on AWN is proposed to rec-
ognize normal beat, premature ventricular contraction,
atrial premature beat, right/left bundle branch block beat,
paced beat, and fusion of paced and normal beat. The
wavelets act to extract and enhance the features from
QRS complexes in the time domain. These features are
slightly affected by noise influences. Subsequently, PNN
can classify the applied input pattern with/without a noisy
background. The AWN model can also work in a dynamic
environment with continuity add-in/delete-off features by
automatically tuning the targets and smoothing parameters
of hidden nodes. For both trained and untrained data, the
results demonstrate the efficiency of the proposed method.
Compared with the MLNNs, AWN can be built using
adaptive training algorithms, and can avoid the determina-
tion of network weights by the trial-and-error procedure.
Test results show accurate diagnosis, fast learning, good
adaptability, and faster processing time for detection. With
this model, special features can be further added to the cur-
rent database such as ventricular bigeminy (B), ventricular
trigeminy (V), ventricular tachycardia (VT), normal sinus
rhythm (N), etc. Thus, the database is always enhancible
with new symptomatic patterns. The AWN can adapt itself
in a new environment by adding features, and also promise

the high confidence value of detection results with special
features considering. The proposed method can be used
as an aided tool for heartbeat recognition, and be inte-
grated in the monitoring device.
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