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Evolving Trading Strategies Using Directional Changes

Michael Kampouridisa,∗, Fernando Oteroa

aSchool of Computing, University of Kent, UK

Abstract

The majority of forecasting methods use a physical time scale for studying price fluctuations of financial markets,

making the flow of physical time discontinuous. Therefore, using a physical time scale may expose companies to

risks, due to ignorance of some significant activities. In this paper, an alternative and original approach is explored

to capture important activities in the market. The main idea is to use an event-based time scale based on a new way

of summarising data, called Directional Changes. Combined with a genetic algorithm, the proposed approach aims

to find a trading strategy that maximises profitability in foreign exchange markets. In order to evaluate its efficiency

and robustness, we run rigorous experiments on 255 datasets from six different currency pairs, consisting of intra-day

data from the foreign exchange spot market. The results from these experiments indicate that our proposed approach

is able to generate new and profitable trading strategies, significantly outperforming other traditional types of trading

strategies, such as technical analysis and buy and hold.

Keywords: directional changes, financial forecasting, algorithmic trading, genetic algorithm

1. Introduction

The global financial system, recently rocked by the financial crisis, is open 24 hours a day, 7 days a week and

can be defined as a complex network of interacting agents (e.g., corporations, retail traders). With an average daily

turnover of 3–4 trillion USD (International Monetary Fund, 2009) and price changes nearly every second, its activity

varies at different times of a day and reacts on the announcement of political or economic news.

The majority of traditional methods to observe such price fluctuations in financial time series are based on phys-

ical time change. For example, what researchers and practitioners tend to do is to use snapshots of the market, taken

at fixed intervals; they first decide how often to sample the data, and then they take snapshots at the chosen fre-

quency. Therefore, these snapshots create an interval-based summary—e.g. daily closing prices or minute-by-minute

summaries. However, important price movements (and thus potential profit) might be lost due to the creation of these

artificial price summaries. For example, if we are using daily closing price summaries we would not be able to observe

the 6 May 2010 Flash Crash, which was a United States trillion-dollar stock market crash that lasted for approximately

36 minutes.1

Directional Changes (DC) is based on the idea that an event-based system can capture significant points in price

movements that the traditional physical time methods cannot. Hence, instead of looking the market from an interval-

based perspective, DC record the key events in the market (e.g., changes in the stock price by a pre-specified percent-

age) and summarise the data based on these events, moving away from a physical-time view to an event-based-time

view. Under this new paradigm, a threshold θ is defined, usually expressed by a percentage of the price. The market

is then fragmented and summarised into upward and downward trends. Different thresholds produce different price

summaries. Thus, the directional changes paradigm focuses on the size of price change, while time is the varying

factor; whereas in the physical-time paradigm, time was fixed (e.g. daily closing prices). This new concept provides
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traders with new perspectives to price movements, and allows them to focus on those key points than an important

event took place, blurring out other price details which could be considered irrelevant, or even noise.

The first works to use the concept of directional changes were proposed in Olsen et al. (1997) and Glattfelder

et al. (2011). In these works, new empirical scaling laws in foreign exchange data series were discovered. These

scaling laws aimed to establish mathematical relationships among price moves, duration and frequency. Then, di-

rectional changes and the scaling laws from the above works were used to develop new trading models in Dupuis &

Olsen (2012). However, those models were not used for any financial forecasting purposes and were only used to

derive statistics from potential trading. Furthermore, Aloud et al. (2012) demonstrated the effectiveness of directional

changes in capturing periodic market activities. In addition, Gypteau et al. (2015) presented an approach to forecasting

the daily closing price of financial markets by combing directional changes and genetic programming. Lastly, Tsang

et al. (2016) introduced new trading indicators for profiling markets under directional changes. As we can observe, the

majority of the above works have focused on theoretical aspects of directional changes—e.g. establishing mathemat-

ical relationships and developing new indicators. Only Dupuis & Olsen (2012) and Gypteau et al. (2015) attempted

to generate trading strategies based on the DC concept. However, Dupuis & Olsen (2012) did not take advantage of

the combined knowledge that can exist by using multiple DC thresholds to generate different event-based series; in

addition, Gypteau et al. (2015) only tested their approach on 4 datasets on daily closing prices.

In this paper our aim is to offer a more complete analysis on the directional changes paradigm from a financial fore-

casting perspective. We run extensive tests on intraday data from six currency pairs from the foreign exchange (FX)

market: yearly tick data from GBP/JPY, and yearly 10-minute interval data from EUR/GBP, EUR/USD, EUR/JPY,

GBP/CHF, and GBP/USD. In total, we run tests on 255 different datasets. In terms of DC, we present two novel

types of trading strategies: a single-threshold DC strategy, and a multi-threshold DC strategy. The former uses a sin-

gle threshold to generate event-based series. The multi-threshold strategy combines different thresholds, where each

threshold generates a different event-based series; then information from each series is aggregated to form a more

informed trading strategy. In addition, we use a genetic algorithm (GA), which is a bio-inspired algorithm mimicking

an evolutionary process, to optimise the parameters of the multi-threshold strategy. Such evolutionary algorithms

have extensively been used in financial forecasting problems and have shown to be extremely effective (Kwon &

Moon, 2007; Mani, 1996; Evans et al., 2013; Kampouridis & Otero, 2015). The GA-generated trading strategies are

then compared against the single-threshold and the multi-threshold DC strategies. We test the GA-generated trading

strategies with other financial benchmarks, such as buy and hold and technical analysis strategies. Overall, our goals

in this work can be summarised as follows: (i) demonstrate that the paradigm of DC returns profitable strategies,

(ii) provide evidence that the strategies optimised by the GA are more profitable than using standard DC strategies,

and (iii) demonstrate that our GA generated strategies outperform classical physical-time based strategies, namely

technical analysis and buy and hold.

Lastly, it should be acknowledged that directional changes has similarities to the concept of the zigzag indicator

(Azzini et al., 2010), which also focuses on an event-based approach, and to the concept of perceptually important

point (PIP) identification (Chen & Chen, 2016), which preserves the salient points in a time series to reduce the number

of data points. However, as we’ve mentioned above, the recent research on the DC field has led to the development

on many new concepts, such as the scaling laws and new trading indicators that only exist under DC price summaries.

Thus, in order to take advantage of all these new developments, we are focusing on the DC paradigm.

The rest of this paper is organised as follows: Section 2 presents background information in the fields of financial

forecasting, directional changes, and genetic algorithms. Then, Section 3 presents the proposed DC-derived trading

strategies, and Section 4 discusses how we used the genetic algorithm to optimise the parameters of these strategies. In

addition, Section 5 presents the experimental setup, and Section 6 presents and discusses the results. Finally, Section

7 concludes the paper and discusses directions for future work.

2. Background

Financial forecasting is a vital area in computational finance (Tsang & Martinez-Jaramillo, 2004). The end goal

of financial forecasting is deriving a trading strategy, which makes a recommendation whether to buy, hold or sell.

There are numerous works that attempt to return profitable trading strategies—several examples can be found in Chen

(2002); Binner et al. (2004); Hu et al. (2015); Jaisinghani (2016).
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There are several different strategies for the purposes of trading in a financial market. A very common investment

strategy, albeit a passive one, is buy and hold, and commonly acts as benchmark for trading algorithms. The principle

of this strategy is based on the view that in the long run financial markets give a good rate of return to investors. Thus,

in this strategy an investor buys an asset and holds it for a long time, without being concerned about short-term price

movements. Then at the end of a given period, s/he sells the stock and potentially makes profit based on the price

difference.

In contrary to buy and hold, there is also the belief that it is profitable to take advantage of short-term price

movements, as long as one can anticipate/predict them. Technical analysis is such a technique, and is discussed in

Section 2.1. Then, we present background information on directional changes, a new way of summarising financial

data that can lead to new types of trading strategies. This takes place in Section 2.2. Finally, Section 2.3 gives an

overview of genetic algorithms, which is the technique used in this paper for optimising the use of directional changes

parameters.

2.1. Technical analysis

Technical analysis is a methodology for financial forecasting. This method assumes that patterns exist in historical

price data and that these patterns will repeat themselves. Consequently, it is worth identifying these patterns, so that

we can exploit them in the future and make profit. Several works exist that are using technical analysis—recent

examples can be found in Cervelló-Royo et al. (2015); Chourmouziadis & Chatzoglou (2016).

As part of technical analysis, several indicators are used. These technical analysis indicators are formulas that

measure different aspects of a given financial dataset, such as trend, volatility and momentum. Below in Equations

(1)-(6) we present 6 popular indicators that can be found in the literature (Martinez-Jaramillo, 2007; Allen & Kar-

jalainen, 1999; Austin et al., 2004). Given a price time series [P(t), t ≥ 0], and a period of length L, these indicators

are defined as follows:

Moving Average (MA)

MA(L,t) =
P(t) − 1

L

L

∑
i=1

P(t − i)

1
L

L

∑
i=1

P(t − i)
(1)

MA allows traders to observe any changes in the trend of the prices of a stock. Typically, when a short-term MA (e.g.,

12 days) goes above a long-term MA (e.g., 60 days), this indicates upward momentum. On the other hand, when a

short-term MA goes below a long-term one, this indicates downward momentum.

Trade Break Out (TBR)

TBR(L,t) =
P(t) −max{P(t − 1), . . . ,P(t − L)}

max{P(t − 1), . . . ,P(t − L)}
(2)

In order to understand this indicator better, we first need to explain two terms: support and resistance. Support is the

point where the price stops going down any further, whereas resistance is the point where the price does not go up

any further. Technical analysis suggests that downward price trends tend to reverse at support points, whereas upward

trends tend to reverse at resistance points. However, when these points are breached (breakout), perhaps because of

some new information regarding the market, it is likely that the price will continue in the same direction. Hence,

traders tend to observe these breakouts and when a stock goes above its point of resistance, they buy; when on the

other hand the stock price goes below its point of support, traders sell.

Filter (FLR)

FLR(L,t) =
P(t) −min{P(t − 1), . . . ,P(t − L)}

min{P(t − 1), . . . ,P(t − L)}
(3)
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This indicator is used to indicate buy or sell actions, depending on whether the price movement goes in the opposite

direction by a predefined percentage. For instance, if the price reverses from a downward trend and rises by a specific

percentage from the low price that it was previously, then the trader would perform a ‘buy’ action.

Volatility (Vol)

Vol(L,t) =
σ(P(t), . . . ,P(t − L + 1))

1
L

L

∑
i=1

P(t − i)
(4)

A period of an increasing volatility could indicate a reversal in the trend or strong downward trends. This would

thus give an indication to a trader that s/he should be cautious. On the contrary, when there is a period of decreasing

volatility, this indicates upward trends and traders should buy.

Momentum (Mom)

Mom(L,t) = P(t) − P(t − L) (5)

When Mom is positive, this indicates an upward trend. If Mom starts decreasing, this could be an indication that there

is going to be a reverse in the previously upwards trend, and hence the traders should be cautious. Finally, when Mom

is negative, this indicates a downwards trend.

Momentum Moving Average (MomMA)

MomMA(L,t) =
1

L

L

∑
i=1

Mom(L, t − i) (6)

Finally, from Mom we can also calculate its MA, as shown in the above equation, which allows us to obtain summaries

of the Momentum movements.

While the above indicators can offer valuable information, normally a trader would use many of these indicators

together, thus combine their recommendations. It is very common in the literature to use machine learning algorithms

to combine technical information indicators (Chiang et al., 2016; Kim & Enke, 2016). In this work, we use EDDIE

(Kampouridis & Tsang, 2012, 2010) as a baseline algorithm. EDDIE is a genetic programming (GP) (Koza, 1992)

financial forecasting algorithm, which combines the different technical analysis indicators together, in order to form

predictions. The advantage of combining technical analysis indicators is that their combined knowledge can lead to

better predictions. We should also mention that EDDIE has been used over the years for different types of financial

problems, such as stock price movement prediction (Kampouridis & Otero, 2015), arbitrage opportunities detection

(Tsang et al., 2005), and market crash detection (Garcia-Almanza et al., 2013). EDDIE has thus extensively and

effectively utilised technical analysis for its predictions, and for this reason we have chosen to use it as a benchmark

of an algorithm using technical analysis.

As EDDIE is a GP algorithm, its trading strategies are represented as trees. A sample tree of EDDIE is presented

in Figure 1. As we can see, if the 20 days MA is less than or equal to 6.4, then the user is advised to buy; otherwise,

the user is advised to consult another tree, which is located in the third branch (“else-branch”) of the tree. This tree

checks if the 50 days MomMA is greater than 5.57; if it is, it advises to not-buy, otherwise to buy. Of course this is

simply a sample tree; so additional/different technical analysis indicators could be used in other trees.

In summary, what we have presented so far—namely buy and hold, technical analysis and EDDIE—all use in-

formation derived from data that is based on physical-time. As we have explained, in this paper we propose using

event-based price summaries for creating the trading strategies, based on the concept of directional changes.
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If

<=

VarConstructor

MA 20

6.64

Buy(1) If

>

VarConstructor

MomMA 50

5.57

Not-Buy(0) Buy(1)

Figure 1: Sample tree generated by EDDIE representing a trading strategy using technical indicators.

2.2. Directional changes

The directional change (DC) approach is an alternative approach for summarising market price movements. A DC

event is identified by a change in the price of a given financial instrument. This change is defined by a threshold value,

which was in advance decided by the trader. Such an event can be either an upturn or a downturn event. After the

confirmation of a DC event, an overshoot (OS) event follows. This OS event finishes once an opposite DC event takes

place. The combination of a downturn event and a downward overshoot event represents a downward trend and, the

combination of an upturn event and an upturn overshoot event represents an upturn trend. In other words, a downward

trend is a period between a downturn event and the next upturn event and an upturn trend is a period between an upturn

event and the next downturn event.

Figure 2 presents an example of how a physical-time price curve is transformed to the so-called intrinsic time

(Glattfelder et al., 2011) and dissected into DC and OS events. As we can observe, two different thresholds are used,

and each threshold generates a different event series. Thus, each threshold produces a unique series of events. The

idea behind the different thresholds is that each trader might consider different thresholds (price percentage changes)

as significant. A smaller threshold creates a higher number of directional changes, while a higher thresholds produces

fewer directional changes.

Looking at the events generated by a threshold of θ = 0.01% (events connected via solid and dashed lines), we

can observe that any price change less than this threshold is not considered a trend. On the other hand, when the price

changes above that threshold, then the market is divided accordingly, to uptrends and downtrends. DC events are in

solid lines, and OS events are in dashed lines. So an downturn DC event starts at Point A and lasts until Point B,

when the downturn OS events starts. The downturn OS lasts until Point C, when there is a reverse in the trend, and an

uptrend starts, which lasts until Point D. From Point D to E we are in an upturn OS event, and so on.

As we mentioned, different thresholds generate different event series. Looking at theta = 0.018% (events con-

nected via dotted and dot-dashed lines), we can observe that the events generated are different: a downward trend

starts from A and lasts until B′, and the downward OS is from Point B′ until C. Then, from Point C until Point E there

is an upward DC trend, and from E to E′ there’s an upward OS trend. Algorithm 1 presents the high-level pseudocode

for generating directional changes events.

It is important to note here that the confirmation of a change of a trend can only be confirmed retrospectively, i.e.

only after the price has changed by the pre-specified DC threshold value θ. For example, under θ = 0.01% we can only

confirm that we are in a upward trend from Point D onwards. Point D is thus called a confirmation point. Before Point

D, the directional change had not been confirmed (i.e. the market price had not changed by the pre-specified threshold

value), thus a trader summarising the data by the DC paradigm would continue believing we are in a downward trend,

which started from Point A. Similarly, a trader using θ = 0.01% would continue considering being in a upward trend

from Point D until the price has reversed by θ = 0.01%, which only takes place at the next confirmation point, i.e.,

Point F. So what becomes important here is to be able to anticipate the change of the trend as early as possible, i.e.

before Points C and E have been reached. In addition, since different thresholds generate different event series, we

hypothesise that the combined information from these series would lead to profitable trading strategies.
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Figure 2: Directional changes for tick data for the GBP/JPY currency pair. The solid and dashed lines denote a set of events defined by a threshold

θ = 0.01%, while the dotted and dot-dashed lines refer to events defined by a threshold θ = 0.018%. The solid and the dotted lines indicate the

DC events, and the dashed and dot-dashed indicate the OS events. Under θ = 0.01%, the data is summarised as follows: Point A↦ B (Downward

directional change), Point B↦ C (Downward overshoot event), Point C↦ D (Upward directional change), Point D↦ E (Upward overshoot event),

Point E↦ F (Downward directional change). Under θ = 0.018%, the data is summarised as follows: Point A↦ B’ (Downward directional change),

Point B’↦ C (Downward overshoot event), Point C↦ E (Upward directional change), Point E↦ E’ (Upward overshoot event).

The advantage of this new way of summarising data is that it provides traders with new perspectives to price

movements, and allows them to focus on those key points that an important event took place, blurring out other price

details which could be considered irrelevant or even noise. Furthermore, DC have enabled researchers to discover new

regularities in markets, which cannot be captured by the interval-based summaries (Glattfelder et al., 2011). Therefore,

these new regularities give rise to new opportunities for traders, and also open a whole new area for research.

One of the most interesting regularities that was discovered in Glattfelder et al. (2011) was the observation that a

DC of threshold θ is on average followed by an OS event of the same threshold θ. At the same time, it was observed

that if on average a DC takes t amount of physical time to complete, the OS event will take an amount of 2t. This

observation is summarised in Figure 3, and was only made under DC-based price summaries, and not under phsycical-

time summaries. Furthermore, this astonishing observation was made on all of the 13 different currency exchange

rates that the authors of Glattfelder et al. (2011) experimented with. This thus leads us to further hypothesise that such

statistical properties could lead to profitable strategies, if appropriately exploited, mainly because such properties are

not well-known to traders yet. Therefore, the DC area is a rich research area that could potentially lead to significant

discoveries.

In this work, we will present new trading strategies based on the concept of directional changes. As part of the

implementation of this trading strategy we will be using the scaling law presented above; we have also introduced

several parameters into the system, which we present in detail in Section 3.

Lastly, since a user/trader has to decide on which thresholds to use for generating DC events, a problem that arises

is what are appropriate thresholds and how much weight we should give to the information provided by each threshold.

We are thus faced with an optimisation problem, where one has to look into the space of different thresholds and focus

on the most promising ones. One of the popular optimisation techniques is Genetic Algorithms, discussed next.

2.3. Genetic algorithms

Genetic Algorithms (GAs) are bio-inspired algorithms that mimic an evolutionary process to find good solutions

to optimisation problems (Godlberg, 1989; Mitchell, 1996; Michalewicz, 2002). GAs have several elements that

allow them to perform a robust global search: (a) they work with a population of candidate solutions (individuals),

rather than a single candidate solution; (b) individuals of the population are evaluated according to a fitness function,
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Figure 3: An example of a scaling law presented in Glattfelder et al. (2011), which shows that (1) a DC event (solid line) of threshold θ is followed

by an OS event (dotted line) of also threshold θ, and (2) the OS event lasts about the double amount of time that it took for the DC event to take

place.

Algorithm 1 Pseudocode for generating directional changes events (source: Aloud et al. (2012)).

Require: Initialise variables (event is Upturn event, ph = pl = p(t0),∆xdc(Fixed) ≥ 0, tdc
0 = tdc

1 = tos
0 = tos

1 = t0)
1: if event is Upturn Event then

2: if p(t) ≤ ph × (1 − ∆xdc) then

3: event ← DownturnEvent

4: pl ← p(t)
5: tdc

1 ← t // End time for a Downturn Event

6: tos
0 ← t + 1 // Start time for a Downward Overshoot Event

7: else

8: if ph < p(t) then

9: ph ← p(t)
10: tdc

0 ← t // Start time for Downturn Event

11: tos
1 ← t − 1 // End time for an Upward Overshoot Event

12: end if

13: end if

14: else

15: if p(t) ≤ pl × (1 + ∆xdc) then

16: event ← U pturnEvent

17: ph ← p(t)
18: tdc

1 ← t // End time for a Upturn Event

19: tos
0 ← t + 1 // Start time for an Upward Overshoot Event

20: else

21: if pl > p(t) then

22: pl ← p(t)
23: tdc

0 ← t // Start time for Upnturn Event

24: tos
1 ← t − 1 // End time for an Downward Overshoot Event

25: end if

26: end if

27: end if
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which measures the quality of the candidate solution represented by an individual—the higher their quality, the more

likely that their genetic material will be carried forward to the next population; (c) the solution space is explored

using genetic operators, which generate new offspring individuals from individuals of the current population using a

stochastic selection procedure based on fitness.

Algorithm 2 presents a high-level pseudocode of a GA. The algorithm starts by creating a population of p candidate

solutions, where p is referred to as population size. These are evaluated by a fitness function in order to determine their

performance in solving the problem at hand. On each iteration (while loop), a new population is then generated by

probabilistically selecting the fitter individuals from the current population. Some of the selected individuals undergo

crossover and mutation, which introduce modification to explore the search space; other are carried forward without

modifications. The new population replaces the old and the new individuals are evaluated. This process is repeated

until a maximum number of generations is reached or the (near-)optimal solution is found, acting as a termination

condition. Through this evolutionary process, GAs perform a robust global search in the space of candidate solutions,

less likely to get trapped into local minima.

Representation. Individuals in GAs are usually represented as a string of symbols, either binary or numeric values—

the representation is dependant on the problem at hand. Figure 4 shows an illustration of a real-valued representation.

Each position in the string is referred to as a gene and it represents a variable to be optimised. At the start of a GA,

the population is initialised with random individuals: each gene is initialised with a random value in the domain of

the variable.

Genetic Operators. Genetic operators manipulate the genetic material of individuals (strings of symbols) to generate

new offspring individuals, mimicking a mechanism of inheritance. For example, crossover create two new offspring

solutions from two parent individuals by swapping portions of genetic material (or genes) from each parent. To

illustrate, consider the uniform crossover operator in Figure 4. This operator combines genes sampled uniformly

from two parents. In addition to crossover, GAs usually employ a mutation operator, which produces a new offspring

individual from a single parent. In uniform mutation, small changes are introduced to a parent individual by choosing

and modifying each gene at random. Both uniform crossover and uniform mutation are controlled by two probabilities

rates: the first one is used to decided whether the selected individual will undergo crossover/mutation (pc and pm in

Algorithm 2, respectively) or not; the second rate is used to decide if a gene is swapped/mutated or not. Figure 4

shows an illustration of both uniform crossover and uniform mutation operators.

Elitism and Selection. Elitism is the process of allowing the best individuals (in terms of fitness) of the current

population to be carried over to the next without modification. This guarantees that the solution fitness will not

decrease from one generation to the next. The remaining individuals are subject to a probabilistic selection for

inclusion in the next generation population. One of the most popular selection strategies is the tournament selection.

In tournament selection, k individuals are selected at random, where k denotes the tournament size. The more fit

individual of the selected subset is then selected for inclusion in the next population.

2.4. Summary

In this section we started by discussing two popular trading techniques, namely buy and hold and technical anal-

ysis. Both of these two methods will form our financial benchmarks during our experimental phase. In addition, we

presented in detail the concept of directional changes, which our trading strategies are going to be based on. Lastly,

we discussed what genetic algorithms are, as they are going to be our optimisation engine. In the next section, we

present two new types of trading strategies, which are derived by directional changes.

3. DC-derived trading strategies

In this section, we will present how we can use the DC paradigm to derive two different types of trading strategies.

The first one is going to be based on a single DC threshold, and is going to be presented in Section 3.1. The second

strategy is going to be based on multiple DC thresholds and is going to be presented in Section 3.2.
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Algorithm 2 High-level pseudocode of a genetic algorithm.

GA(p, Fitness, pc, pm)

p: population size

Fitness: determines the quality of solutions

pc: crossover rate

pm: mutation rate

1: Initialise population: P← Generate p individuals (candidate solutions) at random

2: Evaluate: for each i in P, calculate Fitness(i)

3: while termination condition not satisfied do

4: Pg ← Create new population for generation g

(a) Elitism: copy the r best individuals from P to Pg

(b) Select: probabilistically select (p − r) individuals of P to add to Pg and

• Perform crossover between a pair of selected individuals according to pc

• Perform mutation on a selected individual according to pm

5: Update: P← Pg

6: Evaluate: for each i in P, calculate Fitness(i)

7: end while

8: Return the individual with the highest fitness from P

0.7 0.3 0.5 0.4 0.2 0.1 0.9 0.6

0.3 0.1 0.8 0.9 0.4 0.2 0.7 0.6 0.7 0.1 0.8 0.4 0.4 0.1 0.9 0.6

0.5 0.1 0.4 0.2 0.1 0.7 0.2 0.8 0.5 0.1 0.7 0.2 0.6 0.7 0.2 0.1

0.3 0.3 0.5 0.9 0.2 0.2 0.7 0.6

Uniform crossover:

Uniform mutation:

Parent individuals Offspring

Figure 4: Illustration of uniform crossover and uniform mutation operators. Individuals are represented as a string of real values. The dark positions

(genes) in parent individuals are the ones that will be swapped/mutated to generate offspring individuals.
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3.1. Single-threshold DC trading strategy

As we have already discussed in Section 2.2, a physical-time price curve can be transformed to intrinsic time,

where it’s dissected into DC and OS events. When a DC event is confirmed (either upturn or downturn), the OS

period starts. It is worth re-iterating that we can only know the market has changed direction in hindsight; we only

detect a DC event only after the DC confirmation point has been observed. After the DC confirmation has taken place,

we are during an OS period, which lasts until there is a reverse in the direction, which is again only confirmed once

we have reached the next confirmation point. Therefore, if one can act during the OS period and before the reverse of

the trend, then this can lead to a profitable trading strategy. The idea is that if we are in an downtrend, we buy at the

last point (ideally) of the OS event, which is the lowest observed value. When the trend then reverses and we are in

an uptrend, we can then sell at a much higher price and make profit. The same principle applies for uptrend: sell as

close as possible to the end of the OS event. To sum up, when there is a downtrend, we buy; when there is an uptrend,

we sell.

In order to make the above clearer, let us refer back to Figure 2. As we can observe, after the confirmation of the

downward trend in Point B, a period of OS starts, which lasts until Point D, which is the next DC confirmation point,

confirming that we are now in a upward trend. It is thus important to take a buy action during the OS event and ideally

before the reverse of the trend, which as we can see takes place at Point C. The closer to the end of the OS event we

can trade (i.e., the closer to Point C), the higher the profit margin a trader can make.

Thus, it is crucial to be able to anticipate the reverse in the trend and be able to act before that. In order to tackle

this, we use the scaling laws we discussed earlier in Section 2.2. As explained, these laws states that when on average

a DC event takes t amount of physical time to complete, the OS event takes an amount of 2t. Because this is an

approximation and it can rely on the underlying dataset, we wanted to have our own calculations for the datasets we

are dealing with. Thus, what we did was to calculate the average time of each OS event for every period we would

use as a training set. We hence created two variables, expressed as the average ratio of the OS event length over the

DC event length. These two variables are ru and rd, where ru is the average ratio of the upwards OS event, and rd

is the average ratio of the downwards OS event. Our calculations showed that these two variables had indeed values

around 2 (ranging between 1.8–2.0), which confirms the scaling law findings. More importantly, this allowed us to

have tailored values for ru and rd, for each training set we use.

After obtaining these ratios, we were able to anticipate the end of a trend (approximately) and as a result make

trading decisions once an OS event had reached the average ratio of ru or rd. Of course, in reality things are not that

simple. The ru and rd ratios are just average approximations, so many times the OS event might last longer or shorter

than anticipated. In an attempt to address this issue, we have created two user-specified parameters, namely b1 and

b2, which define a range of time within the OS period, where trading is allowed. For instance, if a trader expects the

OS event to last for 2 hours, then we can define an action range of [b1,b2] = [0.90,1.0], which effectively means we

are going to trade at the last 10% of the 2 hours duration, i.e. in the last 12 minutes. By introducing b1 and b2, we are

essentially attempting to anticipate the approximation errors that might have been created during the calculation of ru

and rd. Equation 7 presents the formulas for these starting and ending for upward and downward OS periods:

tU
0 = (t

dc
1 − tdc

0 ) × ru × b1

tU
1 = (t

dc
1 − tdc

0 ) × ru × b2

tD
0 = (t

dc
1 − tdc

0 ) × rd × b1

tD
1 = (t

dc
1 − tdc

0 ) × rd × b2

, (7)

where tU
0 , t

U
1 are the start and end times for upwards overshoot period, respectively, and tD

0 , t
D
1 are the start and end

times for downwards overshoot period, respectively. In addition, tdc
0 and tdc

1 are the start and the end times of the

current DC event, after the confirmation of the event has taken place at time tdc
1 . Their difference tdc

1 − tdc
0 returns

the length of the current DC event. Also, ru and rd are the average ratios of the upwards and downwards OS period

lengths, respectively, over the current DC period. Lastly, b1 and b2 are the two parameters defining the action range

within the OS periods, as explained above.

Although b1 and b2 define a window for trading, a problem that exists with high-frequency data—particularly tick

data—is that there can still be hundreds of points to trade, even if that trading window is very narrow. This could
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Table 1: DC strategy parameters.

Parameter Description

ru Average ratio of upwards OS event over the upwards DC event length

rd Average ratio of downwards OS event over the downwards DC event length

Qtrade Quantity to trade

N↓ Number of thresholds recommending to buy

N↑ Number of thresholds recommending to sell

Nθ Total number of thresholds used in the experiments

Q Quantity for trading

b1 Start of trading period during an OS event

b2 End of trading period during an OS event

b3 Range of prices close to the trading price Ptrade that a trade can be perfomed

be problematic, because trading at multiple price levels will not return the highest profit. What is more effective is

to sell (buy) at a price as expensive (cheap) as possible. To achieve this, we introduced another variable b3, which

prevents traders from doing expensive trades. To ensure this, we only allow the system to sell at the most expensive

(peak) price Ppeak and buy at the cheapest recorded price (trough) Ptrough, or in prices in close range. This range is

determined by the value of b3. Therefore a trader would sell when the price is equal to Ppeak × b3, or buy when the

price is equal to Ptrough × (1 − b3). Essentially, b3 is a value within the range of [0,1] and defines the range of prices

close to Ppeak andPtough that the system will perform an action.

Furthermore, there is a user-specified parameter Q, which controls the trading quantity. Lastly, it should be

mentioned that our system allows short selling. However, in order to avoid excess short selling, which can lead to

significant losses, we have introduced a stop loss mechanism that is called short selling allowance. This allowance is

a percentage of our budget and allows short selling activities up to this pre-specified percentage. This percentage is

decided during parameter tuning.

3.2. Multi-threshold DC trading strategy

This strategy builds on the previous one, as it still uses Equation 7 and the b3 variable. But instead of only using

a single threshold, it combines information by multiple thresholds. As we discussed in Section 2.2, a DC event is

identified by a change in the price by a given threshold value. The use of different DC thresholds provides a different

view of the data: smaller thresholds allow the detection of more events and, as a result, actions can be taken promptly;

larger thresholds detect fewer events, but provide the opportunity of taking actions when bigger price variations are

observed. This proposed trading strategy combines the use of different threshold values in an attempt to take advantage

of the different characteristics of smaller and larger thresholds.

From the single-threshold strategy we know that under a specific threshold we should buy towards the end of a

downtrend and sell towards the end of an uptrend (i.e. towards the end of the respective OS events). Since now we are

dealing with multiple thresholds, each threshold summarises the data in a unique way. For example, at one point in

time the trading strategy under one threshold could be recommending a buy action, while under a different threshold

recommend a sell action. As we have already argued, the advantage of having the multiple thresholds is that we have

multiple recommended actions per data point. In order to decide which action to follow, a majority vote takes place.

In order to allow for a majority vote, we associate each DC treshold to an equal weight of 1 (vote). Therefore,

W1 = W2 = W3 = ... = WNθ = 1, where Nθ is the total number of thresholds used. As a result, at any point in

time the trading strategy is able to make a buy/sell/hold recommendation based on the combined recommendations

of all thresholds. As we already know, each threshold produces DC events; thus each threshold is able to make this

buy/sell/hold recommendation. Since we have Nθ thresholds, this means that at any point in time we receive Nθ

11



recommendations. In order to decide which recommendation to follow, we sum the weights of the thresholds: if the

sum of the weights for all thresholds recommending a buy (sell) action is greater than the sum of the weights for

all thresholds recommending a sell (buy) action, then the strategy’s action will be to buy (sell). The hold action is a

special case of both buy and sell and it happens when we are outside the price range recommended by b3, or when

there is not enough quantity to act, see Algorithm 4 lines 8, 11, and 26.

In addition, the multi-threshold trading strategy is able to make recommendations on the trading quantity Qtrade.

The decision for this quantity is a dynamic decision, taken by the number of DC thresholds that are advising to sell

(buy) at a certain point in time: if many thresholds are advising to sell (buy), then the algorithm sells (buys) a higher

quantity of the given currency pair. Equations 8a and 8b present the relevant formulas, for buy and sell, respectively:

Qtrade = (1 +
N↓

Nθ
) × Q (8a)

Qtrade = (1 +
N↑

Nθ
) × Q (8b)

where Qtrade is the quantity to trade, N↓ and N↑ are the number of thresholds recommending to buy and sell, re-

spectively, Nθ is the total number of thresholds used in our experiments, and Q is the user-specified quantity already

presented in Section 3.1. As we can see, by taking into account the recommendations given by the DC thresholds, we

are giving more or less weight to the Q quantity, resulting to a new quantity Qtrade.

This concludes the presentation of the two proposed DC strategies and their respective parameters. For the con-

venience of the reader, we have summarised and listed these parameters in Table 1. We have also summarised the

trading strategy processes into pseudocodes: Algorithm 3 presents an overview of how the return of a trading strategy

is calculated. In addition, Algorithm 4 presents how the buy and sell actions take place. While these algorithms are

for the multi-threshold strategy, they can also be applied to the single-threshold strategy, where there is only a single

weight (for the single threshold) of W1 = 1 and Qtrade = Q.

4. Optimising multi-threshold strategies via a Genetic Algorithm

In the previous section, we presented two novel trading strategies based on the DC paradigm: a single-threshold

strategy and a multi-threshold strategy that builds on top of the single-threshold. While the multi-threshold strategy

has the advantage of combining recommendations from different thresholds, a problem that exists is that we do not

know how much weight we should give to each threshold. Simply assigning an equal weight of 1 to all of the

thresholds might be a naive approach. Some thresholds might be more useful than others, hence we should give them

more weight. Thus, we use a genetic algorithm (GA) to evolve real values for the weight of each DC threshold. In

addition, we also evolve some other DC parameters that are crucial to the success of the trading strategy. All these are

discussed next, in Section 4.1, where the GA representation is presented. Then, Section 4.2 presents the GA operators

and Section 4.3 presents the fitness function.

4.1. Representation

Each chromosome consists of 4 + Nθ genes, where Nθ is the number of different threshold values of the multi-

threshold strategy. The number 4 denotes that in addition to the thresholds, there are also 4 additional parameters

to be optimised: Q (first gene), b1 (second gene), b2 (third gene), and b3 (fourth gene). Q,b1,b2 and b3 refer to the

DC-related parameters presented in Section 3.1. Each remaining gene in the chromosome (positions 5 to [4+Nθ])

represents a weight associated to a given threshold. Thus, after first deciding the DC threshold values (through

parameter tuning) and generating the DC events per threshold, each GA gene is assigned the same initial weight.

Therefore, W1 = W2 = W3 = ... = WNθ =
1

Nθ
. The GA then evolves the weight for each threshold (in addition to the 4

parameter values in positions 1-4).

As a result, at any point in time a GA individual is able to make a buy/sell/hold recommendation based on the

combined recommendations of all thresholds by using the majority vote mechanism we presented in Section 3.2. An

example of an 8-gene GA chromosome is presented in Figure 5.
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Algorithm 3 Pseudocode for calculating the return of a trading strategy.

Require: Initialise variables (cash = budget,Qtrade = 0, current = 0)

Require: b1,b2, b3, Q and weight values W1 =W2 = ... =WNθ = 1 for each threshold

1: for i = 0; i < dataset_length; i + + do

2: Initialise variables weights for buy and sell: WB =WS = 0, number of upturn and downturns: N↑ = N↓ = 0

3: current ← current + 1

4: if PC > Ppeak then //PC is the current price and Ppeak is the highest so-far price.

5: Ppeak ← PC

6: else if PC < Ptrough then

7: Ptrough ← PC

8: end if

9: for j = 0; j < Nθ; j + + do

10: Calculate tU
0 , t

U
1 , t

D
0 , t

D
1 as explained in Equation 7

11: if event is Downturn Event then

12: WB ←WB +W j

13: if current within range of [tD
0 , t

D
1 ] then

14: N↓ ← N↓ + 1

15: else

16: N↓ ← N↓ − 1

17: end if

18: else

19: WS ←WS +W j

20: if current within range of [tU
0 , t

U
1 ] then

21: N↑ ← N↑ + 1

22: else

23: N↑ ← N↑ − 1

24: end if

25: end if

26: end for

27: if WS >WB then

28: Perform the sell action for a given quantity [see Algorithm 4]

29: else if WS <WB then

30: Perform the buy action for a given quantity [see Algorithm 4]

31: end if

32: end for

33: Wealth← cash + Qtrade × PC

34: Return← 100 × wealth
budget

Figure 5: An example of a 8-gene GA chromosome. The first four genes are : Q, b1, b2 and b3, respectively. The remaining four genes are the

weights for the DC thresholds: W1,W2,W3, and W4.
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Algorithm 4 Pseudocode for performing the buy and sell actions.

1: if WS >WB then

2: if N↑ > 0 and PC ≥ b3 × Ppeak then

3: Qtrade ← (1 +
N↑
Nθ
) × Q

4: if Qtrade > 0 or (Qtrade ≤ 0 and ∣Qtrade∣ × PC ≤ shortS ellingAllowance × budget) then

5: Cash← Cash + Qtrade × PC

6: PFL ← PFL − Qtrade // PFL stands for Portfolio, i.e. the amount/quantity of the currency pair we are

currently holding

7: else

8: Hold

9: end if

10: else

11: Hold

12: end if

13: else if WS <WB then

14: if N↓ > 0 and PC ≤ Ptrough + (Ptrough × (1 − b3)) then

15: Qtrade ← (1 +
N↓
Nθ
) × Q

16: if cash > Qtrade × PC then

17: Cash← Cash − Qtrade × PC

18: PFL← PFL + Qtrade

19: else

20: // Buy only as much as you can afford

21: Q′trade is the new quantity to be traded, up to the amount we can afford

22: Cash← Cash − Q′trade × PC

23: PFL← PFL + Q′

24: end if

25: else

26: Hold

27: end if

28: end if
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Based on this example, the GA recommends buying/selling a quantity of Q equal to 10, and only acting in the

period [0.9,1.0] of the estimated duration of the OS event (i.e., in the last 10% of the length of the OS event). In

addition, the fourth gene recommends to only consider prices that are within a 20% range (the value of b3 is 0.8,

so 1.0 − 0.8 = 0.20 or 20%) of the highest (lowest) recorded price Ppeak (Ptrough). In addition, to decide the trading

action, we would check the recommendation of each individual threshold. For this example, let us assume that the

first threshold recommends buy, the second threshold recommends sell, the third threshold recommends buy, and the

fourth threshold recommends hold. We would then sum up the weights of the thresholds, according to each action.

Therefore, the weight for buying WB is equal to W1 +W3 = 0.2 + 0.2 = 0.4, and the weight for selling WS is equal to

W2 = 0.5.2 Since WS >WB, the GA’s recommendation would be to sell.

4.2. Operators

The following three operators are being used during the evolutionary process: elitism, uniform crossover and

uniform mutation—as detailed in Section 2.3.

In elitism, the best-performing individual (in terms of fitness) is copied to the next generation. In uniform

crossover, two parents are selected via a tournament selection. In this type of crossover, the genes between the

two parents are swapped with a fixed probability of 0.5. In addition, we ensure that the value of the third gene is

always greater than the value of the second gene, i.e. b2 always has to be greater than b1. Lastly, for the uniform

mutation operator a single parent is selected, again by tournament selection. With a probability of 0.5, each gene of

the chromosome is mutated, and a different value is obtained. It should be clarified here that for the first gene (quantity

Q), the mutated value can be any integer up to a pre-specified maximum quantity value; whereas for the remaining

genes (i.e., b1,b2,b3 and all weights W), the mutated values are real numbers between 0 and 1, where b2 > b1.

4.3. Fitness function

Several different metrics have been used in the literature as fitness function in algorithmic trading problems. Some

examples are: wealth, profit, return, Sharpe ratio, information ratio (Brabazon & O’Neill, 2006; Bradley et al., 2009).

In this paper, we set our fitness equal to the total return minus the maximum drawdown, presented in Equation 9:

f f = Return − α ×MDD

MDD =
Ptrough − Ppeak

Ppeak

, (9)

where Return is the return of the investment, MDD is the maximum drawdown, and α is a tuning parameter. Maximum

drawdown is defined as the maximum cumulative loss since commencing trading with the system. It is used to penalise

volatile trading strategies in terms of return. Its value is given as the percentage of
Ptrough−Ppeak

Ppeak
, where Ptrough the trough

value of the price, and Ppeak is the peak value of the price. Lastly, the tuning parameter α is used to define how much

risk-averse the strategy is. The more risk-averse in terms of wishing to avoid a catastrophic loss, the higher the value

of α.

5. Experimental Setup

This section is divided into three parts: Section 5.1, where we present the data we use for our experiments, Section

5.2, where we present the experimental setup, and lastly, Section 5.3, which presents the experimental parameters.

2As explained in the previous section, the hold action is an exceptional case that is considered as an alternative to buy and sell actions; see

Algorithm 4, Lines 8, 11 and 26 for detail.
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Figure 6: Minimum and maximum daily tick data (transactions) per month for the GBP-JPY currency pair, for the period June 2013 to May 2014.

5.1. Data

We use two different types of datasets: (i) tick data and (ii) intra-day data at 10-minute intervals.3 In the first case

of tick data, we use a year’s FX spot tick data on a daily basis from the currency pair of GBP/JPY (British Pound and

Japanese Yen), for the period June 2013 to May 2014. Thus, we use a daily rolling window, where a single day is used

for training the algorithm, and the consecutive day is used for testing the returned model. Exception to this rule was

when there is a weekend, which is not taken into account. The number of tick data can vary significantly from day

to day, and even more from month to month. Nevertheless, each day has a very high number of observations, giving

more than enough training data for the GA to learn and produce a profitable model. As we can observe from Figure

6, where the minimum and maximum number of daily tick data on a given month are presented, a day could have

anything between approximately 70,000 transactions (minimum value of April 2014) to above 900,000 transactions

(maximum value of June 2013). It should be noted that this high number of data per day should not considered to be

a problem for the DC algorithm, i.e. that the algorithm is dealing with too much data to handle; on the contrary, this

is one of the strengths of the algorithm, since it will only be focusing on the important events, thus filtering out all

‘noise’ from the data.

In addition, we use 10-minute interval high frequency data for the following currency pairs: EUR/GBP (Euro and

British Pound), EUR/USD (Euro and US dollar), EUR/JPY (Euro and Japanese Yen), GBP/CHF (British Pound and

Swiss Franc), and GBP/USD (British Pound and US dollar). The period is again June 2013 to May 2014. Since the

amount of the 10-minute data is significantly less than the tick data (e.g. for the whole of June 2013 for EUR/GBP

there’s around 3000 entries for the whole month), we test our algorithms in the following way: every month is split

into its own dataset, with the first 70% of the data being the training set, and the remaining 30% being the testing set.

5.2. Algorithmic experimental setup

In order to demonstrate the efficiency of our evolutionary event-based DC approach, we will be comparing it

with several other benchmarks. This section presents in detail the different algorithms that we use to benchmark our

approach. It should be stated that the objective function (i.e., the function that all trading strategies are optimising) for

all of these algorithms is Equation 9, which was presented earlier in Section 4.3.

Our proposed algorithm is going to be benchmarked against 3 different other types of trading strategies: (i) single-

threshold and multi-threshold directional changes, (ii) buy and hold, and (iii) technical analysis. In addition, there

3All data was purchased by OlsenData: http://www.olsendata.com
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are 4 parameters for all DC configurations, which depending on the experimental setup, we optimise or not. These

4 parameters are: Q, b1, b2, and b3. Please refer back to Section 3.1 for a detailed presentation of these parameters.

Therefore, by taking the above parameters into account, we have the following different configurations, which will

constitute our different algorithmic experimental setups:

Standard directional changes

The purpose here is to present the results of the DC paradigm, under a single-threshold and a multi-threshold

framework. The values of thresholds were decided during the parameter tuning process.

1. Single-threshold, with no evolution (SDC)

This is the trading strategy presented in Section 3.1. The 4 parameters [Q,b1,b2,b3] have not been optimised

and have fixed values: Q = 1,b1 = 0,b2 = 1,b3 = 1, which essentially allow trading of a single quantity

throughout the length of the OS event for any given price, no matter how expensive or cheap it is. Of course,

this is not the optimal setup for these values and this is why in the next setup we evolve these parameters to

obtain better values. However, we consider it important to report results from this setup of SDC to demonstrate

that it is crucial to optimise the four parameters [Q,b1,b2,b3]. Lastly, in order to decide which (single) threshold

to use, we experiment with several different thresholds (one at a time) and report the performance of the best

threshold.

2. Single-threshold, with evolution on the 4 parameters (S DCEVO)

As above. The difference is that now we use a standard GA to evolve the values of the 4 numeric parame-

ters [Q,b1,b2,b3]. The idea behind this setup was to evolve the 4 parameters for a single threshold, so that

algorithmic performance is optimised for that specific threshold.

3. Multi-threshold, with no evolution (MDC)

This is the trading strategy presented in Section 3.2. The 4 parameters [Q,b1,b2,b3] have not been optimised

and have fixed values: Q = 1,b1 = 0,b2 = 1,b3 = 1.

4. Multiple-threshold, with evolution on the 4 parameters (MDCEVO)

As above. The difference is that now we use a standard GA to evolve the values of the 4 numeric parameters

[Q,b1,b2,b3].

Buy and hold

Buy and hold is a common benchmark for trading algorithms. Under this strategy, one would buy at a cer-

tain point in time and not act (hold) for a long period. Thus, traders are not concerned with short-term price

movements, as they expect that in the long term the value of their portfolio will increase.

5. Buy and Hold (BH)

Buy at the beginning of the trading period in August 20134, sell at the end of the period, in May 2014.

Technical analysis

6. EDDIE

The EDDIE algorithm, which uses technical analysis indicators to evolve decision trees that make suggestions

for buying, selling, or holding.

Proposed algorithm

7. DC+GA

Our proposed algorithm, which evolves both the DC threshold weights [W1,W2, ...,WNθ ] and the 4 DC parame-

ters [Q,b1,b2,b3].

As we can observe, DC +GA will be benchmarked against 6 different types of traging strategies. Next, we present

the parameter tuning process that we undertook.

4The first two months (June and July 2013) were used for parameter tuning, and the remaining ten months were used for our experiments. More

details about this in Section 5.3.
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Table 2: Experimental parameters determined using I/F-Race.

Parameter SDC /MDC SDCEVO /MDCEVO / DC+GA EDDIE

Population N/A 1000 500

Generations N/A 35 30

Tournament size N/A 7 2

Crossover probability N/A 0.90 0.90

Mutation probability N/A 0.10 0.10

Number of thresholds 5 5 N/A

Short selling allowance 0.25 0.25 0.25

MDD weight 0.20 0.20 0.20

5.3. Experimental parameters

In order to decide the values for the parameters for the algorithms, we undertook a parameter tuning process by

using the I/F-Race package (Lopez-Ibanez et al., 2011). It should be noted that buy and hold is a simple process with

no parameters that require tuning. I/F-Race implements the iterated racing procedure, which is an extension of the

Iterated F-race process. Its main purpose is to automatically configure optimisation algorithms by finding the most

appropriate settings, given a set of instances of an optimisation problem. It builds upon the race package by Birattari

et al. (2009).

In order to avoid biased results, we used the first two months of our data (June and July 2013) for each currency

pair (both tick and 10-minute data) for tuning purposes. Thus, I/F-Race was applied to the data of June and July 2013.

The remaining ten months (August 2013–May 2014) were used only with the tuned parameters, after I/F-Race was

complete. At the end of the tuning process, we picked the best parameters returned by I/F-Race. These parameters

constitute the experimental parameters for our algorithms. These parameters are presented in Table 2. The buy and

hold setup did not have any parameters, so it is not present in Table 2.

As we can observe, we will be using 5 different thresholds. These thresholds are: 0.01%, 0.013%, 0.015%,

0.018%, and 0.02%. In addition, it should be mentioned that when we use an evolutionary algorithm (S DCEVO,

MDCEVO, EDDIE, and DC+GA), the experiments are run 50 times on each dataset and the results presented corre-

spond to the average value over the 50 executions; SDC and MDC are run just once per dataset, since they represent

deterministic strategies. Similarly, the buy and hold strategy BH is run one time per dataset, as it also represents a

deterministic strategy.

6. Results

This section presents results for all DC algorithms, and the two physical-time financial benchmarks of BH (buy

and hold) and EDDIE (technical analysis), for the currency pair of GBP/JPY under tick data, and for the remaining

five currency pairs (EUR/GBP, EUR/JPY, EUR/USD, GBP/CHF, GBP/USD) under the 10-minute interval data. Ex-

periments took place for the 10 month period of August 2013–May 2014. As explained in Section 5, we used a daily

rolling window for GBP/JPY, where every day was used for training the algorithms, and the following day was used

for testing. The above setup resulted in 205 different datasets, i.e. each algorithm was tested at 205 different unseen

datasets for the tick data of GBP/JPY. In addition, for each of the remaining five currency pairs we undertook exper-

iments for each month during the 10 month period August 2013 - May 2014. Therefore, this returned 50 different

datasets for the 10-minute interval currency pairs. Therefore, our experiments were conducted over a total of 255

different datasets.

To increase comprehensibility, we divide this section in the following way: Section 6.1 presents results for the

tick data dataset (GBP/JPY), Section 6.2 presents results for the 10-minute interval datasets, Section 6.3 presents the

computational time results for the algorithms, and Section 6.4 discusses the results. In addition, Sections 6.1 and 6.2
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Figure 7: Day-to-day average return for the period August 2013 to May 2014 for SDC, SDCEVO, MDC, MDCEVO and DC+GA. Results shown in

% values.

are futher divided into two subsections: 6.1.1, 6.1.2, and 6.2.1, 6.2.2, respectively. Subsections 6.1.1 and 6.2.1 present

a comparison among the DC algorithms only (i.e. SDC, SDCEVO, MDC, MDCEVO, and DC+GA), in order to identify

the best DC setup; subsections 6.1.2 and 6.2.2 present results among the best DC algorithm and the two physical-time

financial benchmarks (i.e. BH and EDDIE).

In addition, we would like to remind the reader that the goal of our experiments is threefold: (i) demonstrate that

the paradigm of DC returns profitable strategies, (ii) provide evidence that the DC strategies optimised by the GA are

more profitable than using standard DC strategies, and (iii) demonstrate that our GA generated strategies outperform

typical physical-time based strategies, namely technical analysis and buy and hold. We demonstrate the fulfilment of

(i) and (ii) in Sections 6.1.1 and 6.2.1. We demonstrate the fulfilment of (iii) in Sections 6.1.2 and 6.2.2.

Lastly, when an algorithm yields positive return, we will also be commenting on its MDD performance, as an

indicator of downside risk.5 In this way, we make a detailed analysis on both performance metrics (return, MDD),

which offers a more holistic view on the results of the trading algorithms.

6.1. Tick data results

6.1.1. Comparison among the DC algorithms

Since each algorithm was tested on a daily basis (excluding weekends) over the 10-month period, we can calculate

the daily return for each algorithm. Figure 7 presents the box and whisker plot for each DC algorithm. As we can

observe, SDC, MDC, and MDCEVO and DC+GA show results with very low variance, as all of them are concentrated

around the mean that seems to be a value near and above zero. On the other hand, SDCEVO experiences high variance

and many extreme values, both positive and negative.

These results are summarised in Table 3. What we can observe is that only MDCEVO and DC+GA have positive

mean daily return over the 10 month period. We can also observe that their mean returns are relatively close, as

MDCEVO’s return is 0.0677% and DC+GA’s is 0.0730%. We should note here that while these return values are

relatively low, the reader should keep in mind that trading takes place on a daily basis. Thus, an average daily mean

return of the scale of 0.0730% will have a significant cumulative effect in the long run. This is further demonstrated

in Section 6.1.2, when we present and discuss with equity curve for DC+GA.

5We are analysing MDD performance only on strategies with positive returns, as a trader would not consider at all a trading algorithm that

yields negative returns.
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Table 3: Mean return results for each DC algorithm. Tick data for GBP/JPY. Results shown in % values.

SDC SDCEVO MDC MDCEVO DC+GA

Mean -0.0053 -5.6975 -0.0092 0.0677 0.0730

StandDev 0.0536 25.296 0.1069 0.3673 0.3942

Max 0.0963 90.170 0.1820 1.1684 1.2587

Min -0.3873 -136.18 -0.7751 -1.1750 -1.3742

Table 4: Mean return results for EDDIE and DC+GA under GBP/JPY’s tick data. BH’s return (not included in the table, as it does not do daily

trading) was -0.1164.

EDDIE DC+GA

Mean -0.1918 0.0730

StandDev 0.3732 0.3943

Max 0.929 1.26

Min -2.01 -1.37

To investigate whether there is a statistical significance between MDCEVO and DC+GA, we ran the Kolmogorov-

Smirnoff non-parametric test, with the null hypothesis being that the data from these two algorithms come from

the same continuous distribution. The test showed that indeed they both come from the same distribution with a

p-value of 0.9638, thus the difference in the mean values is not statistically sigificant. In addition, we look into

the maximum drawdown (MDD) values for these two algorithms, to get insight on the downside risk of the trading

strategies generated by each algorithm. The average value for MDCEVO is 0.4156%, whereas DC+GA’s value is

slighly higher, at 0.4251%, showing that both algorithms’ strategies have similar downside risk. We further explore

the effect of this risk in the next section, when we present the average daily return and its fluctuations.

Since DC+GA returned higher mean return, we use this setup for the comparisons with the physical-time financial

benchmarks.

6.1.2. Comparison with physical-time financial benchmarks

Table 4 presents the mean results for DC+GA and EDDIE. We should also note that BH yielded a return of

-0.1164%. As we can observe from the table, EDDIE also has a negative mean daily return of -0.1918%. There-

fore, DC+GA was the only algorithm among these three with a positive daily return. In addition, a two-sample

Kolmogorov-Smirnov test at 5% significance level returned a p-value of 4.7194e-09, and thus showed that DC+GA

significantly outperformed EDDIE.

To visualise DC+GA’s results, we present the average (over the 50 runs) daily return for the period August 2013

to May 2014 in Figure 8. As we can observe, the majority of the days experience a positive return. In fact, 58.5% of

the tested datasets experienced a positive return (120 out of the total of 205 days). Furthermore, Figure 9 presents the

equity curve for DC+GA. Equity curve is a graphical representation of the change in value of a trading account over a

time period. An equity curve with a consistently positive slope would generally indicate that the trading strategies of

the account are profitable, while a negative slope would indicate that the account is losing money. As we can observe,

the given equity starts from an initial budget of £500K and never drops below this threshold. It generally follows a

positive slope, with the only exception of around February-March, where there was a decline. Nevertheless, the curve

soon returns to its positive slope, demonstrating the long-run effectiveness of the trading strategy.

This concludes the results under tick data, which showed that DC+GA was ranked first among the other DC

versions, and also outperformed the two physical-time financial benchmarks. Next, we present results under the
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Figure 8: Day-to-day average return for the DC+GA strategy for the period August 2013 to May 2014 for GBP/JPY’s tick data. Results shown in

% values.

Figure 9: Equity curve for the DC+GA strategy for the period August 2013 to May 2014 for GBP/JPY’s tick data.
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10-minute interval data.

6.2. 10-minute interval data results

This section presents results for the 10-minute interval data for the five currency pairs: EUR/GBP, EUR/JPY,

EUR/USD, GBP/CHF, and GBP/USD. We start again by presenting results for the DC algorithms only, in Section

6.2.1. After identifying the best DC setup, we move on to Section 6.2.2, where we compare this best DC setup with

BH and EDDIE.

6.2.1. Comparison among the DC algorithms

Table 5 presents the return results for each month, for each DC algorithm, under the 10-minute interval data, for

each currency pair. Overall, each DC algorithm appears to be able to show positive returns for each currency pair.

SDC and SDCEVO are the two algorithms with the highest frequency of positive returns. Out of the 10 months tested

per currency pair, SDC had 7 positive returns for EUR/GBP, 6 positive returns for EUR/JPY, 7 positive returns for

EUR/USD, 5 positive returns for GBP/CHF, and 3 positive returns for GBP/USD. Similarly, SDCEVO’s number of

positive returns were 6, 5, 6, 6, and 4.

Table 6 summarises these results. In terms of currency pairs, it appears that EUR/GBP is the easiest to predict,

as all algorithms showed non-negative returns. On the other hand, all other currency pairs had two to three currency

pairs with negative returns. Overall, SDC and MDC experience again, as with the tick data, a negative mean return.

On the other hand, SDCEVO, MDCEVO and DC+GA experience positive mean returns, with values close to each other

(0.01064%, 0.00875%, and 0.01046%). It thus appears that these three algorithms have similar performance. Once

again, we would like to note that while these returns appear to be low, their cumulative effect can be much higher

when trading over all 50 datasets available for the 10-minute interval data.

To further investigate the algorithms’ performance, we applied Friedman’s non-parametric statistical test to com-

pare multiple algorithms. We present the results in Table 7. For each algorithm, the table shows the average rank

according to the Friedman test (first column), and the adjusted p-value of the statistical test when that algorithm’s

average rank is compared to the average rank of the algorithm with the best rank (control algorithm) according to

the Hommel post-hoc test (second column) (Demšar, 2006; García & Herrera, 2008). As we can observe from the

Friedman test, there is no statistical significance between SDCEVO and DC+GA at the α = 0.05 level. Also, there is

no statistical significance between SDCEVO and MDCEVO at the α = 0.05 level, but there is a statistical significance at

the α = 0.10 level.

Lastly, we compare the MDD results over the three algorithms that yielded positive mean return (i.e., SDCEVO,

MDCEVO, and DC+GA). DC+GA and MDCEVO have the lowest mean MDD values, 0.03789% and 0.03308%, re-

spectively; on the other hand, SDCEVO’s mean MDD value is higher, at 0.05251%. Overall, all algorithms showed

very low MDD values. One interesting observation that can be made is that while SDCEVO returned the highest mean

return, as we saw in Table 6, it also returned more volatile trading strategies. This is mainly because of the much

higher MDD value for EUR/JPY in Table 8 (0.22863% for SDCEVO, against 0.12386% and 0.14274% for MDCEVO

and DC+GA, respectively). Nevertheless, since SDCEVO ranked first in terms of mean return, we are going to be

using it with the comparisons with the physical-time financial benchmarks.

6.2.2. Comparison with physical-time financial benchmarks

Table 9 presents the mean return for EDDIE and SDCEVO under the 10-minute interval datasets (for completeness,

we also present the month-by-month return results in the Appendix in Table A.11.). We should also note that BH’s

average return was 0.01274%. As we can observe, EDDIE has again a negative mean return of -0.00873%; it is

also worth noting that for all five currency pairs EDDIE’s mean return is negative. On the other hand, SDCEVO has

a positive return for three currency pairs: EUR/GBP, EUR/JPY, and EUR/USD. Overall, SDCEVO’s mean return is

0.01064%. A two-sample Kolmogorov-Smirnov test for EDDIE and SDCEVO returned a p-value of 0.0560, showing

that there is a statistical significance between these two algorithms at the 10% significance level. However, the fact

that EDDIE returned a negative mean return means that it would not be attractive to an investor as a trading algorithm.

This leads us to argue that SDCEVO outperforms EDDIE, while it returns a similar average return with BH.
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Table 5: Monthly return results for each DC algorithm. 10-minute interval data. Results presented per currency pair, in % values.

SDC SDCEVO MDC MDCEVO DC+GA

EUR/GBP August 0.000004 -0.005459 0.000012 -0.007698 -0.009455

September -0.000014 -0.004532 -0.000032 -0.003943 -0.002992

October 0.000007 0.002058 0.000011 -0.000974 -0.001070

November 0.000002 0.002844 0.000007 0.001022 0.002826

December 0.000001 0.013137 0.000001 0.007134 0.006939

January 0.000005 -0.000073 0.000010 0.004246 0.004940

February 0.000004 0.000962 0.000005 -0.000139 0.000471

March -0.000003 -0.002265 -0.000009 0.000006 -0.001710

April 0.000001 0.000304 0.000002 0.002933 0.003820

May -0.000001 0.000892 -0.000001 0.000797 0.000344

EUR/JPY August -0.000483 0.155999 -0.000490 0.000000 0.000000

September -0.000433 0.050100 -0.001048 0.001103 -0.022498

October 0.000209 0.060285 -0.000711 0.003731 -0.072743

November -0.000822 0.000000 -0.001747 -0.005446 -0.001633

December -0.003502 -0.421926 -0.008150 -0.084816 -0.049468

January 0.000647 0.771926 0.001547 0.584600 0.598602

February 0.000320 -0.006850 0.000485 -0.004669 -0.004390

March 0.000395 -0.118628 0.000842 -0.106838 -0.085178

April 0.000375 0.049121 0.000679 0.015529 0.057428

May 0.000460 0.040874 0.001183 0.062574 0.064694

EUR/USD August -0.000010 0.001232 -0.000022 0.000000 0.000000

September 0.000003 0.001880 0.000004 -0.000063 -0.000062

October 0.000016 -0.007077 0.000030 -0.005307 -0.003792

November -0.000001 -0.000073 -0.000002 -0.001359 -0.001942

December 0.000002 -0.005356 0.000007 -0.007442 -0.008586

January 0.000024 0.014046 0.000052 0.024849 0.018826

February 0.000010 -0.000601 0.000029 -0.000359 -0.004705

March 0.000001 0.003289 0.000003 0.001864 0.004594

April -0.000001 -0.006851 -0.000009 -0.014233 -0.016055

May 0.000003 0.000756 0.000008 0.000176 0.000430

GBP/CHF August 0.000007 -0.004584 0.000009 -0.000334 0.000061

September 0.000000 -0.014025 0.000000 -0.019435 -0.026564

October 0.000002 0.002891 0.000001 0.004546 0.007189

November 0.000004 -0.002861 -0.000008 -0.000798 -0.000490

December -0.000006 0.000477 -0.000010 -0.001521 -0.002420

January -0.000011 0.000968 -0.000035 -0.000030 -0.000033

February 0.000012 0.009052 0.000024 0.015172 0.015056

March -0.000015 -0.027585 -0.000026 -0.032727 -0.034124

April -0.000001 0.000696 -0.000006 -0.000063 -0.000009

May 0.000002 0.005771 0.000004 -0.001288 0.002493

GBP/USD August -0.000004 0.000249 0.000000 -0.000863 -0.000716

September -0.000031 -0.014953 -0.000043 0.005087 0.003959

October 0.000001 0.028377 -0.000002 0.035794 0.052110

November -0.000001 0.000013 -0.000009 0.000000 0.000000

December 0.000001 -0.030266 0.000001 -0.035563 -0.040706

January -0.000009 -0.001725 -0.000024 0.000107 0.001240

February -0.000004 -0.012477 -0.000005 -0.004516 -0.004187

March -0.000015 -0.002918 -0.000026 -0.012024 -0.010595

April 0.000000 -0.005678 0.000001 -0.002531 -0.003123

May 0.000000 0.010379 -0.000001 0.021339 0.028387
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Table 6: Mean return results for each DC algorithm. 10-minute interval data. Results shown in % values.

SDC SDCEVO MDC MDCEVO DC+GA

EUR/GBP 0.00000 0.00079 0.00000 0.00034 0.00063

EUR/JPY -0.00028 0.05809 -0.00074 0.04658 0.05387

EUR/USD 0.00000 0.00012 0.00001 -0.00019 -0.00125

GBP/CHF 0.00000 -0.00292 0.00000 -0.00365 -0.00388

GBP/USD -0.00001 -0.00290 -0.00001 0.00068 0.00293

Mean -0.00006 0.01064 -0.00015 0.00875 0.01046

Table 7: Statistical test results according to the non-parametric Friedman test with the Hommel’s post-hoc test. 10-min interval data. Significant

differences at the α = 0.1 level are shown in boldface.

Algorithm Average Rank Adjusted pHomm

SDCEVO (c) 1.86 -

DC+GA 1.91 0.80258

MDCEVO 2.23 0.06431

Table 8: Mean MDD results for each DC algorithm. 10-minute interval data. Results shown in % values.

SDCevo MDCevo DC+GA

EUR/GBP 0.00347 0.00418 0.00520

EUR/JPY 0.22863 0.12386 0.14274

EUR/USD 0.00798 0.01334 0.01402

GBP/CHF 0.01139 0.0114 0.01302

GBP/USD 0.01107 0.0126 0.01449

Mean 0.05251 0.03308 0.03789

Table 9: Mean return results for EDDIE and SDCEVO. 10-minute interval data. BH’s average return (not included in the table) was 0.01274%.

Results shown in % values.

EDDIE SDCEVO

EUR/GBP -0.00141 0.00079

EUR/JPY -0.01644 0.05809

EUR/USD -0.00840 0.00012

GBP/CHF -0.01114 -0.00292

GBP/USD -0.00628 -0.00290

Mean -0.00873 0.01064
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Table 10: Mean computational times per run for SDCEVO, MDCEVO, EDDIE, and DC+GA. SDC, MDC, and BH are deterministic algorithms and

only take 1 second to execute.

SDCEVO MDCEVO EDDIE DC+GA

Tick 18 secs 20 secs 55 secs 45 secs

10-min 10 secs 12 secs 25 secs 20 secs

6.3. Computational times

Table 10 presents the average computational times per run for all algorithms. SDC, MDC, and BH are deterministic

algorithms and are thus very fast in executing (around 1 second). All other algorithms have their execution times

varying between 10 seconds and 55 seconds. Thus, all algorithms have relatively fast execution times. As we can

see, DC+GA ranks third in terms of computational cost, but we believe that this slower execution time is justified

by the improvements in the algorithm’s mean return performance. Besides, all these are very minor differences,

especially after taking into account that the current forecasting application is an off-line problem. Lastly, evolutionary

algorithms can be easily parallelised since each individual (trading strategy) builds and evaluates a candidate solution

independently from all other individuals in the population. Therefore, a large speed up could be obtained by running

a parallel version of any evolutionary DC version, as it has actually been shown in Brookhouse et al. (2014), where

speed ups of up to 21 times were observed.

6.4. Discussion

From the above results, we can reach the following conclusions.

DC has the potential of returning profitable trading strategies. The single and multi-threshold DC strategies (SDC

and MDC) were able to return profitable strategies, as it is evident from the best results of Tables 3 and 6. As we

can observe in these tables, all DC algorithms had the maximum return entry as a positive value, which indicates that

there was at least one instance per algorithm that had yielded positive return. However, the SDC and MDC paradigm

could not consinstently return profitable strategies and thus their mean returns were negative. So it was evident to us

that while DC is a promising method, it would benefit from optimising its parameters.

Optimising DC parameters and weights increases the mean return. Using a genetic algorithm to optimise the parame-

ters SDC and MDC increased the mean return, leading to a positive mean return in 3 out of 4 cases. More specifically,

under the tick data (Table 3) moving from MDC to MDCEVO increased the mean daily return from -0.0092% to

0.0677%. In addition, under the 10-minute data (Table 6), moving from SDC to SDCEVO led to an increase of mean

return from -0.00006% to 0.01064%. Similarly, moving from MDC to MDCEVO increased the mean return from

-0.00015% to 0.00875%.

Furthermore, optimising the weights of MDCEVO led to the development of the DC+GA algorithm. DC+GA fur-

ther improved the mean return of MDCEVO under the tick data, from 0.0677% to 0.0730%. Under the 10-minute data,

DC+GA again improved the mean return from MDCEVO’s 0.00875% to DC+GA’s 0.01046%. However, DC+GA

had slightly lower mean return from SDCEVO’s 0.01046%. Nevertheless, statistical tests showed that the difference in

DC+GA’s performance and SDCEVO were not statistically significant.

The above leads to us conclude that the introduction of both parameter and weight optimisation is beneficial to

DC algorithms.

The DC paradigm is able to outperform traditional physical-time financial benchmarks. The third and last conclusion

we can reach is that the DC paradigm is able to outperform traditional physical-time financial benchmarks, such as

buy and hold (BH) and technical analysis (EDDIE). In fact, EDDIE never managed to yield positive returns under the

experiments in this work, even though in the past has been very successful in similar financial problems (Kampouridis

& Otero, 2015; Kampouridis & Tsang, 2012, 2010). On the other hand, BH yielded a negative return under the tick

data and a positive return under the 10-minute data. In addition, DC+GA significantly outperformed EDDIE under
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the tick data at the 5% level, and SDCEVO significantly outperfomed EDDIE under the 10-minute data at the 10%

level. However, SDCEVO is heavily dependent on the single threshold we choose to use, so while sometimes it can

perform very well (10-minute data), some other times it can perform extremely poorly (tick data). We made a similar

observation for SDCEVO’s mean MDD value under the EUR/JPY (Table 8), where it almost doubled the MDD value

to its competitors MDCEVO and DC+GA. For this reason, we believe that DC+GA is a better algorithm, as it is more

robust, i.e., it is more consinstent in terms of positive returns and lower MDD. Hence, for completeness we also run a

Kolmogorov-Smirnov test between DC+GA and EDDIE, under the 10-minute data. The null hypothesis is that they

both come from the same continuous distribution. The p-value of the test is 0.0560, which just misses rejecting the

hypothesis at the 5% level, but does reject it at the 10% level.

So, DC+GA is able to significantly outperform EDDIE at the 5% level under tick data and at the 10% level under

the 10-minute data. In addition, DC+GA returned higher mean return than BH under the tick data, and a similar mean

return under the 10-minute data. We can thus conclude that DC+GA is able to perform at least as well as BH and

outperforms EDDIE.

To summarise, the above three conclusions demonstrate that we have successfully met the the three goals of this

paper: (i) the DC paradigm returns profitable strategies, (ii) optimising DC strategies by a GA leads to an increase

in profits, and (iii) our proposed algorithm, DC+GA, is able to outperform physical-time financial strategies, such as

technical analysis, and buy and hold.

7. Conclusion

To conclude, this paper used a new way of summarising high-frequency foreign exchange data, and combined it

with a genetic algorithm for optimising its parameters. We used our proposed framework to trade in six different FX

markets, and showed that we are able to not only produce average profitable results, but also outperform benchmarks

coming from two traditional physical-time approaches (technical analysis, buy and hold). We believe that these results

constitute a very promising start, and that further research should take place towards this direction.

More specifically, at the moment, we have focused on the core theory of directional changes and we have derived

strategies based on that theory. More work could take place in defining new indicators, derived from the concept of

directional changes, in a similar manner that technical analysis indicators exist with physical time. In addition, in our

current approach we allowed for the generation of multiple thresholds, and then let the GA combine the suggested

action of each threshold. A potential improvement to this would be to leave the decision of the generation of thresholds

completely to the optimisation algorithm. For example, the Genetic Algorithm could be further extended to not only

generate thresholds at the beginning of each evolutionary process, but also mutate them, thus generate new ones,

during the process. This is by far a more dynamic technique, which could lead to even better trading results. Lastly,

we also plan to test our DC+GA algorithm on more data sets from the FX market and also from other type of markets,

for instance the stock market.

Appendix A. Monthly return results for EDDIE and SDCEVO
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