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Abstract

When learning from imbalanced/skewed data, which almost all the instances are labeled as one class while far few instances are labeled as the

other class, traditional machine learning algorithms tend to produce high accuracy over the majority class but poor predictive accuracy over the

minority class. This paper proposes a novel method called ‘knowledge acquisition via information granulation’ (KAIG) model which not only can

remove some unnecessary details and provide a better insight into the essence of data but also effectively solve ‘class imbalance’ problems. In this

model, the homogeneity index (H-index) and the undistinguishable ratio (U-ratio) are successfully introduced to determine a suitable level of

granularity. We also developed the concept of sub-attributes to describe granules and tackle the overlapping among granules. Seven data sets from

UCI data bank, including one imbalanced diagnosis data (pima-Indians-diabetes), are provided to evaluate the effectiveness of KAIG model. By

using different performance indexes, overall accuracy, G-mean and Receiver Operation Characteristic (ROC) curve, the experimental results

comparing with C4.5 and Support Vector Machine (SVM) demonstrate the superiority of our method.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Learning from imbalanced/skewed data is an important

topic and rises very often in practice. In such kind of data, one

class might be represented by a large number of examples

while the other is represented by only a few. Many real world

data have these characteristics, such as fraud detection, text

classification (Chawla, Bowyer, Hall, & Kegelmeyer, 2002;

Chawla, Japkowicz, & Kolcz, 2004) telecommunications

management, oil spill detection, risk management, medical

diagnosis/monitoring, financial analysis of loan policy or

bankruptcy (Batista, Prati, & Monard, 2004; Chawla et al.,

2004; Grzymala-Busse, Stefanowski, & Wilk, 2004) and

protein data (Provost & Fawcett, 2001). Traditional classifiers

seeking an accurate performance over a full range of instances

are not suitable to deal with imbalanced learning tasks (Batista

et al., 2004; Chawla et al., 2004; Guo & Viktor, 2004) since
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they tend to classify all data into the majority class, which is

usually the less important class. Therefore, these traditional

algorithms often produce high accuracy over the majority class,

but poor predictive accuracy over the minority class.

To cope with imbalanced data sets, there are some methods

proposed in literatures, such as the methods of sampling

(Batista et al., 2004; Chawla et al., 2002; Guo & Viktor, 2004),

adjusting the cost-matrices (Cristianini & Shawe-Taylor,

2000), and moving the decision thresholds (Chawla et al.,

2002; Huang, Yang, King, & Lyu, 2004; Jo & Japkowicz,

2004). Sampling methods reduce data imbalance—by ‘down-

sampling’ (removing) instances from majority class or ‘up-

sampling’ (duplicating) the training instances from the

minority class or both. The second kind of methods improves

the prediction accuracy by adjusting the cost (weight) for each

class or changing the strength of rules (Batista et al., 2004). The

third school of methods tries to adapt the decision thresholds to

impose bias on the minority class. However, these three

schools of methods lack a rigorous and systematic treatment on

imbalanced data (Huang et al., 2004). For example, down-

sampling the data will lose information, while up-sampling will

introduce noise.

In this study, we introduce the concept of ‘information

granulation’ to solve class imbalance problems. There are two
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Fig. 1. An information-processing pyramid (Bargiela & Pedrycz, 2003).
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reasons why we propose this concept to tackle this issue. The

first one is human instinct. As human beings, we have

developed a granular view of the world. When describing a

problem, we tend to shy away from numbers and use

aggregates to ponder the question instead. This is especially

true when a problem involves incomplete, uncertain, or vague

information. It may be sometimes difficult to differentiate

distinct elements, and so one is forced to consider ‘information

granules’ (IG) which are collections of entities arranged

together due to their similarity, functional adjacency and

indistinguishability (Bargiela & Pedrycz, 2003; Castellano &

Fanelli, 2001; Yao & Yao, 2002; Zadeh, 1979). A typical

example is the theory of rough sets (Walczak & Massart,

1999). The process of constructing IGs is referred to as

information granulation. This was first pointed out in the

pioneering work of Zadeh (1979) who coined the term

‘information granulation’, and emphasized the fact that a

plethora of details does not necessarily amount to knowledge.

Granulation serves as an abstraction mechanism for reducing

an entire conceptual burden. The essential factor driving the

granulation of information is the need to comprehend

the problem and have a better insight into its essence, rather

than get buried in all the unnecessary details. By changing the

size of the IGs, we can hide or reveal more or less details

(Bargiela & Pedrycz, 2003).

The second reason is about the behavior of data. In

many practical datasets, such as medical/diagnosis, inspection,

fault monitoring and fraud detecting data, the normal group

and abnormal group are considered separate populations.

Taguchi & Juoulum (2002) thought every abnormal condition

(or a condition outside ‘healthy’ group) is considered unique,

since the occurrence of such a condition is different. Tolstoy’s

quote in Anna Karenina: ‘All happy families look alike. Every

unhappy family is unhappy after its own fashion’ is also noted

to illustrate their opinions (Taguchi & Juoulum, 2002).

Therefore, we can clearly understand the normal group (i.e.

healthy patients, good products) looks alike while the abnormal

group (i.e. sick patients, defective products) is unique. If we

construct IGs by the similarity of numerical data, the amount of

IGs in normal group will be remarkably smaller than the size of

normal numerical data. In other words, if we consider IGs

instead of numerical data, it might increase the proportion of

abnormal data and improve imbalanced/skewed situation

of data.

In this study, we propose a ‘knowledge acquisition via

information granulation’ (KAIG) model which can improve

classification performance by controlling the reduction of

unnecessary details. In KAIG model, Fuzzy ART (Adaptive

resonance theory) neural network is utilized to construct IGs.

The two indexes, the homogeneity index (H-index) and the

undistinguishable ratio (U-ratio), are developed to determine a

suitable level of granularity. The concept of sub-attributes is

presented to tackle the overlapping among granules. Six data

sets (one for illustrative example) from data bank are employed

to illustrate our method and evaluate the effectiveness of our

proposed model. Besides, one imbalanced diagnosis dataset,

pima-Indians-diabetes, is provided to demonstrate the
superiority of our method in solving class imbalance class

problem by using the indexes, overall accuracy, G-mean and

receiver operation characteristic (ROC) curve.

2. Granular computing

Granular computing, which is oriented towards the

representation and processing of IGs, is quickly becoming an

emerging conceptual and computing paradigm of information

processing (Bargiela & Pedrycz, 2003). It is a superset of the

theory of fuzzy information granulation, rough set theory and

interval computations, and is a subset of granular mathematics.

Granular computing as opposed to numeric computing is

knowledge-oriented. Numeric computing is data oriented. The

main issues (Castellano & Fanelli, 2001) of granular

computing are how to construct the IGs, and to describe IGs.

One particular question that arises is how to determine the level

of granularity. We discuss these issues in the next sections.

2.1. Construction of information granules

In the issue of constructing IGs, there are many approaches,

such as the Self Organizing Map (SOM) network (Castellano &

Fanelli, 2001), Fuzzy C-means (FCM), rough sets, shadowed

sets (Bargiela & Pedrycz, 2003) used to do this. Because IGs

exist at different levels of granularity, we usually group

granules of similar ‘size’ (that is granularity) in a single layer.

If more detailed processing is required, smaller IGs are

selected. Fig. 1 illustrates this concept of granularity. At the

lowest level, we are concerned with numeric processing. This

is a domain completely taken over by numeric models, such as

differential equations, regression models, neural networks, etc.

At the intermediate level, we see larger IGs (viz. those

embracing more individual elements). The top level is solely

devoted to symbol-based processing, and as such invokes well-

known concepts of Petri nets, qualitative simulation, etc.

(Bargiela & Pedrycz, 2003). In this study, the Fuzzy ART is

utilized to construct IGs.

ART is a well established neural network theory developed

by Carpenter, Grossberg, and Rosen (1991). The ART network

is also a famous method of clustering. Instead of clustering by a

given number of clusters, it assigns patterns onto the same

cluster by comparing their similarity. The detailed algorithm

of Fuzzy ART can be found in (Serrano-Gotarredona,

Linares-Barranco, & Andreou, 1998).

The major difference between ART and other unsupervised

neural networks is the so called vigilance parameter (r) which

is viewed as a granularity and can be adjusted by the users to



Table 1

The information granule-iris example

Condition attributes Decision attribute (classes)

A B C D

5.8 2.7 4.1 1 Versicolor

6.2 2.2 4.5 1.5 Versicolor

5.6 2.5 3.9 1.1 Versicolor

5.9 3.2 4.8 1.8 Versicolor

5 3.3 1.4 0.2 Setosa
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control the degree of similarity of patterns placed on the same

cluster. In an ART, the degree of similarity between a new

pattern and a stored pattern is defined. This similarity,

compared to r, is a measure to ensure whether the new pattern

is properly classified or not. The other unsupervised learning

neural networks which do not implement vigilance may cause a

significantly different input pattern to be forced into an

inappropriate cluster. In contrast to some other cluster

methods, an ART network will not automatically force all

input vectors onto a cluster if they are not sufficiently similar.

This is the reason why the ART network is employed in this

study to construct the IGs.

There are three similar ART architectures, namely ART 1,

ART 2, and Fuzzy ART. ART 1 is designed for binary-valued

input patterns, and ART 2 is for continuous-valued patterns.

Fuzzy ART is the most recent adaptive resonance framework

that provides a unified architecture for both binary and

continuous valued inputs. There are several factors that

motivated us to use Fuzzy ART, and they are as follows

(Burke & Kamal, 1995):

(1) Unlike ART1, Fuzzy ART does not require a completely

binary representation of the parts to be grouped. In

addition, Fuzzy ART possesses the same desirable stability

properties as ART1 and a simpler architecture than that of

ART2.

(2) ART2 can experience difficulty in achieving good

categorizations if the input patterns are not all normalized

to a constant length. However, such normalization can

possibly destroy valuable information. Besides, there is a

serious dependency of classification results in the case of

ART1 on the sequence of input presentation.

As a result, the Fuzzy ART network is employed to

construct IGs in this study.
Table 2

The undistinguishable information granule

Condition attributes Decision

attribute

A B C D

5.4 2.2 3.9 1.2 Versicolor

6.8 3.4 5.6 2.4 Virginica
2.2. Selection of granularity

Selecting an appropriate size of IGs is a difficult task.

Enough background knowledge is required to determine how

similar objects should be gathered together to form one IG. An

objective index is needed to select the appropriate similarity of

granules. We proposed H-index and U-ratio to solve this

problem.

The basic assumption of the H-index is that the classes of

objects should be equal if their values of attributes are

sufficiently similar. This implies that we always make the

same decision under a similar condition. Because we form

granules by the similarity of objects, the objects in the same

granule should have the same class. The H-index is used to

measure the consistency of the class of the objects in one IG.

The H-index is defined as

H � index Z
i

n
(1)

where n represents the number of all objects in one granule and

i is the amount of objects possessing the majority class.
For example, Table 1 shows one IG involving five objects

(nZ5). There are four condition attributes (namely A–D) in the

iris data. The decision attribute (class) of the first four objects is

‘versicolor’, but the last one has a different decision attribute,

‘setosa’. In this example, ‘versicolor’ is the majority class and

iZ4. The H-index of this IG is 4/5.

Another index for selecting similarity is the U-ratio. In the

preceding example, ‘versicolor’ is the majority of the classes.

So it is assigned to be the class of this IG. If there was another

granule described as Table 2, and we are unable to distinguish

the class of the IG, then we call that granule an ‘undistinguish-

able granule.’ The U-ratio is defined as

U � ratio Z
u

m
(2)

where u represents the number of undistinguishable granules

and m represents the quantity of all granules.

This index is to calculate the proportion of undistinguish-

able granules to all granules. If there are 10 granules and two of

them are undistinguishable granules, which means u is equal to

2 and m is equal to 10, then the U-ratio is equal to 0.2.

By using these two indexes, we can determine the similarity

of the IGs. In the present study, the larger the H-index the better

it is, because it means that more objects in one granule possess

the same class. There is no need to set up the index to a fixed

value. The size of the index depends on the domain knowledge

or how large an error you can tolerate. On the other hand, the

U-ratio is the opposite. As far as the U-ratio is concerned, the

smaller the better. It’s difficult to process an undistinguishable

granule, so we need to view them carefully. However, we try to

avoid this situation by setting the U-ratio as small as possible.

In other words, if we select a specific similarity where the

H-index is larger and the U-ratio is smaller, then this similarity

is the best solution.



Table 3

Two IGs represented by hyperbox form

IGs Attributes

X1 X2

A ðaK1 ; a
C
1 Þ ðaK2 ; a

C
2 Þ

B ðbK1 ; b
C
1 Þ ðbK2 ; b

C
2 Þ

Table 4

The IGs with sub-attributes

Original

attributes

X1 X2

Sub-attributes X11 X12 X13 X21 X22 X23

IGs ½aK1 ; b
K
1 � ½bK1 ; a

C
1 � ½aC1 ; b

C
1 � ½aK2 ; b

K
2 � ½bK2 ; a

C
2 � ½aC2 ; b

C
2 �

A 1 1 0 1 1 0

B 0 1 1 0 1 1
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2.3. Representing the information granules

In this section, we utilize hyperboxes to represent IGs

(Pedrycz & Bargiela, 2002). A hyperbox [b] defined in Rn is

fully described by its lower (bK) and upper corner (bC), where

bK and bC are vectors in Rn. An important and frequently used

universal set is the set of all points in the n-dimensional space.

This set is denoted as Rn. Using bK and bC we can express the

hyperbox as [b]Z[bK,bC].Consider two IGs (hyperboxes) AZ
[a] and BZ[b] defined in R2. More explicitly, we follow a full

notation [a]Z[aK,aC] and [b]Z[bK,bC]. These two granules

are described as Table 3.

As Fig. 2 shows, there are overlaps between two granules A

and B. This makes it difficult to handle by knowledge

acquisition tools. This is because most of knowledge

acquisition algorithms are not designed to deal with IGs,

especially when overlapping occurs between granules.

Unfortunately, the overlapping situation always happens in

real world. In this study, we introduce the concept of ‘sub-

attributes’ to tackle the problem of overlaps between granules.

We can explain this idea of ‘sub-attributes’ by using Fig. 2.

In axis X1 (attribute 1), the overlapping part of two granules

are separated into overlapping part (½bK1 ; a
C
1 �) and non-

overlapping parts (½aK1 ; b
K
1 � and ½aC1 ; b

C
1 �). These sub-intervals,

½aK1 ; b
K
1 �, ½b

K
1 ; a

C
1 � and ½aC1 ; b

C
1 �, are named as X11, X12, X13 which

are so called ‘sub-attributes.’ The binary variable which is

employed to be the values of sub-attributes represents whether

an IG contains these sub-intervals or not. The results of

rewriting the IGs by using sub-attributes can be found in

Table 4. We divide the original attribute X1 into sub-attributes

X11, X12, X13; and attribute X2 into X21, X22, X23. Then,

these two granules are rewritten by replacing the original

attributes with sub-attributes. By introducing the concept of
B

A

−
1b

−
1a +

1a
+

1b 1X

2X

+
2b

+
2a

−
2b

−
2a

Fig. 2. The overlap between IGs.
sub-attributes, we can easily extract knowledge from the

granules even if the overlapping situation always exists.

This method can maintain the complete characteristics of

data. The IGs with addition of sub-attributes are suitable for all

knowledge acquisition algorithms. It is not required to adjust

the computational architecture of these algorithms. However,

too many sub-attributes may be generated in the situation of

natural overlapping which the values of the condition attributes

are continuous and diverse. Therefore, as we often do in data

preparation phase of data mining, we suggest descretizing data

before implementing KAIG model to control the number of

sub-attributes.
3. Proposed methodologies

This section describes in detail the procedure of the KAIG

model. First, we address how the IGs are formed from

numerical data. Secondly, H-index and U-ratio are introduced

to determine the level of granularity which can be used to

construct IGs in Fuzzy ART. Then, we try to describe IGs by

using sub-attributes and extract knowledge from them. The

well-known dataset, iris, will serve as an illustrative example.
3.1. The KAIG model

Fig. 3 shows the proposed KAIG model. We explain it by

the following steps:
Knowledge rules 

Numerical data

Select the level of granularity

Information granules representation 

Knowledge acquisition 

Check granularity 
by using H-index 

& U-ratio 

Not satisfied

SatisfiedInformation granulation 

Fig. 3. knowledge acquisition via information granulation (KAIG) model.
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3.1.1. Step 1: Information granulation

In step 1, we use Fuzzy ART to construct IGs. But, first

thing we need to determine is to select the suitable level of

granularity (vigilance). The IGs are formed by the selected

granularity. The initial value of granularity is set 1 and then

decrease gradually until find one satisfying criteria of H-index

and U-ratio. The found suitable granularity is employed to

construct IGs.

3.1.2. Step 2: Information granules representation

IGs are represented in a suitable form that can be handled by

knowledge acquisition tools. As mentioned in Section 2.3,

these formed IGs are described in hyperboxes. Then, the sub-

attributes are applied in these IGs to solve the problem and

finally, we can extract knowledge from these IGs.

3.1.3. Step 3: Knowledge acquisition

After describing IGs appropriately and tackling the

overlapping situation, we can use knowledge acquisition

tools to extract knowledge rules from the granules. In this

study, we will compare three famous data mining algorithms,

C4.5, Rough sets and neural network (back-propagation), to

evaluate their effectiveness in KAIG model.

3.2. llustrative example

We apply the KAIG model to the well-known data set, iris.

It is comprised of 150 examples. We rearrange it randomly and

divide it into two subsets, training set (100 objects) and test set

(50 examples). We will illustrate the process of KAIG step by

step.

3.2.1. Step 1: Information granulation

We input the 100 training examples to the Fuzzy ART to

form IGs. We set the parameters of Fuzzy ART aZ0.01 and

bZ1. The number of IGs varies with the different level of

similarity (vigilance). In this study, similarity value varies

gradually from 1 to 0. The similarity 1 represents the numerical

data. Next, we need to determine which similarity is suitable by

the H-index and the U-ratio. The H-index is ’the larger-the-

better’ and the U-ratio is ‘the smaller-the-better’. In Fig. 4, we

can find more than one similarity that satisfies this criterion.
0

0.2

0.4

0.6

0.8

1

1.2

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Similarity

H-index

U-ratio

Fig. 4. The H-index and U-ratio of the iris data.
These similarities are 0.95–0.8 and 0.7–0.55, where H-indexZ
1 and U-ratioZ0. Their performances of classification, as

described in Fig. 5, are equal to each other. All classification

accuracies are equal to 100%.

When the performances are equally good, the amount of

granules becomes another criterion for selecting the similarity.

In this study, we use IGs instead of numerical data to acquire

knowledge and make decisions. If the smaller similarity is

selected, the lesser the amount of granules will be dealt with.

This smaller amount of granules may save some training time

during the building of the model. Therefore, we select a

similarity of 0.55 and the amount of granules is 3.
3.2.2. Step 2: Representing the IGs

We describe these three granules in hyperboxes form and

they are shown in Table 5. Li represents the lower bound of

attribute values, and Ui represents the upper limit of attribute

values in the ith granule. Take granule #1 for example, it

contains 33 objects. In condition attribute A, the minimum is

4.4 and the maximum is 5.7. We utilize the low limit and upper

limit to describe all examples in the same one granule. Granule

1 possesses the same class, setosa. Granule 2 contains 33

examples which are of the same class, versicolor. Granule 3 is

comprised of 34 examples which have the same class,

virginica.

Next, the original attributes are divided into several sub-

attributes. Table 6 shows the IGs and their sub-attributes. The

four original condition attributes (A, B, C, D) are divided into

17 sub-attributes (A1,.,D4). These 17 sub-attributes are used
Table 5

The IGs with the similarity of 0.55

No. of granules Condition attribute Classes (No. of examples)

A B C D Setosa Versicolor Virginica

#1 L1 4.4 2.3 1 0.1 33 0 0

U1 5.7 4.2 1.9 0.6

#2 L2 5 2.2 3 1 0 33 0

U2 6.8 3.4 5.1 1.8

#3 L3 5.6 2.2 4.8 1.4 0 0 34

U3 7.9 3.8 6.9 2.5
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as the inputs for the operation of knowledge acquisition

algorithms.
3.2.3. Step 3: Knowledge acquisition

The rough sets method can be utilized to remove super-

fluous sub-attributes and to acquire knowledge. The theory of

rough sets emerged as a major mathematical tool for

discovering knowledge. A fundamental principle of a rough

set-based learning system is to discover redundancies and

dependencies between the given features of a problem to be

classified (Mitra, Pal, & Mitra, 2002). In the rough set method,

a reduct is the minimal subset of attributes that enable the same

classification of objects with full attributes. All results of rough

sets are operated by Rosseta software. Readers can find

additional information on the theory of rough sets in the

references (Hu, Cercone, Han, & Ziarko, 2002; Walczak &

Massart, 1999). The knowledge rules extracted by rough set

method are listed as follows:

Rule 1 IF B4Z1 THEN ClassZsetosa;

Rule 2 IF D2Z1 THEN ClassZversicolor;

Rule 3 IF B4Z0 AND D2Z0 THEN ClassZvirginica;

These knowledge rules can be translated as follows:

Rule 1 ATTRIBUTE B2(3.8,4.2] THEN ClassZsetosa;

Rule 2 ATTRIBUTE D2(1.0,1.4] THEN ClassZversicolor;

Rule 3 ATTRIBUTE B2(3.8,4.2] AND ATTRIBUTE D;
(1.0,1.4]

THEN ClassZvirginica;

These knowledge rules are applied to test the remaining 50

examples. Table 7 is the minimal reduct of the testing granules.

The sub-attributes of testing granules, B4 and D2, are put into

these extracted knowledge rules. The predicted decisions are

fully equal to the true ones. Therefore, the classification

accuracy is 100%.

In this illustrative example, we reduce some unnecessary

detailed information by acquiring knowledge from IGs, but the

classification accuracy remains high. Also, the knowledge rules

for decision-making are fewer than those extracted from

numerical data, which may save the response time of a

decision. Table 8 shows the comparison of classification

performances.
4. Evaluation of KAIG model

To evaluate the effectiveness of the KAIG model, five data

sets which come from databank of UCI machine learning group
Table 7

The minimal reduct of IGs for testing

IGs No. B4 D2 Classes

3.8–4.2 1–1.4 Predicted True

#1 1 0 Setosa Setosa

#2 0 1 Versicolor Versicolor

#3 0 0 Virginica Virginica



Table 8

The comparison of processing with information granules and numerical data

Methods Rough sets KAIG

Data type Numerical data

(similarityZ1.0)

Information granules

(similarityZ0.55)

Classification

accuracy

100% 98% 100% 100%

No. of rules 16 3
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(http://www.ics.uci.edu/wmlearn/) are considered in this

section. Table 9 provides brief explanation about the data

background, including data size, number of features, data

characteristics (binary/continuous), and defined classes. Before

implementing, we divide all data sets into training set and

testing set with the proportion of 3:1.

With the help of the H-index and the U-ratio shown in

Fig. 6, we can find the suitable similarity of these data sets.

According to these determined similarities, numerical data is

transformed into IGs by Fuzzy ART. Then, three famous

knowledge acquisition algorithms, neural network (BP),

decision tree (C4.5 algorithm) and the rough set method, are

utilized. Professional II PLUS is employed to build neural

network in this study. The optimal neural network (BP)

parameter settings, structure and learning iterations shown in

Table 10 are obtained by trial and error. Decision trees built by

C4.5 are models which each node is a test on an individual

variable and a path from the root to a leaf is a conjunction of

conditions required for a given classification. See5 (C4.5

commercial version) software was utilized to construct a

decision tree in this study. In See5, there are two parameters

that can be tuned, during the pruning phase: the minimal

number of examples represented at any branch of any feature-

value test; and the confidence level of pruning. To avoid the

occurrence of over-fitting and generating a simple tree, 2 was

set as the minimum number of instances at each leaf and the

confidence level for pruning was set at 25%. The inputs and

outputs of decision tree and the rough set method are condition

attributes and defined classes, respectively.

The comparisons of implementation results are provided in

Table 11. Except WDBC, KAIG model has better classification

performances in the other five data sets than those of traditional

methods which use numerical data. In average, the
Table 9

The background of five data sets

Data set Title No. of instances No of attributes

WDBC Wisconsin diagnostic

breast cancer

683 (699 minus

16 missing data)

9 (remove first

attribute—‘ID’

CE Car evaluation

database

1728 6

TAE Teaching assistant

evaluation

151 5

BUPA BUPA liver disorders 345 6

WINE Wine recognition data 178 12

PIMA Pima Indians diabetes 768 8
classification accuracy increases 2.33% and the number of

rules is reduced by 48.67% compared with traditional methods.

In KAIG model, we can use different kind of knowledge

acquisition tools and the results will be different. The

classification accuracy averagely increases 0.86, 2.238,

1.182% by applying Rough sets, C4.5 and BP, respectively.

In addition, C4.5 has fewer number of knowledge rules (12

rules in average) than those of Rough sets (84.8 rules in

average). Therefore, C4.5 is more suitable to be employed in

KAIG model than the other two methods.
5. Implementation in imbalanced data

This section will apply KAIG method to overcome the class

imbalance problems. C4.5 and SVM are usually utilized as

benchmarks or basic learners in related works (Batista et al.,

2004; Guo & Viktor, 2004; Huang et al., 2004; Jo & Japkowicz,

2004; Provost & Fawcett, 2001; Radivojac, Chawla, Dunker, &

Obradovic, 2004). Therefore, the experimental results of KAIG

will be compared with these two methods. A brief introduction

about SVM can be found in (Cristianini & Shawe-Taylor, 2000;

Wu & Chang, 2005).

5.1. Performance measures

The easiest way to evaluate the performance of classifiers is

based on the confusion matrix described as Table 12. TP, FP,

TN and FN are defined as bellows.

TP the number of True Positive examples

FP the number of False Positive examples

TN the number of True Negative examples

FN the number of False Negative examples

Traditionally, the performance of a classifier is evaluated by

considering the overall accuracy against test cases. However,

when learning from imbalanced data sets, the measure is often

not sufficient. For example, it is straightforward to create a

classifier having an accuracy of 95% in a domain where the

majority class proportion corresponds to 95% of the examples,

by simply forecasting every new example as belonging to the

majority class. Another fact is the metric considers different

classification errors to be equally important. But as we know, a

highly imbalanced class problem does not have equal error
Data

characteristics

Class distribution

)

All discrete Benign (65.5%) malignant (34.5%)

All discrete Unacceptable (70.023%) acceptable (22.222%) good

(3.993%) very good (3.762%)

1-continuous

4-discrete

Low (32.45%) medium (33.11%) high (34.44%)

All continuous Class 1 (42.03%) class 2 (57.97%)

All continuous Class 1 (33.15%) class 2 (39.89%) class 3 (26.96%)

All continuous Healthy (65%) diabetic (35%)

http://www.ics.uci.edu/~mlearn/
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Fig. 6. The H-indexes and U-ratios of five data sets.
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costs that favor the minority class, which is often the class of

primary interest. Therefore, following the available studies

(Batista et al., 2004; Estabrooks, Jo, & Japkowicz, 2004; Guo

& Viktor, 2004; Provost & Fawcett, 2001; Radivojac, Chawla,

Dunker, & Obradovic, 2004), we use overall accuracy

(including positive accuracy and negative accuracy), G-mean

and receiver operation characteristic (ROC) curve to evaluate

our KAIG model. The G-mean is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Positive Accuracy!Negative Accuracy

p
(3)
Table 10

The setting of parameters in neural network (BP)

Data Set Data type Structure

WDBC Numerical 9-11-1

Granule(0.85) 90-160-1

CE Numerical 6-9-1

Granule(0.95) 21-35-1

TAE Numerical 5-6-1

Granule(0.85) 69-120-1

BUPA Numerical 6-5-1

Granule(0.85) 26-31-1

WINE Numerical 13-5-1

Granule(0.8) 35-7-1
where positive accuracy and negative accuracy are calculated

as TP/(FNCTP) and TN/(TNCFP). This measure is to

maximize the accuracy on each of two classes while keeping

these accuracies balanced. For instance, a high positive

accuracy by a low negative accuracy will result in poor

G-mean.

Another index is ROC curve, which is a technique for

summarizing a classifier’s performance over a range by

considering the tradeoffs between TP rate and FP rate. The

TP rate and FP rate are calculated as TP/(FNCTP) and FP/(FP

CTN). We use the term ROC space to denote the coordinate

system used for visualizing classifier’s performance. In ROC

space, TP rate is represented on the Y-axis and FP rate is

represented on the X-axis. Each classifier is represented by the

point in ROC space corresponding to its (FP rate, TP rate) pair.

A ROC analysis also allows the performance of multiple

classification functions to be visualized and compared

simultaneously. The area under ROC curve (AUC) represents

the expected performance as a single scalar. The AUC has a

known statistical meaning: it equals to the Wilconxon test of

ranks, and is equivalent to several other statistical measures for

evaluating classification and rank models (Hand, 1997).
5.2. Diagnosis data

The imbalance class problems often happen in medical

diagnosis data. Therefore, pima-Indians-diabetes whose infor-

mation shows in Table 9 is employed to verify effectiveness of

our model. Results for this data set, shown in Table 13, were

averaged over four-fold cross validation (CV) experiments,

which the data set was partitioned into four equal sized sets and

each set was then in turn used as the test set. Besides, in order to

test the robustness of KAIG model, we reduce the proportion of

minority class from 35% to 10% and 5% by removing the

number of minor examples randomly.

In the experiments of 35%, 10% and 5%, the results indicate

that KAIG model has better performance than those of SVM

and C4.5 against highly imbalanced data sets, in term of the

negative accuracy. In average, KAIG owns 58.08% of negative

accuracy far better than 14.55% of SVM and 27.49% of C4.5. It

means KAIG has excellent capability of detecting minor

examples (diabetic patients). Meanwhile, KAIG does not lose

overall accuracy and positive accuracy. They are even better

than those of SVM and C4.5 in experiment of 35%.
Learning rate Momentum Iterations

0.2 0.9 20,000

0.2 0.9 20,000

0.2 0.9 10,000

0.3 0.9 20,000

0.2 0.9 20,000

0.2 0.9 20,000

0.3 0.8 30,000

0.2 0.9 15,000

0.3 0.7 10,000

0.2 0.8 15,000



Table 11

The comparison of classification performance

Methods Classification

accuracy

Data type

Numerical data (similarityZ1.0) Traditional methods Granules (similarityZ0.85) KAIG

Train (%) Test (%) No. of rules Train (%) Test (%) No. of rules

WDBC

Rough sets 100 92.23 212 100 89.47 58

Decision tree (C4.5) 97.5 97.06 10 93.4 94.74 4

Neural network (BP) 96.66 100 – 100 89.64 –

CE SimilarityZ1.0 SimilarityZ0.95

Rough sets 100 89.58 385 100 88.96 207

Decision tree (C4.5) 97.4 92.8 75 98.4 95.58 36

Neural network (BP) 91.18 91.09 – 94.04 92.80 –

TAE SimilarityZ1.0 SimilarityZ0.90

Rough sets 84.96 84.21 90 95.95 87.37 68

Decision tree (C4.5) 60.2 47.36 13 64.9 48.39 11

Neural Network (BP) 68.23 69.05 – 78.61 84.21 –

BUPA SimilarityZ1.0 SimilarityZ0.85

Rough sets 100 63.95 165 100 66 80

Decision tree (C4.5) 76.4 65.1 15 78.2 70 5

Neural Network (BP) 69.35 64.47 – 100 66.15 –

WINE SimilarityZ1.0 SimilarityZ0.8

Rough sets 100 93.18 31 100 95.65 11

Decision tree (C4.5) 95.6 90.9 6 96.7 95.7 4

Neural network (BP) 87.63 86.49 – 85.87 84.21 –

Table 12

Confusion matrix for binary class problem

Predicted positive Predicted negative

Actual positive TP (the number of true positive) FN (the number of false negative)

Actual negative FP (the number of false positive) TN (the number of true negative)
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Both G-mean and ROC curves shown in Fig. 7 also

demonstrate the superiority of our method. In extreme skewed

data (10 and 5%), G-mean is more sensitive than overall

accuracy. When negative accuracy decreases dramatically,
Table 13

The results in different proportion of minor class examples

Methods KAIG SVM

Training Test Training

Mean

(%)

SD (%) Mean

(%)

SD (%) Mean

(%)

SD

(35%)

Overall accuracy 91.97 2.5 78.78 2.5 76.82 1.4

Pos. Acc. 93.07 2.3 84.00 4.5 93.07 0.5

Neg. Acc. 85.24 2.1 70.52 8.0 46.52 4.7

G-mean 90.67 2.59 76.46 3.85 65.73 3.1

(10%)

Overall accuracy 95.01 1.1 87.05 2.3 89.93 0

Pos. Acc. 99.33 0.8 92.20 1.2 100 0

Neg. Acc. 52.98 11.9 41.08 20.5 0 0

G-mean 72.16 7.91 59.73 17.0 0 0

(5%)

Overall accuracy 97.48 0.7 94.89 1.6 94.94 0

Pos. Acc. 98.54 0.9 98.60 1.7 100 0

Neg.Acc. 72.50 13.2 28.57 26.1 0 0

G-mean 84 7.69 44 33.3 0 0
G-mean can indicate these changes but overall accuracy

cannot. ROC curves provide visual results which can easily

compare these three methods and find KAIG has best

performances (AUC) in different experiments.
Decision tree (C4.5)

Test Training Test

(%) Mean

(%)

SD (%) Mean

(%)

SD (%) Mean

(%)

SD (%)

75.52 2.8 81.50 4.28 74.22 3.1

92.60 2.7 87.94 7.50 83.20 2.8

43.66 3.3 71.40 8.73 57.46 8.3

8 63.56 3.29 78.95 3.24 68.99 4.80

89.93 0 91.55 1.7 88.49 1.6

100 0 98.73 1.9 96.80 3.1

0 0 27.38 20.4 14.29 24.0

0 0 44.43 30.6 23.63 32.1

94.70 0 96.52 0.8 93.56 1.0

100 0 99.47 0.7 98.20 0.8

0 0 41.25 14.9 10.72 13.7

0 0 63 12.7 23 26.9
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6. Conclusions

This study introduces the concept of information granula-

tion to solve class imbalance problems. A novel method called

KAIG model is presented. In this model, we propose two

indexes to determine the level of granularity and the ‘sub-

attributes’ concept to describe IGs. The experimental results

show that the KAIG model can improve classification
performance by reducing unnecessary details of information.

We also demonstrate that the proposed method has excellent

ability of identifying the minority examples in imbalanced

learning tasks. In medical diagnosis data, our method can

dramatically increase negative accuracy without losing

positive accuracy and overall accuracy. ROC curves and

G-mean also illustrate the superiority of KAIG model

compared with C4.5 and SVM.

Construction of IGs is one of many interesting and

important issues in granular computing. IGs are aimed at

building efficient and user-centered views of the external world

and supporting/facilitating our perception of the surrounding

physical and virtual world. In our research, we construct IGs by

objects’ ‘similarity’, the parameter (vigilance) of Fuzzy ART.

It can define the ‘indistinghishable, similar, coherency and

alike’ relations of objects. However, other relations whose

definitions are not specific/ concrete, such as ‘functional

adjacency’, also can employ to construct IGs. But, it is hard to

define these ‘not specific’ relations. Therefore, more efforts of

studying different relations are necessary in the future

researches.
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